API src

Found 96 results.

Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Prozesse und Klimatologie von Schwerewellen

Das Projekt "Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Prozesse und Klimatologie von Schwerewellen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Abteilung Wolkenphysik und Verkehrsmeteorologie.PACOG ist ein Projekt im Rahmen der Forschergruppe 'MS-GWaves', bei der es um die Erforschung von Schwerewellen geht. PACOG konzentriert sich dabei auf atmosphärenphysikalische Beobachtungen und Vergleich mit Modellrechnungen. Schwerewellen spielen für unser Verständnis der mittleren Atmosphäre eine entscheidende Rolle, da sie die Atmosphäre um mehr als 100 K vom strahlungsbedingten Zustand treiben können und drastische Veränderungen der Zirkulation und der Zusammensetzung bewirken können. Schwerewellen stellen den wichtigsten Kopplungsprozess zwischen unteren und oberen Schichten der Atmosphäre dar. Leider sind viele Einzelheiten bezüglich Schwerewellen unzureichend verstanden. Dies betrifft z. B. die Erzeugung, Ausbreitung, Filterung, Dissipation und die zeitliche und räumliche Variabilität. Wir möchten die Klimatologie von Schwerewellen auf regionalen und globalen Skalen untersuchen. Dabei wird eine Kombination von hochmodernen Instrumenten eingesetzt, z. B. Lidars und Radars. Die Interpretation der Ergebnisse wird mit Hilfe von Simulationen, die auf Reanalysen aufbauen, unterstützt. Das Ziel von MS-GWaves besteht letzten Endes darin, die Parametrisierung von Schwerewellen in globalen Modellen zu verbessern. Die in PACOG durchgeführten Beobachtungen sollen in allen Teilprojekten von MS-GWaves verwendet werden, z. B. beim Vergleich von lokalen und regionalen Messungen mit globalen Beobachtungen von Satelliten (Projekt SV) oder zur Validierung von Modellrechnungen in den Projekten 3DMSD und GWING.

Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Wechselwirkungen von Schwerewellen in der globalen Atmosphäre (GWING)

Das Projekt "Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Wechselwirkungen von Schwerewellen in der globalen Atmosphäre (GWING)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Meteorologie.Interne Schwerewellen (SW) verbinden verschiedene Schichten der Atmosphäre von der Troposphäre bis zur Thermosphäre und treiben die großskalige Zirkulation der mittleren Atmosphäre an. Viele der für SW relevanten Prozesse, von ihrer Entstehung über die Ausbreitung bis zur Dissipation sind jedoch unvollständig verstanden und, wegen der geringen typischen Wellenlänge, meist schlecht in numerischen Wettervorhersage- und Klimamodellen repräsentiert. GWING ist eines der Projekte der Forschergruppe MS-GWaves, die darauf abzielt, unser Verständnis der oben angesprochenen multi-skalaren dynamischen Schwerewellenprozesse zu verbessern, um letztendlich eine einheitliche Parametrisierung der in Atmosphärenmodellen nicht auflösbaren Schwerewellen (und ihrer Effekte) von der Entstehung bis zur Dissipation zu entwickeln. Um hierzu beizutragen, ist das zentrale Ziel von GWING die Entwicklung und Anwendung des atmosphärischen Zirkulationsmodells UA-ICON. Mit diesem Modell integriert GWING das in der Forschergruppe MS-GWaves entwickelte Wissen. In der zweiten Phase von GWING stehen zwei übergeordnete wissenschaftliche Fragen im Fokus: a) Welche Bedeutung haben Eigenschaften von Schwerewellen, die in klassischen Parametrisierungen nicht berücksichtigt werden, also insbesondere horizontale und nicht-inständige Propagation sowie die Wechselwirkung transienter Wellen mit dem Grundstrom? b) Welche Rolle spielen Schwerewellen für die globale Zirkulation und ihre Variabilität? Um diese Fragen zu beantworten, werden wir UA-ICON global sowohl mit einer Maschenweite von etwa 20 km (d.h. mit Auflösung von SW bis etwa 100 km Wellenlänge) als auch mit grober Auflösung, dafür aber mit der State-of-the-art Parametrisierung MS-GWaM nutzen. Weiterhin werden spezielle Beobachtungsepisoden mit sehr hoch (ca. 1,5 km) aufgelösten Nestern simuliert. Zur Evaluation und Analyse werden diese Modellsimulationen mit Beobachtungen der Partnerprojekte zusammengeführt. Die wesentlichen Entwicklungsziele für UA-ICON in Phase 2 des Projekts sind dementsprechend die Implementierung von MS-GWaM (entwickelt im Partnerprojekt 3DMSD), die Einführung physik-basierter Schwerewellenquellen (zusammen mit 3DMSD und SV) und eine verbesserte Behandlung von SW bei sehr hoher Modellauflösung. Die Nutzung der verschiedenen UA-ICON-Konfigurationen wird schließlich erlauben, die Bedeutung bisher vernachlässigter Eigenschaften von SW zu untersuchen, d.h. die erste der oben genannten Fragestellungen zu beantworten. Ein spezielles Ziel im Rahmen von GWING ist diese Untersuchung für Episoden plötzlicher Stratosphärenerwärmungen, die durch sich schnell ändernde und zonal nicht symmetrische Bedingungen des Grundstroms gekennzeichnet sind. Im Hinblick auf die zweite übergeordnete Fragestellung, wird sich GWING auf a) die Rolle der SW und einer hohen Modellausdehnung für die Simulation von Zirkulationsänderungen bei globaler Erwärmung und b) die Rolle für die Güte von Wettervorhersagen konzentrieren.

