API src

Found 451 results.

Related terms

Chem-Org\LDPE-DE-2030

LDPE-Polymerisation: In dieser Prozeßeinheit wird die Polymerisation von Ethylen zu LDPE (Low Density PolyEthylen) betrachtet. LDPE wird in einem Hochdruckverfahren hergestellt, wobei entweder ein Röhrenreaktor oder ein Autoklav als Reaktor eingesetzt wird. In einem ersten Schritt wird der Rohstoff Ethylen verdichtet. Anschließend findet in einem Röhrenreaktor oder einem Autoklaven unter hohem Druck und Temperatur mit Hilfe eines Radikalstarters (Peroxid) und Katalysators (Chrom- oder Titan-Basis) die Polymerisation von Ethylen statt. Danach wird das Reaktionsgemisch aufgetrennt. Nicht umgesetztes Ethylen wird nach erneuter Verdichtung wieder dem Reaktor zugeführt. Das Polymerisat (LDPE) wird in einem weiteren Trennungsschritt von noch verbliebenem Ethylen und entstandenen Ölen befreit. Es folgen die Extrusion, Granulierung, Trocknung, Lagerung oder Verpackung des Produkts. Prozess-Situierung: Bei den Polyethylen(PE)-Kunststoffen kann man drei verschiedene Polymere unterscheiden: HDPE (high density polyethylen), LLDPE (linear low density polyethylen) und LDPE (low density polyethylen). Die weltweiten Produktionskapazitäten der verschiedenen PE-Kunststoffe in 1000 t können für das Jahr 1990 der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1992). Nach (APME 1994) wurden in Westeuropa 1994 3,614 Mio. t HDPE, 1,267 Mio. t LLDPE und 4,856 Mio. t LDPE (Gesamtsumme an PE: 9,737 Mio. t) produziert. Tabelle 1 PE-Produktionskapazitäten in 1000 t für das Jahr 1990. Region LDPE LLDPE HDPE gesamt PE Nordamerika 3957 3746 3425 11128 Westeuropa 5363 1278 2693 9334 Osteuropa 2034 5 1168 3207 Japan 1388 467 1025 2880 Sonstige 2856 1258 3119 7233 Summe 15598 6754 11430 33782 Für die Bilanzierung der LDPE-Herstellung wurden die Literaturquellen (Brown 1985), (Tellus 1992), (BUWAL 1991), (PWMI 1993), (OEKO 1992c) und (Ullmann 1992) untersucht. Die Daten der Studien (Brown 1985) (Energiewerte) und (Tellus 1992) (Emissionswerte) beziehen sich auf die Herstellung von LDPE in den USA und repräsentieren den Stand der Technik Anfang der 80er Jahre. Die BUWAL-Studie (Massenbilanz, Abwasserwerte) betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Allokation: keine Genese der Daten: - Massenbilanz: Nach #1 werden für die LDPE-Herstellung pro Tonne Produkt 1016,14 kg Ethylen eingesetzt. Für die Polymerisationsreaktion werden weiterhin Hilfsstoffe und Zusätze (3,78 kg) benötigt (#1). Diese Stoffe sind in der BUWAL-Studie nicht weiter spezifiziert. Es wird angenommen, daß es sich dabei um Katalysatoren und Radikalstarter (Peroxide) handelt. Als Nebenausbeute (nicht näher spezifiziert) werden bei BUWAL 4,18 kg (mit einem Heizwert von 0,167 GJ/t LDPE) aufgeführt. Dabei handelt es sich vermutlich um Ethylen und Öle, die im letzten Trennungprozeß vom Produkt abgetrennt und als Energieträger verbrannt werden können. Als feste Abfälle fallen bei der Polymerisation 0,24 kg an. Energiebedarf: Nach #2 werden für die Herstellung von LDPE 2355,2 btu/lb (5,5 GJ/t) Energie benötigt. Davon entfallen 1280,9 btu/lb (3,0 GJ/t) auf elektrische Energie (wovon wiederum 998,9 btu/lb (2,3 GJ/t) an Kompressionsarbeit auf die Verdichtung von Ethylen entfallen) und 1074,3 btu/lb (2,5 GJ/t) auf den Energiegehalt des benötigten Dampfes. Im Vergleich dazu werden bei (Tellus 1992) wesentlich höhere Angaben gemacht. Die Prozeßenergie zur Herstellung von LDPE (7650 btu/lb bzw. 17,8 GJ/t) setzt sich dort aus der elektrischen Energie (6600 btu/lb bzw. 15,4 GJ/t) und dem Energiegehalt des benötigten Dampfes (1050 btu/lb bzw. 2,4 GJ/t) zusammen. Bei (PWMI 1993) wird der Polymerisationsprozeß von Ethylen zu LDPE nicht separat bilanziert. Aus der Differenz der Daten („Total fuels“) aus der LDPE-Herstellung (gesamte Prozeßkette) und der Ethylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in einer Größenordnung von 12 GJ abgeschätzt werden. Da in #2 die Energiewerte am besten nachvollzogen werden können, werden diese Angaben für GEMIS verwendet. Prozessbedingte Luftemissionen: Bei der LDPE-Herstellung können prinzipiell flüchtige organische Verbindungen (VOC) als Luftemissionen entweichen. In #3 werden die prozessbedingten VOC-Emissionen bei der LDPE-Herstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 - 10 kg VOC/t LDPE. Der größere Wert gibt die Emissionen von alten Anlagen wieder, während der kleinere Wert für Neuanlagen steht. Als Kenziffer für GEMIS wurde der Mittelwert von 5,8 kg VOC/t LDPE eingesetzt. Abwasser: Aus #1 kann entnommen werden, daß für die gesamte Prozeßkette der Herstellung von LDPE der BSB5- und der CSB-Wert gleich null sind. Somit ergeben sich auch für den hier betrachteten Teilschritt der Polymerisation Werte von jeweils 0. Für die Abwasserkennziffern BSB5 und CSB stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Als Werte nach Abwasserreinigungsmaßnahmen werden dort eine Vielzahl von Stoffen aufgeführt, von denen hier Chrom, 0,0302 lbs/ton LDPE (umgerechnet 0,015 kg/t), Benzol 0,0149 lbs/ton (umgerechnet 0,0075 kg/t) und Phenol, 0,00176 lbs/ton (umgerechnet 0,00088 kg/t) wiedergegeben wird. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,4% Produkt: Kunststoffe

