API src

Found 147 results.

Neuberechnung der Anlage IV der Strahlenschutzverordnung

Das Projekt "Neuberechnung der Anlage IV der Strahlenschutzverordnung" wird/wurde gefördert durch: Bundesminister des Innern. Es wird/wurde ausgeführt durch: Bundesgesundheitsamt, Institut für Strahlenhygiene.Berechnung der 50-Jahre-Folgeaequivalentdosis fuer Organe und Gewebe, der effektiven Aequivalentdosis und der daraus resultierenden Grenzwerte der Jahresaktivitaetszufuhr fuer beruflich strahlenexponierte Personen. Ueberpruefung der metabolischen Daten, die in der Publikation ICRP 30 vorgeschlagen werden und eventuelle Unterbreitung eines Vorschlages. Vergleichsrechnungen mit alternativen metabolischen Daten. Sensitivitaetsanalyse fuer ausgewaehlte Verbindungen. Untersuchung der Relevanz kritischer Einwaende gegen die Anwendung des ICRP 30 Konzepts. Modellberechnungen der normierten Dosisleistung bei externer Bestrahlung.

Anwendungen von gewebeaequivalenten Proportionalzaehlern (TEPC) in der Personendosimetrie

Das Projekt "Anwendungen von gewebeaequivalenten Proportionalzaehlern (TEPC) in der Personendosimetrie" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit / Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit,Bundesamt für Strahlenschutz. Es wird/wurde ausgeführt durch: Universität des Saarlandes, Fachbereich Theoretische Medizin, Fachrichtung Biophysik und Physikalische Grundlagen der Medizin.Enwicklung gewebeaequivalenter Proportionalzaehlrohre zur Messung der Kerma und der Energiedosis sowie der LET-Werte in Mischfeldern ionisierender Strahlung.Strahlenmessung, Strahlenschutz.