Reaktion des Photosyntheseapparats in tropischen Pflanzen auf starkes sichtbares und ultraviolettes Licht

Das Projekt "Reaktion des Photosyntheseapparats in tropischen Pflanzen auf starkes sichtbares und ultraviolettes Licht" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Düsseldorf, Institut für Biochemische Pflanzenphysiologie.Das Vorhaben umfasst Untersuchungen der inhibierenden Wirkung von Sonnenstrahlung auf die Photosynthese in tropischen Pflanzen und deren Akklimatisation an ambiente Lichtbedingungen. Die Reaktion des Photosyntheseapparats auf natürlichen 'Lichtstress' in Schatten- und Sonnenblättern wird mittels verschiedener Messparameter analysiert. Insbesondere werden spezifische Filter für ultraviolettes Licht (UV-B und UV-A) angewandt, um die Reaktion der Blätter auf die solare UV-Strahlung zu untersuchen. Im Vordergrund der Messungen steht der CO2-Gaswechsel, da Studien mit artifizellem UV-Licht eine bevorzugte Inhibition der CO2-Assimilation durch UV-B gezeigt haben. Daneben werden Änderungen der Aktivitäten der Photosysteme II und I durch Chlorophyllfluoreszenz- bzw. Absorptionsmessungen erfasst. Die Akklimatisation von Schattenblättern an tägliche Sonnenexposition wird mehrere Wochen lang anhand der Zusammensetzung der Photosynthesepigmente und Anreicherung von UV-absorbierenden Substanzen verfolgt. Modellversuche mit Mutanten von Arabidopsis thaliana sollen klären, ob das im Xanthophyllzyklus gebildete Zeaxanthin und die assoziierte thermische Dissipation von Anregungsenergie zum Schutz des Photosystems I beiträgt. Die Sonnenexpositions-Experimente und physikalischen Messungen werden weitgehend am Smithsonian Tropical Research Institute in Panama in Kooperation mit Dr. K. Winter durchgeführt. Pigmentanalysen und Datenverarbeitung sowie die Untersuchung einer C4-Pflanzenart und der Arabidopsis-Mutanten erfolgen am Institut für Biochemie der Pflanzen in Düsseldorf.

Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Mehrskalendynamik von Schwerewellen (Koordinatorantrag)

Das Projekt "Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Mehrskalendynamik von Schwerewellen (Koordinatorantrag)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt.Eine Verlässlichkeit von Vorhersagen des Klimawandels ist nur dann gegeben, wenn die dabei verwendeten numerischen Modelle das gegenwärtige Klima aus den richtigen Gründen korrekt simulieren. Offene Fragen betreffen z.B. dynamische Aspekte wie die Vorhersage einer Verstärkung der Brewer-Dobson-Zirkulation, den dynamischen Einfluss der Stratosphäre auf die Troposphäre und ein Überschießen in der Erholung der Ozonschicht. Eine besonders große Unsicherheit stellen in diesem Zusammenhang interne Schwerewellen (SW) dar, die durch gegenwärtige Chemie-Klimamodelle nicht aufgelöst werden. Ihr Einfluss muss durch Parametrisierungen erfasst werden, die heutzutage stark vereinfacht sind. Die Forschergruppe (FG) wird explizite Modelle für die Anregung, Ausbreitung und Dissipation von SW formulieren, die mathematisch und physikalisch konsistent sind. Diese werden anhand von prozessauflösenden Simulationen und Messungen validiert. Spezielle Beachtung werden die Mehrskalenwechselwirkungen von SW mit Turbulenz und der balancierten Strömung finden, sowie die Wechselwirkung von kleinskaligen, nichtaufgelösten SW mit großskaligen, aufgelösten SW. Die entwickelten Modelle werden in eine einheitliche SW-Parametrisierung münden, von den Quellen bis zur Dissipation. Sowohl die SW-Parametrisierung als auch globale SW-erlaubende und lokale SW-auflösende Simulationen sollen verwendet werden, um die Unsicherheiten der SW-Effekte auf die atmosphärische Zirkulation, auf großskalige dynamische Prozesse und auf den Klimawandel einzuschränken. Die Untersuchungen der Wellenprozesse selbst als auch ihrer globalen Auswirkungen werden auf der engen interdisziplinären Wechselwirkung zwischen Mathematik, Theorie, hochauflösender numerischer Modellierung und Messungen basieren. Diese Kombination begründet sich darin, dass nur Messungen den direkten Bezug zur Realität haben, nur Theorie uns verstehen lehrt, und nur hochauflösende Modellierung eine detaillierte Diagnose erlaubt. Ein dergleichen umfassendes Programm übersteigt bei weitem die Möglichkeiten einzelner Institute oder ihrer bilateralen Zusammenarbeit. Es erfordert hingegen eine FG, in der experimentelle, numerische, theoretische und mathematische Erfahrungen zusammengeführt werden. Die langfristigen Ergebnisse der FG sollen sein:- Eine erweiterte und vertiefte Kenntnis der räumlichen, zeitlichen und spektralen Verteilung von SW in der Atmosphäre.- Ein wesentlich verbessertes Verständnis der Prozesse, welche die korrespondierende SW-Dynamik erzeugen und kontrollieren.- Darauf aufbauend eine Verbesserung der Belastbarkeit und Vollständigkeit der Parametrisierung von SW als Subgitterskalenphänomen, Quellprozesse, SW-Ausbreitung, die Wechselwirkung von SW mit der aufgelösten Strömung und SW-Dissipation betreffend.- Als Ergebnis ein verlässlicheres Verhalten von SW-Parametrisierungen unter anomalen Bedingungen, z.B. dem Klimawandel.

Schwerpunktprogramm (SPP) 2115: Synergie von Polarimetrischen Radarbeobachtungen und Atmosphärenmodellierung (PROM) - Verschmelzung von Radarpolarimetrie und numerischer Atmosphärenmodellierung für ein verbessertes Verständnis von Wolken- und Niederschlagsprozessen; Polarimetric Radar Observations meet Atmospheric Modelling (PROM) - Fusion of Radar Polarimetry and Numerical Atmospheric ..., Bestimmung der polarimetrischen Signaturen von Eisbildungsprozessen unter kontrollierten Aerosolbedingungen (PolarCAP)