Chem-Org\LDPE-DE-2010

LDPE-Polymerisation: In dieser Prozeßeinheit wird die Polymerisation von Ethylen zu LDPE (Low Density PolyEthylen) betrachtet. LDPE wird in einem Hochdruckverfahren hergestellt, wobei entweder ein Röhrenreaktor oder ein Autoklav als Reaktor eingesetzt wird. In einem ersten Schritt wird der Rohstoff Ethylen verdichtet. Anschließend findet in einem Röhrenreaktor oder einem Autoklaven unter hohem Druck und Temperatur mit Hilfe eines Radikalstarters (Peroxid) und Katalysators (Chrom- oder Titan-Basis) die Polymerisation von Ethylen statt. Danach wird das Reaktionsgemisch aufgetrennt. Nicht umgesetztes Ethylen wird nach erneuter Verdichtung wieder dem Reaktor zugeführt. Das Polymerisat (LDPE) wird in einem weiteren Trennungsschritt von noch verbliebenem Ethylen und entstandenen Ölen befreit. Es folgen die Extrusion, Granulierung, Trocknung, Lagerung oder Verpackung des Produkts. Prozess-Situierung: Bei den Polyethylen(PE)-Kunststoffen kann man drei verschiedene Polymere unterscheiden: HDPE (high density polyethylen), LLDPE (linear low density polyethylen) und LDPE (low density polyethylen). Die weltweiten Produktionskapazitäten der verschiedenen PE-Kunststoffe in 1000 t können für das Jahr 1990 der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1992). Nach (APME 1994) wurden in Westeuropa 1994 3,614 Mio. t HDPE, 1,267 Mio. t LLDPE und 4,856 Mio. t LDPE (Gesamtsumme an PE: 9,737 Mio. t) produziert. Tabelle 1 PE-Produktionskapazitäten in 1000 t für das Jahr 1990. Region LDPE LLDPE HDPE gesamt PE Nordamerika 3957 3746 3425 11128 Westeuropa 5363 1278 2693 9334 Osteuropa 2034 5 1168 3207 Japan 1388 467 1025 2880 Sonstige 2856 1258 3119 7233 Summe 15598 6754 11430 33782 Für die Bilanzierung der LDPE-Herstellung wurden die Literaturquellen (Brown 1985), (Tellus 1992), (BUWAL 1991), (PWMI 1993), (OEKO 1992c) und (Ullmann 1992) untersucht. Die Daten der Studien (Brown 1985) (Energiewerte) und (Tellus 1992) (Emissionswerte) beziehen sich auf die Herstellung von LDPE in den USA und repräsentieren den Stand der Technik Anfang der 80er Jahre. Die BUWAL-Studie (Massenbilanz, Abwasserwerte) betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Allokation: keine Genese der Daten: - Massenbilanz: Nach #1 werden für die LDPE-Herstellung pro Tonne Produkt 1016,14 kg Ethylen eingesetzt. Für die Polymerisationsreaktion werden weiterhin Hilfsstoffe und Zusätze (3,78 kg) benötigt (#1). Diese Stoffe sind in der BUWAL-Studie nicht weiter spezifiziert. Es wird angenommen, daß es sich dabei um Katalysatoren und Radikalstarter (Peroxide) handelt. Als Nebenausbeute (nicht näher spezifiziert) werden bei BUWAL 4,18 kg (mit einem Heizwert von 0,167 GJ/t LDPE) aufgeführt. Dabei handelt es sich vermutlich um Ethylen und Öle, die im letzten Trennungprozeß vom Produkt abgetrennt und als Energieträger verbrannt werden können. Als feste Abfälle fallen bei der Polymerisation 0,24 kg an. Energiebedarf: Nach #2 werden für die Herstellung von LDPE 2355,2 btu/lb (5,5 GJ/t) Energie benötigt. Davon entfallen 1280,9 btu/lb (3,0 GJ/t) auf elektrische Energie (wovon wiederum 998,9 btu/lb (2,3 GJ/t) an Kompressionsarbeit auf die Verdichtung von Ethylen entfallen) und 1074,3 btu/lb (2,5 GJ/t) auf den Energiegehalt des benötigten Dampfes. Im Vergleich dazu werden bei (Tellus 1992) wesentlich höhere Angaben gemacht. Die Prozeßenergie zur Herstellung von LDPE (7650 btu/lb bzw. 17,8 GJ/t) setzt sich dort aus der elektrischen Energie (6600 btu/lb bzw. 15,4 GJ/t) und dem Energiegehalt des benötigten Dampfes (1050 btu/lb bzw. 2,4 GJ/t) zusammen. Bei (PWMI 1993) wird der Polymerisationsprozeß von Ethylen zu LDPE nicht separat bilanziert. Aus der Differenz der Daten („Total fuels“) aus der LDPE-Herstellung (gesamte Prozeßkette) und der Ethylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in einer Größenordnung von 12 GJ abgeschätzt werden. Da in #2 die Energiewerte am besten nachvollzogen werden können, werden diese Angaben für GEMIS verwendet. Prozessbedingte Luftemissionen: Bei der LDPE-Herstellung können prinzipiell flüchtige organische Verbindungen (VOC) als Luftemissionen entweichen. In #3 werden die prozessbedingten VOC-Emissionen bei der LDPE-Herstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 - 10 kg VOC/t LDPE. Der größere Wert gibt die Emissionen von alten Anlagen wieder, während der kleinere Wert für Neuanlagen steht. Als Kenziffer für GEMIS wurde der Mittelwert von 5,8 kg VOC/t LDPE eingesetzt. Abwasser: Aus #1 kann entnommen werden, daß für die gesamte Prozeßkette der Herstellung von LDPE der BSB5- und der CSB-Wert gleich null sind. Somit ergeben sich auch für den hier betrachteten Teilschritt der Polymerisation Werte von jeweils 0. Für die Abwasserkennziffern BSB5 und CSB stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Als Werte nach Abwasserreinigungsmaßnahmen werden dort eine Vielzahl von Stoffen aufgeführt, von denen hier Chrom, 0,0302 lbs/ton LDPE (umgerechnet 0,015 kg/t), Benzol 0,0149 lbs/ton (umgerechnet 0,0075 kg/t) und Phenol, 0,00176 lbs/ton (umgerechnet 0,00088 kg/t) wiedergegeben wird. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,4% Produkt: Kunststoffe