Glossar

Abklingbecken Ein mit Wasser befülltes Becken, in dem Brennelemente nach dem Reaktoreinsatz so lange lagern, bis die Aktivität und Wärmeentwicklung auf einen gewünschten Wert gesunken ist, so dass eine Handhabung, u.a. zum Abtransport möglich wird. Ableitung radioaktiver Stoffe Ist die Abgabe flüssiger, an Schwebstoffe gebundener oder gasförmiger radioaktiver Stoffe auf hierfür vorgesehenen Wegen. (§ 1 Abs. 1 StrlSchV ). Ein Beispiel ist die geordnete und überwachte Abgabe von Fortluft aus Anlagengebäuden. Ableitungswerte Sind Angaben über die Aktivität (also Menge) radioaktiver Stoffe als auch über die hervorgerufene Dosis (also Wirkung) von Ableitungen. Für die durch Ableitung freigesetzten radioaktiven Stoffe hat der Gesetzgeber Grenzwerte festgesetzt (§§ 99 ff. StrlSchV ). Die in Genehmigungen festgelegten Werte (nach § 102 StrlSchV ) liegen in Berlin deutlich unterhalb dieser Grenzwerte. Die tatsächlich freigesetzten radioaktiven Stoffe unterschreiten wiederum in der Regel die genehmigten Werte deutlich. Äquivalentdosis Äquivalentdosis ist die mit einem Qualitätsfaktor gewichtete (multiplizierte) Energiedosis . Der Qualitätsfaktor berücksichtigt die relative biologische Wirksamkeit (die Wirkung ist bei verschiedenen Geweben nicht gleich) der unterschiedlichen Strahlenarten. Die Äquivalentdosis ist deshalb die Messgröße für die biologische Wirkung ionisierender Strahlung auf den Menschen. Ihre Einheit ist J/kg mit dem speziellen Namen Sievert (Sv). Aktivität Aktivität ist die Anzahl von Atomkernen eines radioaktiven Stoffes , die in einem bestimmten Zeitintervall zerfallen. Die Aktivität wird in Becquerel (Einheit im Internationalen Einheitssystem) gemessen und beschreibt die Anzahl der Kernzerfälle eines radioaktiven Stoffes in einer Sekunde. Siehe auch Erläuterung unter Dosis . Anlage, kerntechnische siehe kerntechnische Anlage Becquerel Das Becquerel (Kurzzeichen: Bq) ist die Maßeinheit der Aktivität eines radioaktiven Stoffes : und gibt an, wie viele Kernzerfälle pro Sekunde stattfinden. Betreiber/in Der Inhaber einer Genehmigung gemäß § 7 Atomgesetz zum Betrieb einer kerntechnischen Anlage . Brennelemente Brennelemente enthalten Kernbrennstoff . Sie bestehen meist aus einer Vielzahl von Brennstäben und sind wesentlicher Bestandteil des Reaktorkerns einer kerntechnischen Anlage . Dekontamination Alle Maßnahmen und Verfahren zur Beseitigung einer möglichen radioaktiven Verunreinigung einer Person oder eines Objekts (z.B. Geräte, Kleidung, Körperteile). Dialoggruppe Gesprächskreis durch ein Vorhaben direkt oder indirekt berührter Bürgerinnen und Bürger aus der Umgebung, Vertreterinnen und Vertreter von Parteien, Initiativen und Umweltorganisationen sowie sonstige interessierte Personen aus der Öffentlichkeit. Ziel ist es, das Vorhaben aktiv mit dem Vorhabenträger zusammen zu diskutieren und evtl. mitzugestalten. Darüber hinaus treffen sich die am Dialogverfahren des BER II Beteiligten ohne Vertreter des HZB im Rahmen der sogenannten Begleitgruppe. Dosimetrie Lehre von den Verfahren zur Messung der Dosis bzw. der Dosisleistung bei der Wechselwirkung von ionisierender Strahlung mit Materie. Dosis Die Dosis ist ein Maß für die Strahlenwirkung. Siehe auch die Erläuterungen zu Energiedosis , Organdosis , Effektive Dosis . Dosisleistung Dosis, die in einem bestimmten Zeitintervall erzeugt wird. Die Einheit ist Sievert oder Gray pro Zeitintervall. Effektive Dosis Die Effektive Dosis berücksichtigt die unterschiedliche Empfindlichkeit der Organe und Gewebe bezüglich stochastischer (zufallsgesteuert auftretender) Strahlenwirkungen. Dazu werden die spezifizierten Organdosen mit einem Gewebe-Wichtungsfaktor multipliziert. Die Effektive Dosis erhält man durch Summation der gewichteten Organdosen aller spezifizierten Organe und Gewebe, wobei die Summe der Gewebe-Wichtungsfaktoren 1 ergibt. Die Gewebe-Wichtungsfaktoren bestimmen sich aus den relativen Beiträgen der einzelnen Organe und Gewebe zum gesamten stochastischen Strahlenschaden (Detriment) des Menschen bei gleichmäßiger Ganzkörperbestrahlung. Die Einheit der Effektiven Dosis ist J/kg mit dem speziellen Namen Sievert (Sv). In der Praxis des Strahlenschutzes werden in der Regel Bruchteile der Dosiseinheit verwendet, zum Beispiel Millisievert oder Mikrosievert Elektromagnetische Strahlung Elektromagnetische Strahlung ist nicht an Materie gebundene Strahlung (kein “Teilchenstrom”), die sich mit Lichtgeschwindigkeit ausbreitet und je nach Energieinhalt (charakterisiert durch die Frequenz oder die Wellenlänge) unterschiedliche Eigenschaften hat. Von den langen zu den kurzen Wellen unterscheidet man Ultralangwelle, Langwelle, Mittelwelle, Kurzwelle, Mikrowelle, Wärmestrahlung (Infrarot), sichtbares Licht, Ultraviolett, Röntgenstrahlung, Gammastrahlung. Für Infrarot und für sichtbares Licht besitzen wir Sinnesorgane, die anderen Strahlungsarten können nur über ihre Wirkung oder mit Messgeräten wahrgenommen werden. Im Ultraviolettbereich liegt die Grenze der ionisierenden Strahlung : kürzerwellige Strahlung ionisiert, längerwellige nicht. Gammastrahlung ist die kürzestwellige und energiereichste dieser Strahlungsarten, sie tritt bei Vorgängen in Atomkernen auf. Energiedosis Die Energiedosis beschreibt die Energie, die einem Material mit einer bestimmten Masse durch ionisierende Strahlung zugeführt wird, dividiert durch diese Masse. Die Einheit der Energiedosis ist J/kg mit dem speziellen Namen Gray (Kurzzeichen: Gy). Entlassung aus dem Atomgesetz Mit der Entlassung aus dem Atomgesetz liegt keine kerntechnische Anlage nach § 2 Abs. 3a Atomgesetz mehr vor. EURATOM-Vertrag Der EURATOM-Vertrag ist einer der Römischen Verträge und damit Bestandteil der Gründungsvereinbarung der Europäischen Union. Das Ziel ist nach Artikel 1 die Schaffung der für die rasche Bildung und Entwicklung von Kernindustrien erforderlichen Voraussetzungen zur Hebung der Lebenshaltung in den Mitgliedstaaten und zur Entwicklung der Beziehungen mit den anderen Ländern. Kapitel 3 regelt Maßnahmen zur Sicherung der Gesundheit der Bevölkerung. Fernüberwachungssystem (Reaktorfernüberwachungssystem – RFÜ) Für die deutschen Kernkraftwerke existieren komplexe Messsysteme zur Erfassung von Anlagendaten und Werten der Umweltradioaktivität (KFÜ). Im Falle des Berliner Forschungsreaktors ist ein der KFÜ analog aufgebautes Reaktorfernüberwachungssystem (RFÜ) vorhanden. Das RFÜ erfasst und überwacht vollautomatisch rund um die Uhr Messwerte zum aktuellen Betriebszustand des Forschungsreaktors BER II einschließlich der Abgaben (Emissionen) in die Luft sowie den Radioaktivitätseintrag in die Umgebung (Immission). Freigabe Die Freigabe ist ein Verwaltungsakt (§ 33 Abs. 2 StrlSchV), der die Entlassung von u.a. beweglichen Gegenständen, Gebäuden, Räumen oder Anlagenteilen aus dem Regelungsbereich des Strahlenschutzgesetzes (und auf diesem beruhender Rechtsverordnungen) bewirkt. Er kann Vorgaben zum weiteren Umgang oder zur Verwendung, Verwertung oder Beseitigung der freigegebenen und damit rechtlich als nicht radioaktiv anzusehenden Stoffe enthalten. Freigabeverfahren Nach §§ 31 ff. Strahlenschutzverordnung (StrlSchV) kann die Entlassung von u.a. beweglichen Gegenständen, Gebäuden, Räumen oder Anlagenteilen aus dem Regelungsbereich des Strahlenschutzgesetzes (und auf diesem beruhenden Rechtsverordnungen) auf Antrag bewirkt werden. Voraussetzung hierfür ist, dass die zuständige Behörde einen Freigabebescheid erteilt. Dieser wird erst dann erteilt, wenn festgestellt worden ist, dass die Materialien oder Objekte nicht so stark strahlen, dass durch sie ein Mitglied der Bevölkerung gefährdet werden könnte. Hierfür müssen bestimmte Anforderungen erfüllt werden, die (z. B. durch Messung) überprüft werden. Der Freigabebescheid kann zusätzliche Festsetzungen enthalten, wonach die freigegebenen Objekte nur dann als nicht radioaktive Objekte gelten, wenn mit ihnen in bestimmter Weise weiter umgegangen wird. Durch die freigegebenen Stoffe darf für Einzelpersonen der Bevölkerung nur eine effektive Dosis bis zu 10 Mikrosievert im Kalenderjahr auftreten (10-Mikrosievert-Konzept). Formelles Verfahren Ist ein auf Antrag erfolgendes behördliches Prüfungsverfahren mit dem Ziel einer Bescheidung durch die zuständige Behörde. Je nach Thematik können sich formelle Genehmigungsverfahren über Jahre erstrecken. Fortluft Der Begriff Fortluft stammt aus der Lüftungs- und Klimatechnik und bezeichnet den Teil der geführten Abluft, welcher nicht weitergenutzt und in die Atmosphäre abgegeben wird. Halbwertszeit Die Zeit, in der die Hälfte der Menge der Atomkerne eines bestimmten radioaktiven Stoffes zerfallen ist. Nach zwei Halbwertszeiten liegt demnach noch ein Viertel der Anfangsmenge vor, nach drei Halbwertszeiten ein Achtel usw. Nach zehn Halbwertszeiten ist die Menge und die Aktivität eines radioaktiven Stoffes auf 1/1024 oder rund ein Promille des Anfangswertes gesunken usw. Die Halbwertszeit ist charakteristisch für eine bestimmte radioaktive Atomkernsorte („Nuklid“). Herausgabeverfahren Nicht jeder Stoff oder Gegenstand in einer kerntechnischen Anlage , der von einer Genehmigung nach § 7 Atomgesetz umfasst ist, ist zwingend radioaktiv kontaminiert oder aktiviert . Stoffe, Gegenstände, Gebäude oder Bodenflächen, die nachweislich von Vornherein weder radioaktiv kontaminiert noch aktiviert sind, fallen nicht unter das in der Strahlenschutzverordnung geregelte Freigabeverfahren . Ein klassisches Beispiel ist ein Anlagenzaun, der in der Genehmigung