Das Projekt "Schwerpunktprogramm (SPP) 2115: Synergie von Polarimetrischen Radarbeobachtungen und Atmosphärenmodellierung (PROM) - Verschmelzung von Radarpolarimetrie und numerischer Atmosphärenmodellierung für ein verbessertes Verständnis von Wolken- und Niederschlagsprozessen; Polarimetric Radar Observations meet Atmospheric Modelling (PROM) - Fusion of Radar Polarimetry and Numerical Atmospheric ..., Bestimmung der polarimetrischen Signaturen von Eisbildungsprozessen unter kontrollierten Aerosolbedingungen (PolarCAP)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Zahlreiche Prozesse sind an der Entwicklung von Wolkensystemen unter leicht unterkühlten Bedingungen bis zu -10°C beteiligt. Das Zusammenspiel von Thermodynamik, Wasserdampf und Aerosolpartikeln steuert die Verteilung von Flüssigwasser und Eis, die Niederschlagsbildung und die Strahlungseigenschaften. Das Projekt PolarCAP zielt darauf ab, die komplexen Zusammenhänge aufzulösen, indem die Entwicklung der Eisphase unter leicht unterkühlten Bedingungen in einer thermodynamisch und aerosol-kontrollierten natürlichen Umgebung mittels Radarpolarimetrie und Spectral-Bin Modellierung untersucht wird. Zielobjekt der Studie sind flüssigwasserdominierte, unterkühlte stratiforme Wolken, die sich im Winter häufig im Temperaturbereich von -10 bis 0°C über dem Schweizer Plateau bilden. Im Rahmen des externen ERC-Forschungsprojekts CLOUDLAB werden Drohnen eingesetzt, um diese Wolken mit definierten Mengen verschiedener Arten von eisnukleierenden Partikeln, wie Silberjodid oder Snowmax, zu impfen. Die anschließend gebildete Eisphase und die Auflösung der Flüssigphase werden im Rahmen von CLOUDLAB mit Hilfe von In-situ-Messungen und einem Standardsatz von Fernerkundungsinstrumenten wie Lidar und LDR-Wolkenradar charakterisiert. Konkretes Ziel von CLOUDLAB ist, die 1- und 2-Momenten-Parametrisierungen der Eisphase des Wettervorhersagemodells ICON zu verbessern. PolarCAP wird mit dem CLOUDLAB-Projekt zusammenarbeiten, um diesen einzigartigen Datensatz durch die Anwendung modernster polarimetrischer Radar- und Lidar-basierter Fernerkundungstechniken zur Bestimmung der mikrophysikalischen Eigenschaften von Wolken sowie durch die Anwendung wolkenauflösender Spektral-Bin Modellierung zu verbessern und zu nutzen. Synergistische, mehrwellenlängen- und polarimetrische bodengebundene Fernerkundung mit scannendem Radar und Lidar wird eingesetzt, um den Übergang von unterkühlten flüssigen stratiformen Wolken in Mischphasenwolken zu beobachten. Begleitet von wolkenauflösenden Modellsimulationen und Radar-Forward-Operatoren wird PolarCAP die Entwicklung und die beteiligten mikrophysikalischen Prozesse zwischen -10 und 0°C erfassen. Die kombinierten Beobachtungen werden neue Erkenntnisse über das Zusammenspiel von Kontakt- und Immersionsgefrieren, sekundärer Eisbildung und Eisvervielfachung liefern, indem Wolken in verschiedenen Temperaturregimen untersucht werden, von denen angenommen wird, dass sie entweder von spezifischen Eisphasenprozessen beeinflusst bzw. unbeeinflusst sind. PolarCAP wird das derzeitige Verständnis wolkenmikrophysikalischer Prozesse und deren Darstellung in atmosphärischen Modellen herausfordern und die wolkenauflösende Modellierung und deren Kopplung an Radarvorwärtsoperatoren vorantreiben. Insgesamt wird PolarCAP Fortschritte in unseren Fähigkeiten erzielen, die Effizienz verschiedener eisbildender Substanzen besser einschätzen zu können und die Zeitskalen von mikrophysikalischen Prozessen und dem Lebenszyklus von Stratusbewölkung zu verknüpfen.