Chem-Org\LDPE-DE-2005

LDPE-Polymerisation: In dieser Prozeßeinheit wird die Polymerisation von Ethylen zu LDPE (Low Density PolyEthylen) betrachtet. LDPE wird in einem Hochdruckverfahren hergestellt, wobei entweder ein Röhrenreaktor oder ein Autoklav als Reaktor eingesetzt wird. In einem ersten Schritt wird der Rohstoff Ethylen verdichtet. Anschließend findet in einem Röhrenreaktor oder einem Autoklaven unter hohem Druck und Temperatur mit Hilfe eines Radikalstarters (Peroxid) und Katalysators (Chrom- oder Titan-Basis) die Polymerisation von Ethylen statt. Danach wird das Reaktionsgemisch aufgetrennt. Nicht umgesetztes Ethylen wird nach erneuter Verdichtung wieder dem Reaktor zugeführt. Das Polymerisat (LDPE) wird in einem weiteren Trennungsschritt von noch verbliebenem Ethylen und entstandenen Ölen befreit. Es folgen die Extrusion, Granulierung, Trocknung, Lagerung oder Verpackung des Produkts. Prozess-Situierung: Bei den Polyethylen(PE)-Kunststoffen kann man drei verschiedene Polymere unterscheiden: HDPE (high density polyethylen), LLDPE (linear low density polyethylen) und LDPE (low density polyethylen). Die weltweiten Produktionskapazitäten der verschiedenen PE-Kunststoffe in 1000 t können für das Jahr 1990 der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1992). Nach (APME 1994) wurden in Westeuropa 1994 3,614 Mio. t HDPE, 1,267 Mio. t LLDPE und 4,856 Mio. t LDPE (Gesamtsumme an PE: 9,737 Mio. t) produziert. Tabelle 1 PE-Produktionskapazitäten in 1000 t für das Jahr 1990. Region LDPE LLDPE HDPE gesamt PE Nordamerika 3957 3746 3425 11128 Westeuropa 5363 1278 2693 9334 Osteuropa 2034 5 1168 3207 Japan 1388 467 1025 2880 Sonstige 2856 1258 3119 7233 Summe 15598 6754 11430 33782 Für die Bilanzierung der LDPE-Herstellung wurden die Literaturquellen (Brown 1985), (Tellus 1992), (BUWAL 1991), (PWMI 1993), (OEKO 1992c) und (Ullmann 1992) untersucht. Die Daten der Studien (Brown 1985) (Energiewerte) und (Tellus 1992) (Emissionswerte) beziehen sich auf die Herstellung von LDPE in den USA und repräsentieren den Stand der Technik Anfang der 80er Jahre. Die BUWAL-Studie (Massenbilanz, Abwasserwerte) betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Allokation: keine Genese der Daten: - Massenbilanz: Nach #1 werden für die LDPE-Herstellung pro Tonne Produkt 1016,14 kg Ethylen eingesetzt. Für die Polymerisationsreaktion werden weiterhin Hilfsstoffe und Zusätze (3,78 kg) benötigt (#1). Diese Stoffe sind in der BUWAL-Studie nicht weiter spezifiziert. Es wird angenommen, daß es sich dabei um Katalysatoren und Radikalstarter (Peroxide) handelt. Als Nebenausbeute (nicht näher spezifiziert) werden bei BUWAL 4,18 kg (mit einem Heizwert von 0,167 GJ/t LDPE) aufgeführt. Dabei handelt es sich vermutlich um Ethylen und Öle, die im letzten Trennungprozeß vom Produkt abgetrennt und als Energieträger verbrannt werden können. Als feste Abfälle fallen bei der Polymerisation 0,24 kg an. Energiebedarf: Nach #2 werden für die Herstellung von LDPE 2355,2 btu/lb (5,5 GJ/t) Energie benötigt. Davon entfallen 1280,9 btu/lb (3,0 GJ/t) auf elektrische Energie (wovon wiederum 998,9 btu/lb (2,3 GJ/t) an Kompressionsarbeit auf die Verdichtung von Ethylen entfallen) und 1074,3 btu/lb (2,5 GJ/t) auf den Energiegehalt des benötigten Dampfes. Im Vergleich dazu werden bei (Tellus 1992) wesentlich höhere Angaben gemacht. Die Prozeßenergie zur Herstellung von LDPE (7650 btu/lb bzw. 17,8 GJ/t) setzt sich dort aus der elektrischen Energie (6600 btu/lb bzw. 15,4 GJ/t) und dem Energiegehalt des benötigten Dampfes (1050 btu/lb bzw. 2,4 GJ/t) zusammen. Bei (PWMI 1993) wird der Polymerisationsprozeß von Ethylen zu LDPE nicht separat bilanziert. Aus der Differenz der Daten („Total fuels“) aus der LDPE-Herstellung (gesamte Prozeßkette) und der Ethylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in einer Größenordnung von 12 GJ abgeschätzt werden. Da in #2 die Energiewerte am besten nachvollzogen werden können, werden diese Angaben für GEMIS verwendet. Prozessbedingte Luftemissionen: Bei der LDPE-Herstellung können prinzipiell flüchtige organische Verbindungen (VOC) als Luftemissionen entweichen. In #3 werden die prozessbedingten VOC-Emissionen bei der LDPE-Herstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 - 10 kg VOC/t LDPE. Der größere Wert gibt die Emissionen von alten Anlagen wieder, während der kleinere Wert für Neuanlagen steht. Als Kenziffer für GEMIS wurde der Mittelwert von 5,8 kg VOC/t LDPE eingesetzt. Abwasser: Aus #1 kann entnommen werden, daß für die gesamte Prozeßkette der Herstellung von LDPE der BSB5- und der CSB-Wert gleich null sind. Somit ergeben sich auch für den hier betrachteten Teilschritt der Polymerisation Werte von jeweils 0. Für die Abwasserkennziffern BSB5 und CSB stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Als Werte nach Abwasserreinigungsmaßnahmen werden dort eine Vielzahl von Stoffen aufgeführt, von denen hier Chrom, 0,0302 lbs/ton LDPE (umgerechnet 0,015 kg/t), Benzol 0,0149 lbs/ton (umgerechnet 0,0075 kg/t) und Phenol, 0,00176 lbs/ton (umgerechnet 0,00088 kg/t) wiedergegeben wird. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,4% Produkt: Kunststoffe