gefordert wird (also zum genehmigten Bereich gehört), aber nie mit Strahlung oder radioaktiven Stoffen in Verbindung stand. Das Herausgabeverfahren stellt daher ergänzend sicher, dass die Entlassung auch dieser Materialien aus dem atomrechtlichen Genehmigungsbereich überwacht wird. Das Verfahren wird behördlich begleitet. Das Herausgabeverfahren wird grundsätzlich in der Genehmigung zu Stilllegung und Abbau einer kerntechnischen Anlage festgelegt und im atomrechtlichen Aufsichtsverfahren, d.h. bei der nachfolgenden Stilllegung und dem Abbau der kerntechnischen Anlage, angewendet. IAEA International Atomic Energy Agency – Internationale Atomenergie-Organisation IMIS Das Integrierte Mess- und Informationssystem zur Überwachung der Radioaktivität in der Umwelt ( IMIS ) dient dazu, die Radioaktivität in der Umwelt zum Schutz der Bevölkerung zu überwachen, und ist im Strahlenschutzgesetz verankert. Die Überwachungsaufgaben werden zwischen Bund und Ländern aufgeteilt. INES INES steht für International Nuclear and Radiological Event Scale und ist eine Internationale Bewertungsskala für nukleare Ereignisse in kerntechnischen Anlagen (Kernkraftwerken, Zwischenlager etc.), aber auch allgemein bei sämtlichen Ereignissen im Zusammenhang mit radioaktiven Stoffen . Informelles Verfahren Das informelle Verfahren ist vom formellen Genehmigungsverfahren zu unterscheiden. Es dient zunächst ausschließlich der frühzeitigen Information aller potentiell Betroffenen eines bestimmten Vorhabens und steht in der alleinigen Verantwortung des Vorhabenträgers. Das informelle Verfahren umfasst z.B. Informationsveranstaltungen oder eine erweiterte Medienpräsenz. Es steht dem Vorhabenträger weiterhin zu, bei Bedarf eine Dialoggruppe einzurichten, der eine aktive Mitwirkung vorbehalten sein kann. Iodblockade Bei einem Unfall in einer kerntechnischen Anlage kann unter anderem auch radioaktives Iod freigesetzt werden. Durch die rechtzeitige Einnahme von hochdosierten Iodid-Tabletten kann die – Iod speichernde – Schilddrüse mit nicht radioaktivem Iod gesättigt und so die Aufnahme radioaktiven Iods verhindert werden. Siehe auch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) ionisierende Strahlung Strahlung, die so energiereich ist, dass sie beim Auftreffen auf Luftmoleküle aus diesen Elektronen herausschlagen, also sie ionisieren kann. Dabei wird üblicherweise bei dem Begriff “Strahlung” nicht zwischen lichtartiger Strahlung (Röntgenstrahlung oder Gammastrahlung) und Strömen energiereicher Teilchen (Alphastrahlung, Betastrahlung, Neutronenstrahlung usw.) unterschieden – für die Naturwissenschaft ist ein Scheinwerferstrahl ein “Strahl”, ein Wasserstrahl aber auch (diese beiden sind aber nicht ionisierend). Mehr zu ionisierender Strahlung und deren Wirkung beim Bundesamt für Strahlenschutz . Katastrophenschutzplan Er beschreibt Maßnahmen zum Schutz der Bevölkerung in der Umgebung des Forschungsreaktors BER II und dient dem Zweck, die Zeit zwischen einem Schadensereignis und den zu treffenden Einsatzmaßnahmen optimal zu nutzen und damit die Schäden in der Umgebung zu begrenzen, die bei einem schweren Unfall entstehen können. Dabei beschreibt der Katastrophenschutzplan die der Planung zugrundeliegende Ausgangslage, das gefährdete Gebiet, die Aufgaben der Gefahrenabwehr und die Zusammenarbeit der zuständigen Behörden und Einrichtungen. Kerntechnische Anlage Kerntechnische Anlagen sind ortsfeste Anlagen, die eine Genehmigung nach Atomgesetz benötigen. Hierunter fallen im eigentlichen Sinn Anlagen zur Erzeugung, Bearbeitung, Verarbeitung, Spaltung oder Aufbewahrung von Kernbrennstoffen oder zur Aufarbeitung bestrahlter Kernbrennstoffe, die alle eine Genehmigung nach § 7 des Atomgesetzes benötigen. Gemäß § 2 Abs. 3a des Atomgesetzes gelten außerdem folgende Einrichtungen als „kerntechnische Anlagen“: Anlagen zur Aufbewahrung von bestrahlten Kernbrennstoffen nach § 6 Abs. 1 oder Abs. 3 Atomgesetz, Anlagen zur Zwischenlagerung für radioaktive Abfälle, wenn die Zwischenlagerung direkt mit einer vorstehend bezeichneten kerntechnischen Anlage in Zusammenhang steht und sich auf dem Gelände der Anlage befindet. Einrichtungen, in denen mit Kernbrennstoffen sonst umgegangen wird (nach § 9 des Atomgesetzes), werden gelegentlich als „kerntechnische Einrichtung im weiteren Sinn“ in die Definition einbezogen. Kernbrennstoffe Was unter den Begriff „Kernbrennstoff“ zu verstehen ist, wird in § 2 Abs. 1 des Atomgesetzes genauer definiert. Danach sind Kernbrennstoffe eine Teilgruppe der radioaktiven Stoffe , und zwar “besondere spaltbare Stoffe“ u.a. in Form von Plutonium 239, Plutonium 241 oder mit den Isotopen 235 oder 233 angereichertem Uran. Mehr zu Kernbrennstoffen wird hier angeboten. Kerntechnisches Regelwerk Die Nutzung der Kernenergie ist in Deutschland durch verschiedene Gesetze, Verordnungen, Regelungen, Leit- und Richtlinien geregelt. Unterhalb der Gesetzes- und Verordnungsebene werden die Anforderungen durch das kerntechnische Regelwerk weiter konkretisiert. Weitere Informationen, u.a. auch zur Regelwerkspyramide, finden sich auf den Internetseiten des Bundesamtes für die Sicherheit der nuklearen Entsorgung (BASE) . Kontamination Gemäß § 3 Abs. 2 Nr. 19 der Strahlenschutzverordnung eine Verunreinigung von Arbeitsflächen, Geräten, Räumen, Wasser, Luft usw. durch radioaktiven Stoffe . Unter Oberflächenkontamination versteht man die Verunreinigung einer Oberfläche mit radioaktiven Stoffen. Für Zwecke des Strahlenschutzes wird bei der Oberflächenkontamination zwischen festhaftender und nicht festhaftender (ablösbarer) Kontamination unterschieden. Bei nicht festhaftender Oberflächenkontamination kann nicht ausgeschlossen werden, dass sich radioaktive Stoffe ablösen und verbreitet werden. Kontrollbereich siehe Strahlenschutzbereich Landessammelstelle Berlin (ZRA) Der Gesetzgeber verpflichtet jedes Bundesland eine Landessammelstelle für radioaktive Abfälle einzurichten. Diese nimmt Abfälle aus Medizin, Industrie und Forschung an, jedoch Betriebs- oder Stilllegungsabfälle von Kernkraftwerken oder anderen kerntechnischen Anlagen nur in speziell gelagerten Fällen mit besonderer Erlaubnis. Das Land Berlin hat dem Helmholtz-Zentrum Berlin den gesetzlichen Auftrag zum Betrieb der Berliner Landessammelstelle für radioaktive Abfälle, genannt „Zentralstelle für radioaktive Abfälle“, ZRA , übertragen. Die ZRA übernimmt folglich als Berliner Landessammelstelle schwach- und mittelradioaktive Abfälle , die z.B. bei Anwendern radioaktiver Stoffe in der Industrie, in der Medizin sowie in Forschung und Lehre des Landes Berlin anfallen. Mediatorin oder Mediator Der Begriff stammt aus dem Lateinischen und bedeutet “Vermittler“. Umgangssprachlich wird eine Mediatorin oder ein Mediator auch als Streitschlichterin oder Streitschlichter bezeichnet, da die Aufgabe darin besteht, einen Konflikt zwischen mehreren Parteien friedlich zu lösen. Meist gestaltet sich die Lösung in Form eines Kompromisses oder eines Vergleichs. Megawatt (MW) siehe Watt . Meldekategorien (siehe auch meldepflichtiges Ereignis ) Gemäß der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung werden meldepflichtige Ereignisse nach der Frist, in der die Aufsichtsbehörden unterrichtet werden müssen, in unterschiedliche Meldekategorien unterteilt. Sie werden im Einzelnen in den Anlagen 1 bis 5 der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung aufgeführt. Meldepflichtiges Ereignis Vorkommnis, das nach der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung der zuständigen Aufsichtsbehörde zu melden ist. Es handelt sich dabei bei weitem nicht nur um Unfälle oder Störfälle; diese machen erfahrungsgemäß nur einen sehr kleinen Bruchteil der meldepflichtigen Ereignisse aus. Zu melden sind (als „Normalmeldung“) unter anderem alle Abweichungen vom Normalzustand, die eine sicherheitswichtige Einrichtung beeinträchtigen könnten, auch wenn selbst deren Ausfall noch keine Gefahr darstellen würde. Ein Beispiel für eine Normalmeldung bei einem Forschungsreaktor (Bericht Seite 3 und 7) finden Sie hier . Wesentlichere Befunde sind als Eilmeldung oder gar als Sofortmeldung in das Meldesystem einzubringen. Meldepflichtige Ereignisse werden entsprechend in verschiedene Meldekategorien unterteilt. Weitere Informationen stellt das Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) hier . Mikrosievert Sievert ist die Maßeinheit der effektiven Dosis , benannt nach dem schwedischen Mediziner und Physiker Rolf Sievert. 