Im Promotionscluster „Nexus Ressourcenschonung und Klimaschutz“ wurden drei Promotionsvorhaben mit Mitteln des Ressortforschungsplans des Bundesumweltministeriums ( BMUV ) gefördert und durchgeführt. Die Promotionsvorhaben beinhalteten Themen wie z.B. Circular Economy und Design, Rohstoffe in erneuerbaren Energien und Dissipation von Funktionsmaterialien. Das Promotionscluster war an die Ressourcenkommission am Umweltbundesamt ( UBA ) angegliedert und zentrale Ergebnisse sind im vorliegenden Forschungsbericht kurz zusammengefasst. Veröffentlicht in Texte | 07/2024.
Im Rahmen des Promotionscluster "Nexus Ressourcenschonung und Klimaschutz", welches an die Ressourcenkommission am Umweltbundesamt (UBA) angegliedert ist, wurden drei Promotionsvorhaben mit Mitteln des Ressortforschungsplans des Bundesumweltministeriums (BMUV) gefördert und durchgeführt: Das Promotionsvorhaben I beschäftigt sich mit dem Thema "Die Gestalt der Nachhaltigkeit" und wurde an der Folkwang Universität in Essen von Herrn Dustin Jessen bearbeitet. Mit dem Promotionsvorhaben II zum Thema "Ressourcenleichter Aufbau der Informations- und Kommunikationstechnologien (IKT)-Infrastruktur" befasste sich von 01.07.2018 bis zum 31.08.2019 Herr Florian Fiesinger an der Technischen Universität (TU) Clausthal. Dieses Vorhaben wurde von Frau Charlotte Joachimsthaler an der Technischen Universität (TU) Dortmund fortgeführt und auf den thematischen Schwerpunkt "Ressourcenbedarf der Energiewende" fokussiert. Das Promotionsvorhaben III wurde von Herrn Thomas Kippes an der Universität Augsburg bearbeitet und trägt den Titel "Dissipation von Funktionsmaterialien". Dieser Forschungsbericht fasst die zentralen Ergebnisse der drei Promotionsvorhaben zusammen. Eine Übersicht der drei Projekte sowie Verlinkungen zu bereits erfolgten Veröffentlichungen sind zu Beginn des Berichts kurz dargestellt. Quelle: Forschungsbericht
Deutschland hat ein enormes Vermögen in Form von Bauwerken, Infrastrukturen und sonstigen langlebigen Gütern angehäuft. Hierin befindet sich ein wertvolles Sekundärrohstoffreservoir – ein anthropogenes Materiallager. Es ist als Kapitalstock der Zukunft zu begreifen, den es systematisch zu bewirtschaften gilt. In der überwiegend Input-dominierten Ressourceneffizienzdiskussion findet dieser Kapitalstock bislang nur wenig Beachtung. Eine Ursache hierfür ist unzureichendes Wissen über die Größe und Zusammensetzung dieses Materiallagers sowie über dessen Veränderungsdynamik. Das Vorhaben sollte dazu beitragen, die Wissensbasis diesbezüglich deutlich zu erweitern. Mit den Ergebnissen des Projektes liegt nun ein differenziertes Bild über Materialflüsse und Materialbestände vor, die in langlebigen Gütern in Deutschland gebunden sind und von diesen ausgelöst werden. Neben umfangreichen Daten wurde ein Konzept vorgelegt, das Grundlagen zum Aufbau eines langfristigen Monitorings des anthropogenen Lagers durch eine kontinuierliche Fortschreibung von Bestandsveränderungen liefert.
Das Projekt "Teilprojekt (06) M06: Techniken zur Kopplung von Atmosphäre und Ozean durch Wellen" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH, Institut für Küstenforschung durchgeführt. Es sollen Techniken entwickelt werden um die Kopplung zwischen Atmosphäre und Ozean durch die Formation und das Brechen von Oberflächenwellen im Ozean zu quantifizieren. Diese Techniken beinhalten eine numerische Implementierung von diffusen Grenzflächenmethoden für eine thermodynamisch konsistente und voll gekoppelte Simulationen der Grenzfläche zwischen Luft und Wasser, sowie Feldexperimente zur gleichzeitigen Messung von Luftstrom, der Ozeanwellenkopplung, und der turbulenten Energiedissipation im oberen Ozean.