Das Fluktuations-Dissipations-Theorem, Stochastik und klimaabhängige Subgitterskalenparametrisierungen für effiziente Klimamodelle

Das Projekt "Das Fluktuations-Dissipations-Theorem, Stochastik und klimaabhängige Subgitterskalenparametrisierungen für effiziente Klimamodelle" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt.In verschiedenen Anwendungsbereichen der Klimamodellierung, z.B. Paläoklimatologie oder Sensitivitätsstudien, besteht Bedarf nach einem besonders effizienten Atmosphärenmodul. Niedrigdimensionale Modelle, basierend auf empirisch-orthogonalen Funktionen (EOF), mit einer empirischen linearen Parametrisierung der nicht aufgelösten Subgitterskalen (SGS), können viele Aspekte der Dynamik eines klassischen allgemeinen Zirkulationsmodells reproduzieren. Sie bieten sich somit in diesem Zusammenhang als interessantes Werkzeug an. Ein verbleibendes Problem war bisher die Klimasensitivität der empirischen SGS-Parametrisierung. In dem Projekt sollen zwei eng miteinander verwobene Ansätze verwendet werden, um dieses Thema anzugehen: (1) Neuere Ergebnisse zeigen, dass das Fluktuations-Dissipations-Theorem (FDT) Potential für die Vorhersage der Reaktion einer empirischen SGS-Parametrisierung auf variable externe Bedingungen hat, insbesondere wenn das betroffene System ausreichend viele schnelle Komponenten hat. Die barotrope Vorticitygleichung in dieser Untersuchung gestattet aber nur vergleichsweise langsame barotrope Rossbywellen. Es ist deshalb zu erwarten, dass der FDT-Ansatz in einem realistischeren Zusammenhang noch besser funktioniert. Darum, und auch mit der direkten Absicht, sukzessive den Realismus der Anwendung zu erhöhen, ist es geplant, die FDT-Strategie auf niedrigdimensionale Modelle der quasigeostrophischen Dreischichtendynamik (QG3S) anzuwenden, die synoptisch-skalige barokline Wellen zulässt. Dazu soll eine empirische linear-stochastische (Ornstein-Uhlenbeck, OU) Parametrisierung betrachtet werden. (2) Noch mehr als der obige Ansatz mit einer empirischen OU-Parametrisierung basiert die stochastische Modenreduktion (SMR) auf ersten Prinzipien. Die darin gegebene explizite Ableitung des Einflusses der nichtaufgelösten schnellen Moden, mit multiplikativem Rauschen und nichtlinearen deterministischen Beiträgen als Ergänzung zu Antrieb und additivem Rauschen wie in einer OU-Parametrisierung, sollte zu einem robusteren Verhalten eines entsprechend entwickelten niedrigdimensionalen Modells führen als die mehr datenbasierte OU-Parametrisierung der SGS. Da SMR-basierte Modelle allerdings zu einem Klimafehler neigen, die oben beschriebenen empirischen Ansätze andererseits sehr gut funktionieren, ist es vorgesehen, die Leistungsfähigkeit von SMR-Modellen zu verbessern, indem die konstante und lineare Komponente ihrer SGS-Parametrisierung empirisch ergänzt wird. Wiederum im QG3S-Zusammenhang soll das FDT verwendet werden, um die Reaktion der empirischen Komponenten der so modifizierten SMR-Parametrisierung auf externe Störungen vorherzusagen. Das übergeordnete Ziel dieser Anstrengungen ist ein effizientes Atmosphärenmodell, das soweit wie nach dem heutigen Stand der Wissenschaft möglich auf ersten Prinzipien basiert, das darüber hinaus aber das FDT verwendet, um die Klimaabhängigkeit der verbleibenden empirischen Elemente zu beschreiben.

Water use characteristics of bamboo (South China)

Das Projekt "Water use characteristics of bamboo (South China)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Göttingen, Burckhardt-Institut, Abteilung Waldbau und Waldökologie der Tropen.Bamboos (Poaceae) are widespread in tropical and subtropical forests. Particularly in Asia, bamboos are cultivated by smallholders and increasingly in large plantations. In contrast to trees, reliable assessments of water use characteristics for bamboo are very scarce. Recently we tested a set of methods for assessing bamboo water use and obtained first results. Objectives of the proposed project are (1) to further test and develop the methods, (2) to compare the water use of different bamboo species, (3) to analyze the water use to bamboo size relationship across species, and (4) to assess effects of bamboo culm density on the stand-level transpiration. The study shall be conducted in South China where bamboos are very abundant. It is planned to work in a common garden (method testing), a botanical garden (species comparison, water use to size relationship), and on-farm (effects of culm density). Method testing will include a variety of approaches (thermal dissipation probes, stem heat balance, deuterium tracing and gravimetry), whereas subsequent steps will be based on thermal methods. The results may contribute to an improved understanding of bamboo water use characteristics and a more appropriate management of bamboo with respect to water resources.

Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Dreidimensionale Mehrskalendynamik von Schwerewellen

Das Projekt "Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Dreidimensionale Mehrskalendynamik von Schwerewellen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt.Gegenstand dieses Projekts 'Multi-Scale Dynamics of Gravity Waves (MS-GWaves)' ist die asymptotische Mehrskalendynamik der Ausbreitung von Schwerewellen (SW), aufbauend auf einer nichtlinearen WKB-Theorie der Antragsteller und deren methodologischer Weiterentwicklung hin zu einer praktischen Implementierung. Die Theorie soll erweitert werden durch die zusätzliche Berücksichtigung der Wechselwirkung zwischen großskaligen aufgelösten und kleinskaligen parametrisierten Schwerewellen und durch eine Neubetrachtung der Wechselwirkung von Schwerewellen und geostrophischen Moden untereinander und mit der synoptisch-skaligen Strömung. Dies wird ergänzt durch eine verbesserte Behandlung der nichtlinearen SW-Dissipation, und, in Wechselwirkung mit dem Teilprojekt GW-ICE, durch eine skalenabhängige Modellierung der Wechselwirkung von SW und Tropopause. Ergebnis wird eine allgemeine Theorie und numerische Methode für die Vorhersage der Ausbreitung von SW, ihrer Wechselwirkung mit der mittleren Strömung, und ihrer Dissipation sein. Die Ergebnisse werden mittels Large-Eddy-Simulationen (LES) validiert. Die Entwicklungen in diesem Teilprojekt werden direkt Eingang in ein prognostisches SW-Modell (MS-GWaM) finden, das in das SW-erlaubende globale Modell UA-ICON eingebaut wird, welches innerhalb des FOR-Teilprojekts GWING entwickelt wird. Dabei wird an Quellenbeschreibungen angekoppelt, die von den FOR-Projekten SV und SI bereitgestellt werden. In UA-ICON/MS-GWaM wirken die SW auf die großskalige Strömung, aber die Möglichkeit der Nutzung des SW-Modells als diagnostisches Werkzeug wird ebenfalls angestrebt.

Stabilität atmosphärischer Schwerewellen

Das Projekt "Stabilität atmosphärischer Schwerewellen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: University Lund.Moderne Wettervorhersagen und Klimaprognosen sind stark abhängig von numerischen Simulationen, welche die atmosphärischen Zustandsgrößen auf ein Gitternetz, das die Erde umspannt, abbilden. Die numerischen Modelle lösen die fluidmechanischen auf Elementarprinzipien basierenden Bewegungsgleichungen für alle Zustandsgrößen auf jedem Gitterpunkt. Die Gitterweite ist begrenzt durch die Rechenleistung, so dass Phänomene kleinerer Skalen als die Gitterweite von den Modellen nicht aufgelöst werden. Das Brechen interner Schwerewellen ist eines dieser Phänomene. Atmosphärische Schwerewellen werden meistens in der Troposphäre angeregt, wandern aufwärts und werden instabil, da ihre Amplitude durch die dünner werdende Hintergrundluft wächst. Schließlich brechen sie. Die höhenmäßige Amplitudenverstärkung ist, im Besonderen, theoretisch nicht gut verstanden. Das Wellenbrechen spielt eine wichtige Rolle für die Genauigkeit der Vorhersagen, so dass es nicht vernachlässigt werden darf. Eine bewährte Abhilfe ist durch Parametrisierungen gegeben. Sie schätzen den Einfluss der nicht aufgelösten Effekte mithilfe der aufgelösten Zustandsgrößen ab. Die Qualität der Parametrisierung hängt konstruktionsbedingt von den betrachteten Skalen ab. Mit zunehmender Rechenleistung wird die Auflösung der Modelle verfeinert, die Skalen dadurch verkürzt und genauere Parametrisierungen werden notwendig. In diesem Projekt wird eine Theorie für Schwerewellenbrechen entwickelt, die in Parametrisierungen der nächsten Generation Anwendung findet und dabei Methoden aus Numerik, Asymptotik und Funkionalanalysis verbindet. Als erstes werden asymptotische wandernde Wellenlösungen der skalierten Bestimmungsgleichungen, welche erstmals die realistische höhenmäßige Amplitudenverstärkung berücksichtigen, hergeleitet. Diese Lösungen werden gegenüber den kompletten nichtlinearen Eulergleichungen, die den Elementarprinzipien entsprechen, validiert und der Einfluss von Dissipation untersucht. Wandernde Wellenlösungen gehören zu einer spezielle Lösungsklasse, die es gestattet Stabilität analytisch zu erforschen. Aus dem Gebiet der Funktionalanalysis wird die spektrale Stabilitätsanalyse angewandt, um Kriterien zur Vorhersage instabiler Wellen herzuleiten. Diese Kriterien werden Parametrisierungen als Schwellwerte für Wellenbrechen dienen.