1 Mikrosievert (µSv) sind 0,000 0001 Sievert (Sv). Bsp.: Eine Zahnaufnahme erzeugt pro Anwendung eine Dosis von weniger als 10 µSv. Millisievert 1 Millisievert (mSv) sind 1.000 Mikrosievert (µSv) oder 0,001 Sievert (Sv). Bsp.: Die Dosis einer Ganzkörper-Computertomographie eines Erwachsenen beträgt pro Anwendung ca. 10 mSv. Mittelradioaktive Abfälle siehe Radioaktiver Abfall Neutronen Neutronen sind ungeladene Elementarteilchen. Sie werden insbesondere bei der Kernspaltung freigesetzt. Die Kernspaltung ist nur für schwere Atomkerne (z.B. vom Element Uran) charakteristisch. Die Neutronenstrahlung besitzt wie die Gammastrahlung ein hohes Durchdringungsvermögen und erfordert zur Abschirmung ebenfalls einen stärkeren Einsatz von Abschirmmaterialien. Mehr zu Neutronen und Neutronenstrahlung finden Sie hier . Organdosis Die Organdosis berücksichtigt die unterschiedliche biologische Wirksamkeit verschiedener Arten ionisierender Strahlung (bei gleicher Energiedosis). Sie ist das Produkt aus der Organ-Energiedosis und dem Strahlungs-Wichtungsfaktor. Beim Vorliegen mehrerer Strahlungsarten ist die gesamte Organdosis die Summe der ermittelten Einzelbeiträge. Die Einheit der Organdosis ist J/kg mit dem speziellen Namen Sievert (Sv). Ortsdosis Ortsdosis ist eine operative Messgröße zur Abschätzung der Strahlenmenge an einem Ort und ist definiert als die Äquivalentdosis für Weichteilgewebe (z.B. Fettgewebe und Muskelgewebe), gemessen an einem bestimmten Ort. Ortsdosisleistung (ODL) Die Ortsdosisleistung ist die pro Zeitintervall erzeugte Ortsdosis. Die Ortsdosis ist die Äquivalentdosis für Weichteilgewebe (z.B. Muskelgewebe oder Fettgewebe), gemessen an einem bestimmten Ort. Personendosis Personendosis ist eine operative Messgröße zur Abschätzung der von einer Person erhaltenen Dosis und ist definiert als die Äquivalentdosis gemessen an einer repräsentativen Stelle der Körperoberfläche. Personendosimeter Messgeräte zur Bestimmung der Personendosis als Schätzwert für die Körperdosis einer Person durch externe Bestrahlung (§§ 66 und 172 StrlSchV ). Radioaktiver Stoff Radioaktive Stoffe ( Kernbrennstoffe und sonstige radioaktive Stoffe) im Sinne von § 2 Abs. 1 des Atomgesetzes sind alle Stoffe, die folgende Bedingungen erfüllen: Sie enthalten ein oder mehrere Radionuklide und ihre Aktivität oder spezifische Aktivität kann im Zusammenhang mit der Kernenergie oder dem Strahlenschutz nicht außer Acht gelassen werden. Wann die Aktivität oder spezifische Aktivität eines Stoffes nicht außer Acht gelassen werden kann ist in den Regelungen des Atomgesetzes (§ 2 Absatz 2 AtG) oder der Strahlenschutzverordnung festgeschrieben. In der Bundesrepublik sind Stoffe mit zerfallenden Atomkernen daher kein „radioaktiver Stoff“, wenn in der Strahlenschutzverordnung festgelegt ist, festgelegt ist, dass die entstehende Strahlung unwesentlich ist. Solche Festlegungen findet man z.B. in § 5 der Strahlenschutzverordnung (StrlSchV). Das neue Strahlenschutzgesetz greift in seinem § 3 diese Definition aus dem Atomgesetz auf. Mehr zu Grenzwerten im Strahlenschutz finden Sie hier . Radioaktivität Radioaktivität ist die Eigenschaft bestimmter Stoffe, sich spontan (ohne äußere Wirkung) umzuwandeln (zu „zerfallen“) und dabei charakteristische Strahlung (ionisierende Strahlung) auszusenden. Die Radioaktivität wurde 1896 von Antoine Henri Becquerel an Uran entdeckt. Wenn die Stoffe, genauer gesagt, die Radionuklide, in der Natur vorkommen, spricht man von natürlicher Radioaktivität; sind sie ein Produkt von Kernumwandlungen in Kernreaktoren oder Beschleunigern, so spricht man von künstlicher Radioaktivität. Mehr über die Wirkung ionisierender Strahlung finden Sie hier . Röntgenstrahlung Durchdringende elektromagnetische Strahlung mit einem Frequenzspektrum (und Energie) zwischen Ultraviolettstrahlung und Gammastrahlung. Mehr zum Thema Röntgenstrahlung finden Sie hier . Auch bei Röntgenstrahlung gelten die Grundsätze des Strahlenschutzes. Mehr dazu wird hier angeboten. Rückbauverfahren Der Abbauprozess einer kerntechnischen Anlage , welcher typischerweise aus verschiedenen Verfahrensschritten besteht, z.B. Dekontamination, Demontage, Gebäudeabriss. Sicherheitsbericht Der Sicherheitsbericht ist Teil der einzureichenden Antragsunterlagen zu Stilllegung und Rückbau einer kerntechnischen Anlage . Er legt die relevanten Auswirkungen des Vorhabens im Hinblick auf die kerntechnische Sicherheit und den Strahlenschutz dar. Er soll außerdem Dritten die Beurteilung ermöglichen, ob die mit der Stilllegung und dem Abbau verbundenen Auswirkungen sie in ihren Rechten verletzen könnten. Sperrbereich siehe Strahlenschutzbereich Stilllegung Die Stilllegung einer kerntechnischen Anlage besteht hauptsächlich aus dem Rückbau (siehe Rückbauverfahren ) des nuklearen Teils und der Entsorgung des radioaktiven Inventars „(Gesamtheit der in einer kerntechnischen Anlage enthaltenen radioaktiven Stoffe). Zielsetzung ist die Beseitigung der Anlage und Verwertung der Reststoffe so weit wie möglich. Stilllegungsverfahren Der Begriff „Stilllegungsverfahren“ bezeichnet den Gesamtprozess von der Einreichung des Grundantrages bis zur endgültigen Entlassung der kerntechnischen Anlage aus dem Atomgesetz. Strahlendosis siehe Dosis Strahlenexposition Ist ein Synonym für Strahlenbelastung. Bezeichnung für die Einwirkung ionisierender Strahlung auf Lebewesen oder Materie. Strahlenschutz (nur bezogen auf die schädigende Wirkung ionisierender Strahlung) Strahlenschutz dient dem Schutz von Menschen und Umwelt vor den schädigenden Wirkungen ionisierender Strahlung aus natürlichen oder künstlichen Strahlenquellen. Strahlenschutzbeauftragter Nach § 43 bis 44 der Strahlenschutzverordnung ( StrlSchV ) die Person, die neben dem Strahlenschutzverantwortlichen (Genehmigungsinhaber) in einem Betrieb für die Einhaltung der Strahlenschutzvorschriften im Rahmen seiner Befugnisse verantwortlich ist. Strahlenschutzbereich Strahlenschutzbereiche sind räumlich abgrenzbare Bereiche, die aus Strahlenschutzaspekten besonders überwacht und kontrolliert werden. Sie unterteilen sich in Überwachungsbereich, Kontrollbereich und Sperrbereich. Überwachungsbereich Nicht zum Kontrollbereich (und nicht zum Sperrbereich) gehörende betriebliche Bereiche, in denen Personen im Kalenderjahr eine effektive Dosis von mehr als 1 Millisievert oder eine Organ-Äquivalentdosis von mehr als 50 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 50 Millisievert: erhalten können. Der Zutritt zu einem Überwachungsbereich darf aus gesundheitlichen Gründen nur erlaubt werden, wenn Personen eine dem Betrieb dienende Aufgabe wahrnehmen oder ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs-, Begleit- oder Tierbegleitperson erforderlich ist, sie Auszubildende oder Studierende sind und der Aufenthalt in diesem Bereich zur Erreichung ihres Ausbildungszieles erforderlich ist oder sie Besucher sind. Kontrollbereich Sind Strahlenschutzbereiche, die aus Strahlenschutzaspekten besonders überwacht und kontrolliert werden und in denen Personen im Kalenderjahr eine effektive Dosis von mehr als 6 Millisievert oder eine Organ-Äquivalentdosis von mehr als 15 Millisievert für die Augenlinse oder 150 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 150 Millisievert erhalten können. Der Zutritt zu einem Kontrollbereich darf aus gesundheitlichen Gründen Personen nur erlaubt werden, wenn sie zur Durchführung oder Aufrechterhaltung der in diesem Bereich vorgesehenen Betriebsvorgänge tätig werden müssen, ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs-, Begleit- oder Tierbegleitperson erforderlich ist und eine zur Ausübung des ärztlichen, zahnärztlichen oder tierärztlichen Berufs berechtigte Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, zugestimmt hat oder bei Auszubildenden oder Studierenden dies zur Erreichung ihres Ausbildungszieles erforderlich ist. Sperrbereich Bereiche des Kontrollbereichs, in denen die Ortsdosisleistung höher als 3 Millisievert (mSv) durch Stunde sein kann. Der Zutritt zu einem Sperrbereich darf aus gesundheitlichen Gründen nur erlaubt werden, wenn sie zur Durchführung der in diesem Bereich vorgesehenen Betriebsvorgänge oder aus zwingenden Gründen tätig werden müssen und sie unter der Kontrolle eines Strahlenschutzbeauftragten oder einer von ihm beauftragten Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, stehen oder ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs- oder Begleitperson erforderlich ist und eine zur Ausübung des ärztlichen oder zahnärztlichen Berufs berechtigte Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, schriftlich zugestimmt hat. Es gelten spezielle Reglungen für Schwangere. Umweltverträglichkeitsprüfung (UVP) Umweltverträglichkeitsprüfung im Stilllegungsgenehmigungsverfahren des Forschungsreaktors BER II: Die Durchführung einer UVP dient der frühzeitigen Feststellung, Erkennung und Bewertung der möglichen Auswirkungen des Rückbaus des Reaktors für Menschen, Tiere, Pflanzen sowie auf die Qualität der Böden, Luft, Gewässer, Klima, Landschaft, Kulturgüter und sonstige Schutzgüter. Die Durchführung der UVP ist bei der Stilllegung von Reaktoranlagen ab 1 kW thermischer Dauerleistung gesetzlich vorgeschrieben (vgl. der Forschungsreaktor BER II hat eine thermische Dauerleistung von 10 Megawatt ). Überwachungsbereich siehe Strahlenschutzbereich Watt Maßeinheit für Leistung. Der Forschungsreaktor BER II hat eine Nennleistung von 10 MW. Zum Vergleich: Ein mittleres Kernkraftwerk hat eine Nennleistung von ca. 1.400 MW. 1 Megawatt (MW) = 1.000.000 Watt (W) > 1 Gigawatt (GW) = 1.000 Megawatt (MW) = 1.000.000 Kilowatt (kW) = 1.000.000.000 Watt (W) Wetterparameter Ist eine Größe wie Temperatur, Windstärke oder Niederschlagsmenge, mit deren Hilfe eine Aussage über die Wetterverhältnisse gewonnen werden kann. Das spielt eine Rolle zum Beispiel bei der Vorhersage der Ausbreitung radioaktiver Stoffe nach einer Freisetzung. ZRA Die Zentralstelle für radioaktive Abfälle (ZRA) betreibt als Institution der Helmholtz-Zentrum Berlin GmbH die Landessammelstelle Berlin. Das Atomgesetz verpflichtet jedes Bundesland, eine Landessammelstelle zur Zwischenlagerung der in seinem Gebiet angefallenen radioaktiven Abfälle einzurichten. Zwischenlager Lagerort für radioaktive Abfälle, die aufbewahrt werden müssen, bis man sie an ein Endlager abgeben kann. Es werden Zwischenlager für hochradioaktive Abfälle ( Brennelemente und Wiederaufarbeitungsabfälle) und Zwischenlager für schwach- und mittelradioaktive Abfälle unterschieden.