Das Projekt "Effekte durch Schwerewellen in der Thermosphäre/Ionosphäre infolge von Aufwärtskopplung" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK), Stratosphäre (IEK-7) durchgeführt. Das Thermosphären/Ionosphären (T/I) System wird sowohl von oben (solar, geomagnetisch), als auch von unten stark beeinflusst. Einer der wichtigsten Einflüsse von unten sind Wellen (z.B. planetare Wellen, Gezeiten, oder Schwerewellen), die größtenteils in der Troposphäre bzw. an der Tropopause angeregt werden. Die vertikale Ausbreitung der Wellen bewirkt hierbei eine vertikale Kopplung der T/I mit der unteren und mittleren Atmosphäre. Vor allem der Einfluss von Schwerewellen (GW) ist hierbei weitestgehend unverstanden. Einer der Gründe hierfür ist, dass GW sehr kleinskalig sind (einige zehn bis zu wenigen tausend km) - eine Herausforderung, sowohl für Beobachtungen, als auch für Modelle. Wir werden GW Verteilungen in der T/I aus verschiedenen in situ Satelliten-Datensätzen ableiten (z.B., sowohl in Neutral-, als auch in Elektronendichten). Hierfür werden Datensätze der Satelliten(-konstellationen) SWARM, CHAMP, GOCE und GRACE verwendet werden. Es sollen charakteristische globale Verteilungen bestimmt, und die wichtigsten zeitlichen Variationen (z.B. Jahresgang, Halbjahresgang und solarer Zyklus) untersucht werden. Diese GW Verteilungen werden dann mit von den Satelliteninstrumenten HIRDLS und SABER gemessenen Datensätzen (GW Varianzen, GW Impulsflüssen und Windbeschleunigungen durch GW) in der Stratosphäre und Mesosphäre verglichen. Einige Datensätze (CHAMP, GRACE, SABER) sind mehr als 10 Jahre lang. Räumliche und zeitliche Korrelationen zwischen den GW Verteilungen in der T/I (250-500km Höhe) und den GW Verteilungen in der mittleren Atmosphäre (Stratosphäre und Mesosphäre) für den gesamten Höhenbereich 20-100km werden untersucht werden. Diese Korrelationen sollen Aufschluss darüber geben, welche Höhenbereiche und Regionen in der mittleren Atmosphäre den stärksten Einfluss auf die GW Verteilung in der T/I haben. Insbesondere Windbeschleunigungen durch GW, beobachtet von HIRDLS und SABER, können zusätzliche Hinweise darauf geben, ob Sekundär-GW, die mutmaßlich in Gebieten starker GW Dissipation angeregt werden, in entscheidendem Maße zur globalen GW Verteilung in der T/I beitragen. Zusätzlich wird der Versuch unternommen, sowohl GW Impulsfluss, als auch Windbeschleunigungen durch GW aus den Messungen in der T/I abzuleiten. Solche Datensätze sind von besonderem Interesse für einen direkten Vergleich mit von globalen Zirkulationsmodellen simulierten GW Verteilungen in der T/I. Diese werden für eine konsistente Simulation der T/I in Zirkulationsmodellen (GCM) benötigt, stellen dort aber auch eine Hauptunsicherheit dar, da eine Validierung der modellierten GW durch Messungen fehlt.
Das Projekt "Wechselwirkungen von Schwerewellen in der globalen Atmosphäre (GWING)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. Interne Schwerewellen (SW) verbinden verschiedene Schichten der Atmosphäre von der Troposphäre bis zur Thermosphäre und treiben die großskalige Zirkulation der mittleren Atmosphäre an. Viele der für SW relevanten Prozesse, von ihrer Entstehung über die Ausbreitung bis zur Dissipation sind jedoch unvollständig verstanden und, wegen der geringen typischen Wellenlänge, meist schlecht in numerischen Wettervorhersage- und Klimamodellen repräsentiert. GWING ist eines der Projekte der Forschergruppe MS-GWaves, die darauf abzielt, unser Verständnis der oben angesprochenen multi-skalaren dynamischen Schwerewellenprozesse zu verbessern, um letztendlich eine einheitliche Parametrisierung der in Atmosphärenmodellen nicht auflösbaren Schwerewellen (und ihrer Effekte) von der Entstehung bis zur Dissipation zu entwickeln. Um hierzu beizutragen, ist das zentrale Ziel von GWING die Entwicklung und Anwendung des atmosphärischen Zirkulationsmodells UA-ICON. Mit diesem Modell integriert GWING das in der Forschergruppe MS-GWaves entwickelte Wissen. In der zweiten Phase von GWING stehen zwei übergeordnete wissenschaftliche Fragen im Fokus: a) Welche Bedeutung haben Eigenschaften von Schwerewellen, die in klassischen Parametrisierungen