Chem-Org\LDPE-DE-2000

LDPE-Polymerisation: In dieser Prozeßeinheit wird die Polymerisation von Ethylen zu LDPE (Low Density PolyEthylen) betrachtet. LDPE wird in einem Hochdruckverfahren hergestellt, wobei entweder ein Röhrenreaktor oder ein Autoklav als Reaktor eingesetzt wird. In einem ersten Schritt wird der Rohstoff Ethylen verdichtet. Anschließend findet in einem Röhrenreaktor oder einem Autoklaven unter hohem Druck und Temperatur mit Hilfe eines Radikalstarters (Peroxid) und Katalysators (Chrom- oder Titan-Basis) die Polymerisation von Ethylen statt. Danach wird das Reaktionsgemisch aufgetrennt. Nicht umgesetztes Ethylen wird nach erneuter Verdichtung wieder dem Reaktor zugeführt. Das Polymerisat (LDPE) wird in einem weiteren Trennungsschritt von noch verbliebenem Ethylen und entstandenen Ölen befreit. Es folgen die Extrusion, Granulierung, Trocknung, Lagerung oder Verpackung des Produkts. Prozess-Situierung: Bei den Polyethylen(PE)-Kunststoffen kann man drei verschiedene Polymere unterscheiden: HDPE (high density polyethylen), LLDPE (linear low density polyethylen) und LDPE (low density polyethylen). Die weltweiten Produktionskapazitäten der verschiedenen PE-Kunststoffe in 1000 t können für das Jahr 1990 der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1992). Nach (APME 1994) wurden in Westeuropa 1994 3,614 Mio. t HDPE, 1,267 Mio. t LLDPE und 4,856 Mio. t LDPE (Gesamtsumme an PE: 9,737 Mio. t) produziert. Tabelle 1 PE-Produktionskapazitäten in 1000 t für das Jahr 1990. Region LDPE LLDPE HDPE gesamt PE Nordamerika 3957 3746 3425 11128 Westeuropa 5363 1278 2693 9334 Osteuropa 2034 5 1168 3207 Japan 1388 467 1025 2880 Sonstige 2856 1258 3119 7233 Summe 15598 6754 11430 33782 Für die Bilanzierung der LDPE-Herstellung wurden die Literaturquellen (Brown 1985), (Tellus 1992), (BUWAL 1991), (PWMI 1993), (OEKO 1992c) und (Ullmann 1992) untersucht. Die Daten der Studien (Brown 1985) (Energiewerte) und (Tellus 1992) (Emissionswerte) beziehen sich auf die Herstellung von LDPE in den USA und repräsentieren den Stand der Technik Anfang der 80er Jahre. Die BUWAL-Studie (Massenbilanz, Abwasserwerte) betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Allokation: keine Genese der Daten: - Massenbilanz: Nach #1 werden für die LDPE-Herstellung pro Tonne Produkt 1016,14 kg Ethylen eingesetzt. Für die Polymerisationsreaktion werden weiterhin Hilfsstoffe und Zusätze (3,78 kg) benötigt (#1). Diese Stoffe sind in der BUWAL-Studie nicht weiter spezifiziert. Es wird angenommen, daß es sich dabei um Katalysatoren und Radikalstarter (Peroxide) handelt. Als Nebenausbeute (nicht näher spezifiziert) werden bei BUWAL 4,18 kg (mit einem Heizwert von 0,167 GJ/t LDPE) aufgeführt. Dabei handelt es sich vermutlich um Ethylen und Öle, die im letzten Trennungprozeß vom Produkt abgetrennt und als Energieträger verbrannt werden können. Als feste Abfälle fallen bei der Polymerisation 0,24 kg an. Energiebedarf: Nach #2 werden für die Herstellung von LDPE 2355,2 btu/lb (5,5 GJ/t) Energie benötigt. Davon entfallen 1280,9 btu/lb (3,0 GJ/t) auf elektrische Energie (wovon wiederum 998,9 btu/lb (2,3 GJ/t) an Kompressionsarbeit auf die Verdichtung von Ethylen entfallen) und 1074,3 btu/lb (2,5 GJ/t) auf den Energiegehalt des benötigten Dampfes. Im Vergleich dazu werden bei (Tellus 1992) wesentlich höhere Angaben gemacht. Die Prozeßenergie zur Herstellung von LDPE (7650 btu/lb bzw. 17,8 GJ/t) setzt sich dort aus der elektrischen Energie (6600 btu/lb bzw. 15,4 GJ/t) und dem Energiegehalt des benötigten Dampfes (1050 btu/lb bzw. 2,4 GJ/t) zusammen. Bei (PWMI 1993) wird der Polymerisationsprozeß von Ethylen zu LDPE nicht separat bilanziert. Aus der Differenz der Daten („Total fuels“) aus der LDPE-Herstellung (gesamte Prozeßkette) und der Ethylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in einer Größenordnung von 12 GJ abgeschätzt werden. Da in #2 die Energiewerte am besten nachvollzogen werden können, werden diese Angaben für GEMIS verwendet. Prozessbedingte Luftemissionen: Bei der LDPE-Herstellung können prinzipiell flüchtige organische Verbindungen (VOC) als Luftemissionen entweichen. In #3 werden die prozessbedingten VOC-Emissionen bei der LDPE-Herstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 - 10 kg VOC/t LDPE. Der größere Wert gibt die Emissionen von alten Anlagen wieder, während der kleinere Wert für Neuanlagen steht. Als Kenziffer für GEMIS wurde der Mittelwert von 5,8 kg VOC/t LDPE eingesetzt. Abwasser: Aus #1 kann entnommen werden, daß für die gesamte Prozeßkette der Herstellung von LDPE der BSB5- und der CSB-Wert gleich null sind. Somit ergeben sich auch für den hier betrachteten Teilschritt der Polymerisation Werte von jeweils 0. Für die Abwasserkennziffern BSB5 und CSB stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Als Werte nach Abwasserreinigungsmaßnahmen werden dort eine Vielzahl von Stoffen aufgeführt, von denen hier Chrom, 0,0302 lbs/ton LDPE (umgerechnet 0,015 kg/t), Benzol 0,0149 lbs/ton (umgerechnet 0,0075 kg/t) und Phenol, 0,00176 lbs/ton (umgerechnet 0,00088 kg/t) wiedergegeben wird. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,4% Produkt: Kunststoffe