Radioaktivität in Gebrauchsgegenständen

Gelegentlich wird in den Medien über Funde von radioaktiven Gegenständen berichtet. Dazu gehören auch Alltagsgegenstände, beispielsweise Geschirr mit bestimmten Glasuren. In manchen Fällen sind diese nicht eindeutig als solche erkennbar und es wird nur zufällig festgestellt, dass radioaktive Stoffe enthalten sind. Doch woher stammen diese? Früher wurden radioaktive Stoffe häufig aufgrund bestimmter Eigenschaften zur Herstellung von Gegenständen verwendet. So sind die Fliesen des Rosenthaler Platzes dafür bekannt, dass die aufgebrachte leuchtend orangefarbige Glasur leicht radioaktiv ist. Die Radioaktivität war dabei meist nur ein ungewollter und in der Anfangszeit unbekannter Nebeneffekt. Im Laufe der Zeit entwickelte sich jedoch ein Bewusstsein dafür, dass ionisierende Strahlung eine Gefahr für die menschlichen Gesundheit darstellt. Dies führte dazu, dass Produkte mit radioaktiven Stoffen heutzutage nicht mehr oder nur noch für ganz bestimmte Anwendungsfälle produziert und verwendet werden. Auch heute kann es jedoch in seltenen Fällen noch zu einer Kontamination kommen, z.B. wenn versehentlich eine radioaktive Quelle bei der Wiederverwertung von Metallschrott mit eingeschmolzen wird. Von den meisten der heute noch im Umlauf befindlichen Gegenständen geht nur eine geringe Strahlenbelastung aus, so dass die Handhabung in der Regel unproblematisch ist. Es ist jedoch zu beachten, dass auch diese spezifische Aktivitäten aufweisen können, aufgrund derer man die Gegenstände nicht über den Hausmüll entsorgen darf. In diesem Fall kann die Zentralstelle für radioaktive Abfälle (ZRA) kontaktiert werden. Bestimmte uranhaltige Verbindungen sind dafür bekannt, dass sie eine schöne intensive Farbe ergeben. Daher wurden sie vor allem ab Mitte des 19. Jahrhunderts als Zusatz in Glasuren beispielsweise für Fliesen oder Geschirr verwendet. Auch für die Herstellung gefärbter Gläser oder Vasen kamen sie zur Verwendung. Bei Glasuren sind insbesondere kräftige Orangefarben häufig vertreten, je nach Ausgangsmaterial und Produktionsart können aber auch andere Farben entstehen. Uranglas, welches meist in hellen, gelben oder grünen Farben vorkommt, kann man leicht daran erkennen, dass es durch UV-Licht zum Leuchten angeregt wird. In der Regel sind diese Gegenstände etwa als Sammelobjekte gesundheitlich unbedenklich, da relativ geringe Strahlungswerte auftreten und das uranhaltige Material gebunden vorliegt. Säuren können jedoch die Uranverbindungen aus dem Material herauslösen. Da in vielen Lebensmitteln (z.B. in Früchten) Säuren vorhanden sind oder bei der Nahrungszubereitung Zutaten wie Essig verwendet werden, sollte man Geschirr mit uranhaltiger Glasur nicht als Essgeschirr verwenden, da sonst die Gefahr einer Aufnahme mit der Nahrung besteht. Für die Leuchtzifferblätter von Uhren wurden früher Farben verwendet, die radioaktives Radium oder Promethium enthielten. Hierbei traten durch die Produktionsbedingungen teils schwerwiegende gesundheitliche Auswirkungen auf, wie auch bei dem weithin bekannten Fall der „Radium Girls“. Daher wurde auf das weitaus ungefährlichere radioaktive Tritium gewechselt. Inzwischen gibt es auch nicht-radioaktive Alternativen, diese sind aber nicht selbstleuchtend. Daher wird Tritium auch heute noch verwendet. Seine Eigenschaften werden auch in den frei erhältlichen, mit Tritium gefüllten, nachtleuchtenden Schlüsselanhängern genutzt. Weitere Informationen zu Leuchtzifferblättern auf der Seite des Bundesamtes für Strahlenschutz In gasbetriebenen Leuchten werden sogenannte Glühstrümpfe verwendet. Diese wurden bei der Produktion in einer Lösung mit einer radioaktiven Thorium-haltigen Verbindung getränkt. Die nach dem Verbrennen bleibende Struktur erzeugt aus der kaum sichtbaren Gasflamme das gewünschte helle Licht. Der Effekt entsteht dabei nicht durch die radioaktive Eigenschaft, das Thorium diente vor allem der Stabilität der Struktur. Seit einigen Jahrzehnten können Glühstrümpfe auch ohne den Zusatz von Thorium produziert werden. In Deutschland endete die letzte Glühstrumpfproduktion 2004, seit 2011 ist die Herstellung und Inverkehrbringen thoriumhaltiger Glühstrümpfe nicht mehr erlaubt (mit Ausnahme von zur Straßenbeleuchtung verwendeter Glühstrümpfe; §39 StrlSchG). In Berlin erfolgt aufgrund von Energiesparmaßnahmen der Austausch von Gasleuchten auf formgleiche LED-Leuchten. Weiterhin erhalten bleiben sollen jedoch ca. 3.300 Gasleuchten mit historischer Bedeutung. Ein Thorium-haltiger Glühstrumpf ist in der Regel nur gering radioaktiv. Das größte Risiko geht davon aus, wenn Partikel des Glühstrumpfes eingeatmet werden, insbesondere beim erstmaligen Brennen oder der Handhabung der fragilen abgebrannten Glühstrümpfe. Weitere Informationen auf der Seite des Fachverbands für Strahlenschutz e.V. In der ersten Hälfte des 20. Jahrhunderts wurden aus medizinischen Gründen sogenannte Radium-Emanatoren verwendet. In diesen befindet sich eine Quelle mit dem natürlich radioaktiven Isotop Radium-226, welches u. a. in das ebenfalls schwach radioaktive Radon zerfällt. In die Gefäße wurde Wasser eingefüllt, welches das Radon aufnahm. Das Wasser wurde dann in als gesundheitsfördernd geltenden Trinkkuren angewendet. Der radioaktive Stoff ist in einer Quelle in dem Gefäß gebunden. Solange diese nicht beschädigt wird, so dass das Radium etwa als Staub eingeatmet oder mit Nahrung eingenommen wird, geht keine unmittelbare Gefahr davon aus. Dennoch kann die Dosisleistung ausreichen, dass der Grenzwert von 1 mSv im Jahr überschritten wird, der u.a. für beruflich strahlenexponierte Personen festgelegt ist. Die Becher sind auch heute noch etwa unter Sammlern im Umlauf. Sofern die radioaktive Quelle noch enthalten ist, ist für den Besitz eine strahlenschutzrechtliche Genehmigung erforderlich, da hier in der Regel die Freigrenzen für einen genehmigungsfreien Umgang überschritten sind. Einige Farben von (Halb-)Edelsteinen entstehen nur durch die Einwirkung von Strahlung. Diese kann sowohl durch natürliche als auch durch künstlich erzeugte Radioaktivität erfolgen. Wenn zur Bestrahlung Beta-oder Gamma-Strahlung eingesetzt wird, sind die Steine selber nicht radioaktiv. Es kann jedoch auch Neutronenstrahlung verwendet werden, wodurch die bestrahlten Edelsteine selber ebenfalls radioaktiv werden. Ein bekanntes Beispiel hierfür ist der Edelstein Topas. Während hellere Blautöne durch Betastrahlung erzielt wird, kommt für eine tiefblaue Färbung („London Blue“) Neutronenstrahlung zum Einsatz. Da die Radioaktivität mit der Zeit abklingt, dürfen diese, um die gesundheitlichen Risiken zu verringern, erst nach einer ausreichenden Wartezeit in den Verkauf kommen. Außerdem gibt es Edelsteine, die einen Anteil natürlich radioaktiver Stoffe enthalten. Diese geben nur eine geringe Strahlung ab und können daher bedenkenlos gehandhabt werden. Edelsteine die eine natürliche Radioaktivität aufweisen können sind beispielsweise Zirkon oder Ekanit. Aber auch andere Schmuckstücke können radioaktive Strahlung abgeben. Neben Uranglas können auch Gesteine oder Mineralien verarbeitet sein, die eine natürliche Radioaktivität aufweisen. So tauchen beispielsweise gelegentlich Amulette im Handel auf, die aufgrund des verarbeiteten Materials mit Anteilen von Uran oder Thorium leicht radioaktiv sind. Weitere Informationen auf der Seite des Bundesamtes für Strahlenschutz

Umgebungsüberwachung kerntechnischer Einrichtungen (REI)

In der Umgebung von kerntechnischen Anlagen ist gemäß § 103 der Strahlenschutzverordnung eine Überwachung auf radioaktive Stoffe durchzuführen. Dies ist in der Richtlinie zur Emissions- und Immissionsüberwachung kerntechnischer Anlagen (REI) geregelt. Damit soll eine Beurteilung der aus Ableitungen (Emissionen) radioaktiver Stoffe resultierenden Strahlenexposition des Menschen ermöglicht und die Einhaltung von maximal zulässigen Aktivitätsabgaben und von Dosisgrenzwerten kontrolliert werden. Dabei werden zum einen vom Betreiber die Emissionen innerhalb der Anlage gemessen, z.B. am Abluftkamin der Anlage. Zum anderen werden zur Überwachung der Exposition der Bevölkerung die Aktivität von Proben sowie die Ortsdosen in der Umgebung der Anlage im Auftrag der Aufsichtsbehörde durch eine unabhängige Messstelle überwacht (Immissionsüberwachung). In Berlin gibt es nur eine kerntechnische Einrichtung, welche entsprechend der REI zu überwachen ist: Der Forschungsreaktor BER II. Auch wenn dieser seit Dezember 2019 nicht mehr in Betrieb ist, wird das Überwachungsprogramm weiterhin durchgeführt. Stilllegung des Forschungsreaktors BER II Dafür werden Proben gemessen, die aus der Umgebung des Forschungsreaktors stammen, und mit Proben aus anderen Teilen Berlins verglichen. Diese Aufgabe wird von der Strahlenmessstelle Berlin als unabhängiger Messstelle erfüllt. Untersucht werden Proben von Boden, Bewuchs, Trinkwasser, Fisch, Obst und Gemüse sowie die Dosisleistung und Radioaktivität auf der Bodenoberfläche. Zusätzlich wird das Strahlungsniveau entlang der Institutsgrenze gemessen. Die Ergebnisse dieser Umgebungsüberwachung werden vierteljährlich und jährlich der atomrechtlichen Aufsichtsbehörde und dem Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz berichtet.