nicht berücksichtigt werden, also insbesondere horizontale und nicht-inständige Propagation sowie die Wechselwirkung transienter Wellen mit dem Grundstrom? b) Welche Rolle spielen Schwerewellen für die globale Zirkulation und ihre Variabilität? Um diese Fragen zu beantworten, werden wir UA-ICON global sowohl mit einer Maschenweite von etwa 20 km (d.h. mit Auflösung von SW bis etwa 100 km Wellenlänge) als auch mit grober Auflösung, dafür aber mit der State-of-the-art Parametrisierung MS-GWaM nutzen. Weiterhin werden spezielle Beobachtungsepisoden mit sehr hoch (ca. 1,5 km) aufgelösten Nestern simuliert. Zur Evaluation und Analyse werden diese Modellsimulationen mit Beobachtungen der Partnerprojekte zusammengeführt. Die wesentlichen Entwicklungsziele für UA-ICON in Phase 2 des Projekts sind dementsprechend die Implementierung von MS-GWaM (entwickelt im Partnerprojekt 3DMSD), die Einführung physik-basierter Schwerewellenquellen (zusammen mit 3DMSD und SV) und eine verbesserte Behandlung von SW bei sehr hoher Modellauflösung. Die Nutzung der verschiedenen UA-ICON-Konfigurationen wird schließlich erlauben, die Bedeutung bisher vernachlässigter Eigenschaften von SW zu untersuchen, d.h. die erste der oben genannten Fragestellungen zu beantworten. Ein spezielles Ziel im Rahmen von GWING ist diese Untersuchung für Episoden plötzlicher Stratosphärenerwärmungen, die durch sich schnell ändernde und zonal nicht symmetrische Bedingungen des Grundstroms gekennzeichnet sind. Im Hinblick auf die zweite übergeordnete Fragestellung, wird sich GWING auf a) die Rolle der SW und einer hohen Modellausdehnung für die Simulation von Zirkulationsänderungen bei globaler Erwärmung und b) die Rolle für die Güte von Wettervorhersagen konzentrieren.
Das Projekt "Windanalyse in der mittleren Atmosphäre mittels nächtlicher RMR-Lidar-Messungen in mittleren Breiten in Kühlungsborn (AMUN)" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Der horizontale Wind nimmt eine Schlüsselrolle in der Dynamik der Atmosphäre ein. Insbesondere beeinflusst er die Ausbreitung und Dissipation von Schwerewellen und thermischen Gezeiten in der mittleren Atmosphäre. Simultane Wind- und Temperaturmessungen bieten dabei die einzigartige Möglichkeit, sowohl kinetische als auch potentielle Energiedichten der Schwerewellen zu berechnen, aus denen wiederum intrinsische Wellenparameter ableitbar sind. Windmessungen in der mittleren Atmosphäre sind jedoch insbesondere im Höhenbereich zwischen 35 und 75 km sehr selten, da hier weder Radiosonden noch Radars Daten liefern und Wind-Radiometer bzw. Satelliten keine für die Untersuchung von Schwerewellen ausreichend große Genauigkeit und Auflösung haben. Deshalb wollen wir in Kühlungsborn/Deutschland (54° N, 12° O) ein neues Lidar aufbauen, mit dem bei gekippten Teleskopen der Horizontalwind aus der Dopplerverschiebung der Rayleigh-Rückstreuung bestimmt werden kann. Neben der Erstellung einer Wind-Klimatologie steht vor allem die Untersuchung der Ausbreitung von Trägheitsschwerewellen in der mittleren Atmosphäre im Vordergrund. Dazu werden wir u.a. horizontale und vertikale Impulsflüsse und die Höhe des Impulsübertrags an die Hintergrundatmosphäre bestimmen. Diese für die Energiebilanz der Atmosphäre wesentlichen Parameter liefern wichtige Vergleichsgrößen für Zirkulationsmodelle. Ferner werden wir intrinsische Welleneigenschaften aus Wind-Hodographen analysieren, die für andere bodengebundene Messsysteme in der Regel nicht zugänglich sind. Unter Einbeziehung des lokalen Hintergrundwindes sollen aufwärts und abwärts propagierende Schwerewellen eindeutig getrennt und quantifiziert werden. Die Analysen werden insgesamt unser Verständnis der vertikalen Kopplung und der zu Grunde liegenden Zirkulation in der mittleren Atmosphäre deutlich verbessern. Das neue Lidarsystem ergänzt ein in Nordnorwegen am ALOMAR-Observatorium (69° N, 16° O) vorhandenes Windlidar, welches ebenfalls vom IAP betrieben wird. In diesem Projekt wird die dabei erworbene Expertise genutzt, um die Entwicklungsrisiken für das neue Lidar zu minimieren und schwerpunktmäßig Windmessungen in der mittleren Atmosphäre durchzuführen und zu interpretieren.