Chem-Org\LDPE-DE-2020

LDPE-Polymerisation: In dieser Prozeßeinheit wird die Polymerisation von Ethylen zu LDPE (Low Density PolyEthylen) betrachtet. LDPE wird in einem Hochdruckverfahren hergestellt, wobei entweder ein Röhrenreaktor oder ein Autoklav als Reaktor eingesetzt wird. In einem ersten Schritt wird der Rohstoff Ethylen verdichtet. Anschließend findet in einem Röhrenreaktor oder einem Autoklaven unter hohem Druck und Temperatur mit Hilfe eines Radikalstarters (Peroxid) und Katalysators (Chrom- oder Titan-Basis) die Polymerisation von Ethylen statt. Danach wird das Reaktionsgemisch aufgetrennt. Nicht umgesetztes Ethylen wird nach erneuter Verdichtung wieder dem Reaktor zugeführt. Das Polymerisat (LDPE) wird in einem weiteren Trennungsschritt von noch verbliebenem Ethylen und entstandenen Ölen befreit. Es folgen die Extrusion, Granulierung, Trocknung, Lagerung oder Verpackung des Produkts. Prozess-Situierung: Bei den Polyethylen(PE)-Kunststoffen kann man drei verschiedene Polymere unterscheiden: HDPE (high density polyethylen), LLDPE (linear low density polyethylen) und LDPE (low density polyethylen). Die weltweiten Produktionskapazitäten der verschiedenen PE-Kunststoffe in 1000 t können für das Jahr 1990 der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1992). Nach (APME 1994) wurden in Westeuropa 1994 3,614 Mio. t HDPE, 1,267 Mio. t LLDPE und 4,856 Mio. t LDPE (Gesamtsumme an PE: 9,737 Mio. t) produziert. Tabelle 1 PE-Produktionskapazitäten in 1000 t für das Jahr 1990. Region LDPE LLDPE HDPE gesamt PE Nordamerika 3957 3746 3425 11128 Westeuropa 5363 1278 2693 9334 Osteuropa 2034 5 1168 3207 Japan 1388 467 1025 2880 Sonstige 2856 1258 3119 7233 Summe 15598 6754 11430 33782 Für die Bilanzierung der LDPE-Herstellung wurden die Literaturquellen (Brown 1985), (Tellus 1992), (BUWAL 1991), (PWMI 1993), (OEKO 1992c) und (Ullmann 1992) untersucht. Die Daten der Studien (Brown 1985) (Energiewerte) und (Tellus 1992) (Emissionswerte) beziehen sich auf die Herstellung von LDPE in den USA und repräsentieren den Stand der Technik Anfang der 80er Jahre. Die BUWAL-Studie (Massenbilanz, Abwasserwerte) betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Allokation: keine Genese der Daten: - Massenbilanz: Nach #1 werden für die LDPE-Herstellung pro Tonne Produkt 1016,14 kg Ethylen eingesetzt. Für die Polymerisationsreaktion werden weiterhin Hilfsstoffe und Zusätze (3,78 kg) benötigt (#1). Diese Stoffe sind in der BUWAL-Studie nicht weiter spezifiziert. Es wird angenommen, daß es sich dabei um Katalysatoren und Radikalstarter (Peroxide) handelt. Als Nebenausbeute (nicht näher spezifiziert) werden bei BUWAL 4,18 kg (mit einem Heizwert von 0,167 GJ/t LDPE) aufgeführt. Dabei handelt es sich vermutlich um Ethylen und Öle, die im letzten Trennungprozeß vom Produkt abgetrennt und als Energieträger verbrannt werden können. Als feste Abfälle fallen bei der Polymerisation 0,24 kg an. Energiebedarf: Nach #2 werden für die Herstellung von LDPE 2355,2 btu/lb (5,5 GJ/t) Energie benötigt. Davon entfallen 1280,9 btu/lb (3,0 GJ/t) auf elektrische Energie (wovon wiederum 998,9 btu/lb (2,3 