Atomrechtliche Aufsichtsbehörde

Die einzige kerntechnische Anlage in Berlin gemäß § 7 Atomgesetz ist der Forschungsreaktor BER II am Helmholtz-Zentrum Berlin (HZB). Die staatliche Aufsicht überwacht kerntechnische Anlagen kontinuierlich während ihrer gesamten Lebensdauer, einschließlich der Errichtung, Stilllegung und Sicherung. Forschungsreaktor BER II Aufgaben der Atomrechtlichen Aufsichtsbehörde Der Betrieb des Forschungsreaktor BER II am Helmholtz-Zentrum Berlin (HZB) wurde im Dezember 2019 eingestellt. Der BER II diente zur Bereitstellung von Neutronen für die Forschung. Neutronenstrahlung wird von der Wissenschaft, neben Röntgen- und elektromagnetische Strahlung (Gammastrahlung), zur Erforschung der Eigenschaften von Materialien genutzt. Der Zweck des BER II war nicht die Herstellung von Energie, sondern die Bereitstellung von Neutronen. Er war nicht mit einem Kernkraftwerk vergleichbar, da er in einer Umgebung ohne hohe Drücke bei geringen Temperaturen und bei einer Wärmeleistung von gerade einmal 10 MW arbeitete. Andere kerntechnische Anlagen, wie z.B. Kernkraftwerke oder Brennelement-Fabriken, gibt es in Berlin nicht. Es gibt allerdings eine Vielzahl weiterer Einrichtungen, die radioaktive Stoffe in der Medizin, in der Forschung oder zu wirtschaftlichen Zwecken einsetzen bzw. handhaben. Soweit es sich bei diesen radioaktiven Stoffen nicht um Kernbrennstoffe handelt, sind diese Einrichtungen nicht Gegenstand der Atomaufsicht, sondern der für Strahlenschutz zuständigen Behörden. Am Abend des 26. Juni 2017 erfolgte der letzte Abtransport von bestrahlten Brennelementen aus dem BER II in die USA. Pressemitteilung des Bundesministeriums vom 28.06.2017 Informationen zur Stilllegung des BER II (Atomrechtliche Genehmigungsbehörde) Häufig gestellte Fragen zur Sicherheit des Forschungsreaktors BER II (HZB) Forschungsreaktor BER II (HZB) Höchstmögliche Sicherheits­anforderungen Die Atomaufsicht sorgt mit den hinzugezogenen Sachverständigen nach § 20 AtG, im Zusammenwirken mit der Betreiberin des BER II dafür, dass die kerntechnische Anlage BER II den höchstmöglichen Sicherheitsanforderungen gerecht wird. Hierzu gehört eine fortlaufende Anpassung bzw. Verbesserung der sicherheitstechnischen Maßnahmen. Dabei werden neue Erkenntnisse aus Forschung und Entwicklung ebenso berücksichtigt wie Erfahrungen aus dem Betrieb des BER II und dem Betrieb kerntechnischer Anlagen im In- und Ausland. Kerntechnisches Regelwerk Die Aufsichtsbehörde kontrolliert die Einhaltung von Rechtsvorschriften und Neben­bestimmungen, die in atomrechtlichen Genehmigungen festgelegt sind. Weiterhin überwacht sie die Erfüllung von Anordnungen oder Verfügungen nach dem kerntechnischen Regelwerk durch die Genehmigungsinhaber. Sie bearbeitet zustimmungspflichtige Vorhaben und überprüft die Einhaltung der Betriebsvorschriften, die Anforderungen an wiederkehrend zu prüfende sicherheitsrelevante Anlagenteile sowie die betriebsinternen Strahlenschutzmaßnahmen. Umgebungsüberwachung Für die Umgebungsüberwachung des BER II hat die Atomaufsicht jederzeit Zugriff auf ein Fernüberwachungssystem, welches wichtige Anlagenparameter, Emissionsdaten, Wetterparameter und Radioaktivitätsmesswerte erfasst. Erlass von Anordnungen bei Gefahr Darüber hinaus haben die Aufsichtsbehörde und ihre Sachverständigen jederzeit Zutritt zum BER II, falls dies erforderlich sein sollte. Im Bedarfsfall können Anordnungen erlassen, Genehmigungen widerrufen oder die Einstellung des Betriebs angeordnet werden. Dies würde in der Regel der Fall sein, wenn Abweichungen von gesetzlichen Bestimmungen bzw. Genehmigungsauflagen festgestellt würden, die eine Gefahr für Leben, Gesundheit oder Sachgüter darstellen können. Rechtsgrundlagen Gesetz über die friedliche Verwendung der Kernenergie und den Schutz gegen ihre Gefahren (Atomgesetz – AtG) Gesetz zum Schutz vor der schädlichen Wirkung ionisierender Strahlung (Strahlenschutzgesetz – StrSchG) Grundgesetz für die Bundesrepublik Deutschland (GG) Sollte es beim BER II zu einem für die kerntechnische Sicherheit bedeutsamen Ereignis kommen, wird dieses von der Betreiberin an die Atomaufsicht gemeldet. Grundlage für dieses Meldeverfahren ist die Atomrechtliche Sicherheitsbeauftragten- und Meldeverordnung ( AtSMV ). Sinn und Zweck des behördlichen Meldeverfahrens ist es, den Sicherheitsstatus der kerntechnischen Anlagen zu überwachen und ihn mit den aus den gemeldeten Ereignissen gewonnenen Erkenntnissen im Rahmen des Aufsichtsverfahrens immer noch weiter zu verbessern. Gemeldet werden müssen auch Ereignisse, die nicht auf eine Sicherheitsgefährdung hindeuten, deren Auswertung aber einen Erkenntnisgewinn verspricht. Für den BER II werden die Meldekriterien für Ereignisse in Forschungsreaktoren in der Anlage 3 der AtSMV angewandt. Ergänzend zu dem gesetzlichen vorgeschriebenen deutschen Meldeverfahren werden meldepflichtige Ereignisse auch nach der internationalen Bewertungsskala INES der International Atomic Energy Agency – IAEA , um die Bedeutung des Ereignisses für die Sicherheit der Anlage und dessen radiologische Auswirkungen auf die Bevölkerung und Umgebung transparent darzustellen. Alle bisherigen Ereignisse beim BER II wurden mit der INES-Stufe 0, d.h.“keine oder sehr geringe unmittelbare sicherheitstechnische bzw. keine radiologische Bedeutung”, gemeldet. Insbesondere traten aufgrund keiner Ereignisse Ableitungen radioaktiver Stoffe oberhalb genehmigter Werte für Fortluft und Abwasser auf. Jedes meldepflichtige Ereignis beim BER II ist in den Monats- und Jahresberichten der Störfallmeldestelle des Bundesamtes für kerntechnische Entsorgungssicherheit aufgeführt. Zu den routinemäßigen und anlassbezogenen Aufgaben der Aufsichtsbehörde gehören die technische Kontrolle und Überwachung des BER II, das Führen von regelmäßigen Aufsichts- und Fachgesprächen mit der Betreiberin und den hinzugezogenen Sachverständigen, die Abnahme von fachlichen Prüfungen am Reaktor zur Bestätigung der erforderlichen Fachkunde die Prüfung und Begleitung von eingereichten Änderungs- und Instandhaltungsanträgen; die Auswertung und Prüfung der Betreiberberichte wie etwa der technischen Monats- und Jahresberichte, die Auswertung und Prüfung der dazugehörenden Stellungnahmen der Sachverständigen. Gemäß Auflage 3.4.3 der Betriebsgenehmigung (dritte Teilgenehmigung zur Änderung des Forschungsreaktors BER II in Berlin Wannsee) ist die Betreiberin verpflichtet, der atomrechtlichen Aufsichtsbehörde schriftlich über den bestimmungsgemäßen Betrieb zu berichten. Dabei wird dargestellt, wie der Betrieb seit der letzten Berichterstattung verlaufen ist, z.B. wann der Reaktor in Betrieb war und welche Störungen auftraten. Ferner enthält der Bericht auch eine Übersicht, welche Arbeiten durchgeführt worden sind. Weiterhin muss jede Bewegung von Kernbrennstoff angezeigt werden. Im Rahmen des Berichtes wird auch darüber informiert, welche Themen innerhalb des Fachkundeerhalts behandelt worden sind. Gemäß Auflage 3.4.4 ist die Betreiberin auch verpflichtet, die nach den Artikel 78 und 79 des Vertrages zur Gründung der Europäischen Atomgemeinschaft (Euratom-Vertrag) zu führenden Aufstellungen über Kernmaterial betreffende Betriebsvorgänge der Atomaufsicht zuzuleiten. Mit der Auflage 3.4.5 ist die Betreiberin weiterhin verpflichtet, vierteljährlich über die Messergebnisse der Umgebungsüberwachung schriftlich zu berichten. Die Atomaufsicht hat über ein entsprechendes Computerprogramm jederzeit Zugriff auf die Daten des Reaktor­fernüberwachungs­systems (RFÜ) . Das RFÜ ist ein komplexes Mess- und Informationssystem, welches rund um die Uhr Messwerte zum aktuellen Betriebszustand des Forschungsreaktors einschließlich der Abgaben (Emissionen) in die Luft sowie den Radioaktivitätseintrag in die Umgebung (Immission) vollautomatisch erfasst und überwacht. Meteorologische Daten zum Standort des BER II in Wannsee und Messwerte aus dem integrierten Mess- und Informationssystem (IMIS) des BfS werden ebenfalls in das RFÜ übernommen. Das RFÜ bietet zahlreiche Möglichkeiten, die gemessenen Werte auszuwerten, darzustellen und auf die Einhaltung von Grenzwerten und Schutzzielen hin zu überprüfen, und dient somit als Instrument der atomrechtlichen Aufsicht. Die wichtigsten Betriebsparameter des BER II, wie z.B. Reaktorleistung, Temperatur und Füllstand im Reaktorbecken und Dosisleistung in verschiedenen Bereichen sowie Radioaktivität in Fortluft und Abwasser werden im RFÜ online überwacht. Die wichtigsten Daten werden regelmäßig durch die Atomaufsicht kontrolliert und bei Auffälligkeiten erfolgt sofort eine Ursachenermittlung. Damit relevante Vorfälle nicht unbemerkt bleiben, erfolgt bei Erreichen von im System eingestellten Schwellwerten eine automatische Alarmierung der Aufsichtsbehörde. Bezüglich der nuklearen Sicherheit steht die Aufsichtsbehörde im ständigen Austausch zu allen relevanten Aufsichtsthemen mit anderen Bundesländern und dem Bund. Hierfür sorgen die seit Jahrzehnten etablierten Bund-Länder-Gremien des Länderausschusses für Atomkernenergie. In diesen Bund-Länder-Gremien arbeitet sie mit an der Weiterentwicklung und Überarbeitung des kerntechnischen Regelwerks . Darüber hinaus arbeitet die Aufsicht auch mit anderen Mitgliedsstaaten der Europäischen Union z.B. beim Erfahrungsaustausch im Rahmen themenbezogenen technischen Selbstbewertungen (gemäß AtG § 24b [1] Selbstbewertung und internationale Prüfung) zusammen. Weiterführende Informationen zum Länderausschuss für Atomkernenergie