Der Nambu-Kalkül in der dynamischen Meteorologie

Das Projekt "Der Nambu-Kalkül in der dynamischen Meteorologie" wird/wurde gefördert durch: Fonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität Wien, Institut für Meteorologie und Geophysik.Der Nambu-Kalkül ist ein Formalismus zur bequemen Darstellung einer Zahl von klassischen mechanischen Systemen. Er wurde ursprünglich von Nambu (1973) für die Dynamik diskreter Massenpunkte entwickelt; später wandten Autoren das Konzept auf die kontinuierlichen Feldgleichungen der dynamischen Meteorologie an. Diese Versuche waren vielversprechend, insbesondere in Form der Energie-Wirbel-Theorie, die kürzlich von Névir (1998) vorgelegt wurde. Der vorliegende Antrag zielt drauf ab, diesen Ansatz weiter zu entwickeln, einmal durch Verallgemeinerung seiner formalen Grundlagen sowie durch Anwendung auf eine größere Klasse relevanter fluiddynamischer Probleme. Wir wollen, durch Kombination von Nambu-Kalkül, den Methoden der Differentialgeometrie und der Lie-Gruppen-Theorie, zeigen, dass die neue Theorie das Potential hat, die Prinzipien der dynamischen Meteorologie zu vereinheitlichen. Ein wichtiger Schritt dazu wird die Untersuchung der Frage sein, auf welche Weise die diskreten Nambustrukturen auf die kontinuierlichen partiellen Differentialgleichungen von Fluiden bezogen sind. Das Projekt soll sich in seinem theoretischen Teil auf die reibungsfreie barotrope Vorticitygleichung konzentrieren. Diese besitzt im Rahmen der Energie-Wirbel-Dynamik eine charakteristische Form, die trilineare Nambu-Klammer, welche die geometrische Struktur der kontinuierlichen Vorticitygleichung sichtbar macht. Ein äquivalenter Formalismus ist anwendbar auf Probleme höherer Ordnung wie die Rayleigh-Bénard-Konvektion, die zwei unbekannte Funktionen enthält und Dissipation einschließt; die letztere Verallgemeinerung führt auf Nambu-metriplektische Systeme. Das Projekt soll sich in seinem angewandten Teil darauf konzentrieren, die Möglichkeiten der Energie-Wirbel-Theorie für den Betrieb diskreter, strukturerhaltender Modelle niedriger Ordnung in der Fluiddynamik zu untersuchen. Diese Aufgabe soll angegangen werden durch traditionelle Galerkin-Methoden, die mit ergänzender Information aus der Nambu-Form der entsprechenden kontinuierlichen Gleichungen versorgt werden. Das finanzielle Volumen des Antrags beläuft sich auf etwa EUR 225.000; diese Summe umfasst das Gehalt für 2 Doktoranden für 3 Jahre, zuzüglich Reisemittel und Rechnerausstattung. Die geplante Dauer des Vorhabens ist 36 Monate (Januar 2009-Dezember 2011). Das Vorhaben soll an der Fakultät für Mathematik der Universität Wien durchgeführt werden.

1 2 3 4 58 9 10