GJ/t) an Kompressionsarbeit auf die Verdichtung von Ethylen entfallen) und 1074,3 btu/lb (2,5 GJ/t) auf den Energiegehalt des benötigten Dampfes. Im Vergleich dazu werden bei (Tellus 1992) wesentlich höhere Angaben gemacht. Die Prozeßenergie zur Herstellung von LDPE (7650 btu/lb bzw. 17,8 GJ/t) setzt sich dort aus der elektrischen Energie (6600 btu/lb bzw. 15,4 GJ/t) und dem Energiegehalt des benötigten Dampfes (1050 btu/lb bzw. 2,4 GJ/t) zusammen. Bei (PWMI 1993) wird der Polymerisationsprozeß von Ethylen zu LDPE nicht separat bilanziert. Aus der Differenz der Daten („Total fuels“) aus der LDPE-Herstellung (gesamte Prozeßkette) und der Ethylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in einer Größenordnung von 12 GJ abgeschätzt werden. Da in #2 die Energiewerte am besten nachvollzogen werden können, werden diese Angaben für GEMIS verwendet. Prozessbedingte Luftemissionen: Bei der LDPE-Herstellung können prinzipiell flüchtige organische Verbindungen (VOC) als Luftemissionen entweichen. In #3 werden die prozessbedingten VOC-Emissionen bei der LDPE-Herstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 - 10 kg VOC/t LDPE. Der größere Wert gibt die Emissionen von alten Anlagen wieder, während der kleinere Wert für Neuanlagen steht. Als Kenziffer für GEMIS wurde der Mittelwert von 5,8 kg VOC/t LDPE eingesetzt. Abwasser: Aus #1 kann entnommen werden, daß für die gesamte Prozeßkette der Herstellung von LDPE der BSB5- und der CSB-Wert gleich null sind. Somit ergeben sich auch für den hier betrachteten Teilschritt der Polymerisation Werte von jeweils 0. Für die Abwasserkennziffern BSB5 und CSB stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Als Werte nach Abwasserreinigungsmaßnahmen werden dort eine Vielzahl von Stoffen aufgeführt, von denen hier Chrom, 0,0302 lbs/ton LDPE (umgerechnet 0,015 kg/t), Benzol 0,0149 lbs/ton (umgerechnet 0,0075 kg/t) und Phenol, 0,00176 lbs/ton (umgerechnet 0,00088 kg/t) wiedergegeben wird. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,4% Produkt: Kunststoffe

Nordrhein-Westfalen tritt Klage der Städteregion Aachen gegen Atomkraftwerk Tihange bei

Am 12. April 2016 teilte das Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen mit, dass Nordrhein-Westfalen der Klage der Städteregion Aachen gegen das belgische Atomkraftwerk Tihange 2 beitreten wird. Das Landeskabinett hat Umweltminister Johannes Remmel beauftragt, die erforderlichen Schritte in die Wege zu leiten. Damit wehrt sich das Land juristisch gegen den Weiterbetrieb des Reaktors Tihange 2, bei dem massive Sicherheitsprobleme festgestellt wurde. An dem Druckbehälter des nur etwa 65 Kilometer Luftlinie von Aachen entfernten Reaktorblocks waren bei Untersuchungen in den Jahren 2012 und 2014 nicht näher erklärliche Risse festgestellt worden. Trotzdem entschloss sich die belgische Atomaufsicht im November 2015, das Wiederanfahren des Reaktors zu erlauben. Die nordrhein-westfälische Landesregierung tritt nunmehr der Anfang Februar vor dem belgischen Staatsgerichtshof eingereichten Klage der Städteregion Aachen gegen die Genehmigung zur Wiederinbetriebnahme des Reaktors bei.