Abschätzung des Gesundheitsrisikos durch ionisierende Strahlung

Abschätzung des Gesundheitsrisikos durch ionisierende Strahlung Erkrankungen ( z.B. Krebs) und Schäden, die von ionisierender Strahlung ausgelöst wurden, lassen sich vom Krankheitsbild her nicht von Erkrankungen unterscheiden, die spontan oder durch andere Ursachen entstanden sind. Eine mögliche Verursachung durch Strahlung kann daher nur festgestellt werden, wenn die Erkrankungen bei strahlenexponierten Personengruppen statistisch signifikant häufiger auftreten als bei nicht exponierten Kontrollgruppen. Zur Bestimmung des strahlenbedingten Krebsrisikos wurden epidemiologische Studien bei strahlenexponierten Personengruppen durchgeführt. Die Abschätzungen des genetischen Strahlenrisikos für den Menschen stammen aus tierexperimentellen Untersuchungen, da es für genetische Strahlenschäden keine gesicherten, am Menschen gewonnenen Erkenntnisse gibt. Wenn ionisierende Strahlung auf den menschlichen Körper trifft, können Schäden in einzelnen Zellen oder Geweben entstehen. Bei den Strahlenschäden unterscheidet man grundsätzlich zwischen deterministischen und stochastischen Schäden. Deterministische Strahlenschäden ( z. B. Hautrötungen oder Haarausfall) treten auf, wenn jemand eine Strahlendosis von mehr als ca. 500 Millisievert ( mSv ) erhalten hat. Bereits unterhalb dieses Schwellenwertes können stochastische Strahlenschäden auftreten. Dabei handelt es sich um Erkrankungen (z.B Krebs) und Schäden, die nur mit einer bestimmten Wahrscheinlichkeit entstehen. Im Folgenden wird beschrieben, wie man solche Wahrscheinlichkeiten – in der Epidemiologie auch "Risiken" genannt – schätzen kann. Eine große Herausforderung besteht darin, dass sich solche strahlenbedingten Erkrankungen ( z.B. Krebs) vom Krankheitsbild her nicht von Erkrankungen unterscheiden, die spontan oder durch andere Ursachen entstanden sind. Eine mögliche Verursachung durch Strahlung kann daher nur festgestellt werden, wenn die Erkrankungen bei strahlenexponierten Personengruppen statistisch signifikant und über verschiedene Personengruppen hinweg konsistent häufiger auftreten als bei nicht exponierten Kontrollgruppen und sich ein Zusammenhang zwischen der Dosis und der Höhe des Erkrankungsrisikos ( Dosis -Wirkungs-Beziehung) nachweisen lässt. Abschätzung des Krebsrisikos Zur Bestimmung des strahlenbedingten Krebsrisikos wurden wichtige epidemiologische Studien vor allem bei folgenden Personengruppen durchgeführt: Überlebende der Atombombenexplosionen von Hiroshima und Nagasaki , Patienten, die zur Diagnostik und Therapie bestrahlt wurden ( z.B. die kanadische Fluoroskopie- Kohorte ), beruflich strahlenexponierte Personen ( z.B. die Wismut Uranbergarbeiter- Kohorte ), Bewohner in der Umgebung kerntechnischer Anlagen ( z.B. Hanford ( USA ), Mayak (Russland)), Bewohner aus der Umgebung havarierter Kernkraftwerke (Tschornobyl ( russ. : Tschernobyl) und Fukushima) und Personen, die bei den Aufräumarbeiten eingesetzt wurden oder werden, Personen, die von oberirdischen Atombombentests betroffen waren ( z.B. Bewohner in der Nähe des ehem. Atomwaffentestgeländes Semipalatinsk (Kasachstan)). Die wichtigsten Daten für die Abschätzungen des strahlenbedingten Krebsrisikos sind die Daten der japanischen Atombombenüberlebenden. Diese Gruppe war mit einer hohen Dosisrate exponiert (die gesamte Dosis im Bruchteil einer Sekunde), die Dosis war aber nur bei einem kleinen Prozentsatz der Betroffenen hoch. Das Krebsrisiko lässt sich anhand der oben genannten Studienpopulationen schätzen. Es setzt sich aus zwei Komponenten zusammen: dem "spontanen" Krebsrisiko in einer Population, also dem allgemeinen Risiko ohne Strahlenexposition an Krebs zu erkranken, und dem strahleninduzierten Krebsrisiko. Letzteres beschreibt Krebsfälle, die ohne Strahlenexposition nicht entstanden wären. Für beide Komponenten werden Modelle angenommen und geschätzt. Für die Schätzung der Dosis-Wirkungs-Beziehung wird typischerweise ein lineares Modell ohne Schwellenwert angenommen. D. h. man nimmt an, dass mit einer Erhöhung der Strahlendosis sich auch das Krebsrisiko proportional erhöht und dass es keinen Schwellenwert gibt, unterhalb dessen Strahlung nicht schädlich ist. Oft will man Aussagen zum Strahlenrisiko nicht nur für eine Studienpopulation ( z.B. die Atombombenüberlebenden), sondern auch für andere Populationen ( z.B. die deutsche Bevölkerung) treffen. Dann muss das in einer Studienpopulation ermittelte Strahlenrisiko auf das Strahlenrisiko der Zielpopulation übertragen werden. Für die relativ niedrigen Strahlenbelastungen, wie sie heute in der Umwelt und am Arbeitsplatz auftreten, ist eine weitere Extrapolation von den Befunden bei den japanischen Atombombenüberlebenden notwendig: Die epidemiologischen Befunde, die hauptsächlich für hohe Dosisraten vorliegen, werden auf die Expositionssituationen bei niedrigen Dosen und chronischer Exposition übertragen. Hierzu gibt es verschiedene Ansätze: Die ICRP empfiehlt im Bereich niedriger Dosen und chronischer Belastungen die Risikokoeffizienten durch den Faktor 2 zu teilen. Die ICRP geht nämlich davon aus, dass eine über einen längeren Zeitraum verteilte Dosis weniger wirksam ist als eine gleich hohe Dosis , die aus kurzzeitiger Belastung resultiert. Damit soll insbesondere die Reparatur- und Erholungskapazität von bestrahlten Zellen bei niedrigen Werten der Dosis und der Dosisleistung berücksichtigt werden. Die Reduktion ergibt sich nicht unmittelbar aus den Beobachtungsdaten für Krebserkrankungen bei Menschen und beruht auf Modellannahmen, aufbauend auf laborexperimentellen Erkenntnissen. Das BfS sieht die wissenschaftliche Begründung für diese Reduktion der Risikokoeffizienten für niedrige Dosen und chronische Expositionen als nicht ausreichend an. Risikoschätzungen sind grundsätzlich mit Unsicherheiten behaftet. Dies hat mehrere Gründe: Zum einen handelt es sich bei einer Studienpopulation nur um einen begrenzten Personenkreis, der nicht zwangsläufig repräsentativ für die interessierende Zielpopulation sein muss. Zum anderen werden für die Modelle und die Risikoübertragungen viele Annahmen getroffen. Des Weiteren ist die Erfassung der Strahlendosis häufig mit großen Unsicherheiten verbunden. Mehr Informationen zu strahleninduzierten Krebserkrankungen und deren Risiken finden Sie im Artikel " Krebserkrankungen ". Abschätzung des Risikos für andere Krankheiten als Krebs Eine Abschätzung des Risikos, nach Strahlenbelastung an anderen Krankheiten als Krebs zu erkranken, ist zurzeit nicht zuverlässig möglich. Auswertungen bei den Überlebenden der Atombombenabwürfe in Japan , bei exponierten Bevölkerungsgruppen in der ehemaligen Sowjetunion und bei Strahlentherapie-Patienten weisen darauf hin, dass auch Herz-Kreislauf-Erkrankungen nicht wie lange angenommen erst ab 0,5 Gray als späte deterministische Strahlenschäden auftreten können, sondern bereits bei niedrigeren Dosen. Die Annahme, dass Katarakte (Linsentrübungen des Auges) zu den deterministischen Strahlenschäden zählen, wird zurzeit ebenfalls in Frage gestellt. Auch hier gibt es neue Erkenntnisse, die darauf hinweisen, dass Katarakte bereits bei zehnfach niedrigerer Dosis auftreten als bis vor kurzem noch angenommen (0,5 Gray gegenüber fünf Gray ). Es wird diskutiert, dass für diese Erkrankungen möglicherweise keine Schwellendosis existiert, sie also wie bösartige Neubildungen als stochastische Strahlenschäden anzusehen sind. Abschätzung des Risikos für genetische Schäden Für genetische Strahlenschäden gibt es keine gesicherten, am Menschen gewonnenen Erkenntnisse. In Hiroshima und Nagasaki konnte bisher bei Nachkommen der bestrahlten Atombomben-Überlebenden keine erhöhte Rate von vererbbaren Strahlenschäden im Vergleich zur übrigen japanischen Bevölkerung festgestellt werden. Aus experimentellen Untersuchungen an Tieren ist aber bekannt, dass Strahlung genetische Veränderungen, sogenannte Mutationen, in Keimzellen auslösen kann. Daher stammen die Abschätzungen des genetischen Strahlenrisikos für den Menschen aus diesen tierexperimentellen Untersuchungen. Mehr Informationen zu strahleninduzierten genetischen Schäden und deren Risiken können Sie im Artikel " Vererbbare Strahlenschäden " nachlesen. Risikobewertung Die obigen Ausführungen zeigen, wie für einzelne Erkrankungen auf Basis einzelner Studien Strahlenrisiken ermittelt werden können. Eine fundierte Risikobewertung auf Basis eines einzigen Tierexperiments oder einer einzelnen epidemiologischen Studie am Menschen ist allerdings kaum möglich. Für die Bewertung gesundheitsbezogener Risiken durch Strahlung ist es erforderlich, die Ergebnisse aus mehreren Studien heranzuziehen und in einer zusammenfassenden Gesamtschau zu bewerten. Ein StrahlenschutzStandpunkt des Bundesamtes für Strahlenschutz thematisiert die Bewertung gesundheitsbezogener Risiken im Detail. Stand: 20.05.2025