Das Projekt "Priority program (SPP) 1897: Calm, Smooth and Smart - Novel Approaches for Influencing Vibrations by Means of Deliberately Introduced Dissipation" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Technische und Numerische Mechanik durchgeführt.
Das Projekt "Prozesse und Klimatologie von Schwerewellen" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Abteilung Wolkenphysik und Verkehrsmeteorologie durchgeführt. PACOG ist ein Projekt im Rahmen der Forschergruppe 'MS-GWaves', bei der es um die Erforschung von Schwerewellen geht. PACOG konzentriert sich dabei auf atmosphärenphysikalische Beobachtungen und Vergleich mit Modellrechnungen. Schwerewellen spielen für unser Verständnis der mittleren Atmosphäre eine entscheidende Rolle, da sie die Atmosphäre um mehr als 100 K vom strahlungsbedingten Zustand treiben können und drastische Veränderungen der Zirkulation und der Zusammensetzung bewirken können. Schwerewellen stellen den wichtigsten Kopplungsprozess zwischen unteren und oberen Schichten der Atmosphäre dar. Leider sind viele Einzelheiten bezüglich Schwerewellen unzureichend verstanden. Dies betrifft z. B. die Erzeugung, Ausbreitung, Filterung, Dissipation und die zeitliche und räumliche Variabilität. Wir möchten die Klimatologie von Schwerewellen auf regionalen und globalen Skalen untersuchen. Dabei wird eine Kombination von hochmodernen Instrumenten eingesetzt, z. B. Lidars und Radars. Die Interpretation der Ergebnisse wird mit Hilfe von Simulationen, die auf Reanalysen aufbauen, unterstützt. Das Ziel von MS-GWaves besteht letzten Endes darin, die Parametrisierung von Schwerewellen in globalen Modellen zu verbessern. Die in PACOG durchgeführten Beobachtungen sollen in allen Teilprojekten von MS-GWaves verwendet werden, z. B. beim Vergleich von lokalen und regionalen Messungen mit globalen Beobachtungen von Satelliten (Projekt SV) oder zur Validierung von Modellrechnungen in den Projekten 3DMSD und GWING.
Das Projekt "Unterdrückung von Bremsenschwingungen durch bewusst eingebrachte Dämpfung" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Mathematik, Fachgebiet Numerische Mathematik durchgeführt. Bremsenschwingungen sind ein typisches Beispiel für NVH (noise, vibrations, harshness) Probleme in der Automobilindustrie. Die Kosten in Entwicklungsprozessen bei Kfz-Bremsen werden heute oft durch die Optimierung bzgl. dieser Komforteigenschaften dominiert. Das Ziel des Vorhabens ist es, Bremsen bezüglich der Eigenschaften calm und smooth positiv zu beeinflussen, also Bremsengeräusche und -schwingungen zu unterdrücken. Dies soll durch bewusst eingebrachte Dämpfung geschehen. Bei der Untersuchung von Dämpfungseinflüssen in Bremssystemen soll insbesondere der Einfluss von shims (Dämpfungsblechen) untersucht werden. Dies ist eine häufig in der Industrie verwendete Gegenmaßnahme gegen Quietschen, die aber nach dem Stand der Wissenschaft und Technik bisher von Ihrem Wirkprinzip nur schlecht verstanden und modelliert ist. Im Projekt sollen shims experimentell untersucht und modelliert werden. Die so entstandenen Modelle werden in FE-Gesamtmodelle der Bremse integriert um den Einfluss auf das Stabilitätsverhalten zu untersuchen.
Origin | Count |
---|---|
Bund | 95 |
Type | Count |
---|---|
Förderprogramm | 92 |
Text | 1 |
unbekannt | 2 |
License | Count |
---|---|
geschlossen | 3 |
offen | 92 |
Language | Count |
---|---|
Deutsch | 85 |
Englisch | 56 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 46 |
Webseite | 49 |
Topic | Count |
---|---|
Boden | 95 |
Lebewesen & Lebensräume | 47 |
Luft | 60 |
Mensch & Umwelt | 94 |
Wasser | 46 |
Weitere | 93 |