Bauartzulassung von Ionisationsrauchmeldern ( IRM )

Bauartzulassung von Ionisationsrauchmeldern ( IRM ) Ionisationsrauchmelder ( IRM ) sind Rauchmelder, in denen aufgrund ihres Funktionsprinzips radioaktive Stoffe , vorwiegend Americium-241, mit Aktivitäten bis zu etwa 40 Kilobecquerel, verwendet werden. Gemäß § 12 Absatz 1 Nummer 3 Strahlenschutzgesetz ( StrlSchG ) bedarf der Umgang mit Vorrichtungen, in die radioaktive Stoffe eingefügt sind, grundsätzlich einer Genehmigung. Solche Vorrichtungen können aber genehmigungsfrei betrieben werden, wenn diese nach § 45 Absatz 1 Nummer 1 StrlSchG bauartzugelassen sind. Die zuständige Behörde für die Erteilung der Bauartzulassung ist das Bundesamt für Strahlenschutz ( BfS ). Ionisationsrauchmelder ( IRM ) sind Rauchmelder, in denen aufgrund ihres Funktionsprinzips radioaktive Stoffe , vorwiegend Americium-241, mit Aktivitäten bis zu etwa 40 Kilobecquerel, verwendet werden. Ionisationsrauchmelder Quelle: Firma Apollo Funktionsweise Der radioaktive Stoff ist in der Regel auf einer inaktiven Trägerschicht (Folie aus Metall) aufgebracht und dort fest gebunden. Diese Strahlerfolie ist mittels Halterungen innerhalb des IRM–Gehäuses fest montiert. Die von der Folie emittierte Strahlung ionisiert die im IRM befindliche Luft, in der durch eine angelegte elektrische Spannung ein Ionisationsstrom erzeugt wird. Gelangen Brandaerosole über die Raucheintrittsöffnungen in den IRM , verändert sich die Stärke des Ionisationsstroms. Diese Veränderung wird elektronisch erfasst und führt bei Überschreiten eines Grenzwerts zur Auslösung eines Alarms. Die verschiedenen Modelle von Ionisationsrauchmeldern unterscheiden sich im Wesentlichen in der Zahl und Ausführung der Mess- und Referenzkammern sowie in der verwendeten Auswerteelektronik. Genehmigung bzw. Bauartzulassung IRM bedürfen als Vorrichtungen, in die radioaktive Stoffe eingefügt sind, gemäß § 12 Absatz 1 Nummer 3 StrlSchG entweder einer Genehmigung oder können genehmigungsfrei betrieben werden, wenn sie nach § 45 Absatz 1 Nummer 1 StrlSchG bauartzugelassen sind. Die zuständige Behörde für die Erteilung der Bauartzulassung ist das Bundesamt für Strahlenschutz ( BfS ) Voraussetzungen für die Erteilung einer Bauartzulassung Für die Erteilung einer Bauartzulassung für einen IRM müssen gemäß § 16 Strahlenschutzverordnung ( StrlSchV ) verschiedene Voraussetzungen erfüllt werden. Die Ortsdosisleistung darf im Abstand von 0,1 Meter von der berührbaren Oberfläche der Vorrichtung 1 Mikrosievert pro Stunde nicht überschreiten. Der radioaktive Stoff muss dicht umschlossen und berührungssicher abgedeckt sein. Auch im Brandfall muss der IRM ausreichend dicht bleiben, so dass es auch dann nicht zu unzulässigen Freisetzungen kommt. Die Nutzungsdauer der IRM wird in der Regel bereits durch die Hersteller auf zehn bis 15 Jahre beschränkt. Da der IRM während der Nutzungsdauer keiner behördlichen Kontrolle unterliegt, muss die Vorrichtung so ausgelegt sein, dass während der Nutzungsdauer außer der Dichtheitsprüfung durch den Hersteller nur die ggf. alle zehn Jahre erforderliche Dichtheitsprüfung nach § 25 Absatz 4 StrlSchV durchzuführen ist. Abweichende Regelungen können durch die Zulassungsbehörde im Zulassungsschein festgelegt werden. Einschränkungen bei der Zulassung Darüber hinaus darf eine Bauartzulassung nur erteilt werden, wenn die Aktivität des in die Vorrichtung eingefügten radioaktiven Stoffes das Zehnfache der Freigrenzen gemäß Anlage 4 Tabelle 1 Spalte 2 StrlSchV nicht überschreitet. Für Americium-241 beträgt das Zehnfache der Freigrenze 100 Kilobecquerel. Das Gehäuse darf nur mit Spezialwerkzeug zerstörungsfrei demontiert beziehungsweise geöffnet werden können, so dass ein unbemerktes Entfernen der Strahlerfolie verhindert wird. Der Inhaber der IRM hat diese gemäß § 25 Absatz 5 StrlSchV nach Beendigung der Nutzung an den Zulassungsinhaber zurückzugeben. Ist dies nicht möglich, so ist die Vorrichtung an die Landessammelstelle oder an eine von der zuständigen Behörde bestimmte Stelle abzugeben. Die Bauartzulassung ermöglicht gemäß Anlage 3 Teil B Nr. 4. und 5. StrlSchV nur eine genehmigungsfreie Verwendung und Lagerung von IRM . Personen oder Unternehmen, die IRM ein- oder ausbauen beziehungsweise warten, benötigen eine Genehmigung auch bei Vorliegen einer Bauartzulassung. Freisetzung radioaktiver Stoffe bei normalen Betriebsbedingungen nicht möglich Die Freisetzung von radioaktiven Stoffen ist bei normalen Betriebsbedingungen nicht möglich. Aufgrund der sehr kleinen Dosisleistung in der Nähe eines IRM (siehe oben) und des Abstands der normalerweise an der Raumdecke angebrachten Rauchmelder von den Personen, die sich in Räumen mit IRM aufhalten, beträgt die Strahlenexposition für Personen der Bevölkerung nur einige zehn Mikrosievert pro Jahr. Verglichen mit der natürlichen Strahlenexposition , die in Deutschland im Durchschnitt etwa 2 Millisievert pro Jahr beträgt, ist das gesundheitliche Risiko bei einem bestimmungsgemäßen Gebrauch von IRM daher vernachlässigbar. Da die Eignung der Vorrichtung bei einer Bauartprüfung nur an einem einzelnen Baumuster überprüft wird, müssen alle später gefertigten Exemplare des IRM in ihren für den Strahlenschutz relevanten Merkmalen genau denen des Prüfmusters entsprechen. Aus diesem Grund ist ein Qualitätssicherungssystem durch den Hersteller zu betreiben, welches durch eine sachverständige Person kontrolliert wird. Diese sachverständige Person wird durch die Zulassungsbehörde bestimmt. Zuständigkeiten für die Erteilung einer Bauartzulassung Ein Antrag auf Erteilung einer Bauartzulassung für einen IRM ist beim BfS zu stellen. Im Verfahren der Bauartzulassung für einen IRM beteiligt das BfS die Bundesanstalt für Materialforschung und -prüfung ( BAM ). Zur Beurteilung der Dichtheit, der Werkstoffauswahl und der Konstruktion der Umhüllung des radioaktiven Stoffs sowie der Qualitätssicherung führt die BAM eine Reihe von speziellen Prüfungen durch. So wird auch die Temperaturbeständigkeit, die mechanische Festigkeit (Schlag-, Vibrations- und Fallprüfung) sowie die Dichtheit von IRM im Brandfall überprüft. Anwendungsgebiete von Ionisationsrauchmeldern Die Anwendung von IRM in Deutschland beschränkt sich zunehmend auf spezielle Aufgaben, wie zum Beispiel den Einsatz in extrem explosionsgefährdeten Bereichen auf Schiffen und ähnlichen Bereichen. Die mittlerweile technisch hochentwickelten optischen Rauchmelder sowie die Kombidetektoren können in vielen Anwendungsgebieten als alternative Rauchmeldesysteme eingesetzt werden und haben IRM in Deutschland in der Praxis oft verdrängt. In anderen Ländern ( z.B. Großbritannien, USA ) werden IRM dagegen noch verbreitet eingesetzt, auch in Privathaushalten. Stand: 06.05.2025

Entwicklung von Messtechnik zur Beprobung kontaminierter Betonbaukörper kerntechnischer Anlagen während des Rückbaus, Teilvorhaben: Entwicklung von Werkzeugen zur In-Situ-Analyse von Betoneigenschaften, Radionukliden und hydraulischer Loch-zu-Loch-Permeabilität sowie Befundkartierung

Das Projekt "Entwicklung von Messtechnik zur Beprobung kontaminierter Betonbaukörper kerntechnischer Anlagen während des Rückbaus, Teilvorhaben: Entwicklung von Werkzeugen zur In-Situ-Analyse von Betoneigenschaften, Radionukliden und hydraulischer Loch-zu-Loch-Permeabilität sowie Befundkartierung" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Energietechnik, Professur für Wasserstoff- und Kernenergietechnik.

Ressortforschungsplan 2023, Strahlen-induzierte kardiovaskuläre Erkrankungen: Deregulation epigenetischer und transkriptioneller Faktoren nach chronischer Niedrigdosisbestrahlung

Das Projekt "Ressortforschungsplan 2023, Strahlen-induzierte kardiovaskuläre Erkrankungen: Deregulation epigenetischer und transkriptioneller Faktoren nach chronischer Niedrigdosisbestrahlung" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit , Bundesamt für Strahlenschutz (BMU,BfS). Es wird/wurde ausgeführt durch: Active Motif S.A..

1 2 3 4 513 14 15