Steine-Erden\Kalksandstein-DE-2000

Kalksandstein-Herstellung: Verarbeitung der Rohstoffe zu gebrauchsfertigen Kalksandsteinen. Dazu werden die in Silos vorgehaltenen Rohstoffe (vorwiegend Kalk und Sand) in einem Verhältnis Kalk:Sand 1:12 intensiv miteinander gemischt und in die Reaktionsbehälter geleitet. Im Reaktionsbehälter löscht der Branntkalk nach Wasserzugabe zu Kalkhydrat ab. Wenn nötig wird das Mischgut im Nachmischer auf Preßfeuchte gebracht. In den Pressen werden die Steinrohlinge geformt. Im Anschluß werden die Rohlinge unter Sattdamdfdruck ca. 4 bis 8 Stunden bei Temperaturen zwischen 160 und 220°C im Autoklaven gehärtet. Dabei wird die Kieselsäure auf der Oberfläche der Steine angelöst und bildet dann mit dem Kalkhydrat eine kristalline Bindemittelphase, die auf die Sandkörner aufwächst und sie fest miteinander verzahnt. Nach einer Abkühlung sind die Kalksandsteine gebrauchsfertig (vgl. #2). Die in dieser Bilanzierung verwendeten Daten spiegeln die Situation in der Bundesrepublik in den Jahren 1993 und 1994 wider. Der Datensatz ist nahezu vollständig und umfaßt alle in dieser Studie betrachteten Parameter. Er entstammt einer mit dem Umweltbundesamt (UBA) und dem Normenausschuß für Grundlagen im Umweltschutz (NAGUS) abgestimmten Ökobilanz des Bundesverbandes der Kalksandsteinindustrie e.V.. 1993 wurden in 151 Produktionsstätten 4,8 Mrd. Vol-NF Kalksandsteine und im Jahr 1994 in 158 Produktionsstätten 5,95 Mrd. NF Kalksandsteine hergestellt (Eden 1996). Dies entspricht 1993 einer Produktionsmasse von 14,41 Mio. t und 1994 von 17,87 Mio. t Kalksandstein . Dabei liegen der endgültigen Bilanzierung die Produktionsdaten von 74 von derzeit 162 existierenden Kalksandstein-Werken zugrunde. Aus den Daten der 74 Werke wurden, gewichtet nach der jeweiligen Produktionsmenge, in #1 Mittelwerte berechnet. Die Daten können als zuverlässig und statistisch abgesichert angesehen werden. Allerdings muß darauf hingewiesen werden, daß in Einzelfällen große Abweichungen von den verwendeten Mittelwerten auftreten können (s.u.). Genese der Kennziffern Massenbilanz: Hauptbestandteile des Kalksandsteins sind erdfeuchter Sand und Branntalk. Hinzu kommen eine Reihe von Zuschlagsstoffen wie Steinmehl (in GEMIS wurde hierfür Kalksteinmehl angesetzt). Der quantifizierte Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Kalksandsteins ist der folgenden Tabelle zu entnehmen. Tab.: Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Kalksandstein (#1) Rohstoffe Masse in kg/t Kalksandstein Quarzsand (erdfeucht) 948 Branntkalk 86 Zuschlagsstoffe (Steinmehl) 33 Summe 1067 Die in dieser Studie verwendeten Daten stimmen in der Größenordnung gut mit denen in #3 überein. Da deren Quelle jedoch nicht vollständig nachvollziehbar ist, werden sie hier nicht weiter verwendet. Energiebedarf: Der Gesamtenergiebedarf der Herstellung des Kalksandsteins resultiert aus dem Strombedarf für die Förderbänder, die Mischaggregate, das Pressen und die Stapelanlage und dem thermischen Energiebedarf zur Dampferzeugung für die Härtung der Rohlinge, der den größten Teil des Energiebedarfs ausmacht. Innerhalb des Kalksandsteinwerkes besteht ein Strombedarf von ca. 35 MJ/t Kalksandstein. Der thermische Energiebedarf zum Härten beträgt ca. 370 MJ/t Produkt. Dieser wird durch Heizöl EL, Erdgas und Heizöl S gedeckt. Die Anteile der einzelnen Energieträger haben sich in den letzten Jahren stark verschoben. Dies wird in der folgenden Tabelle dargestellt. In dieser Studie werden die Anteile für das Jahr 1994 festgeschrieben. Tab.: Prozentualer Anteil des Einsatzes verschiedener Energieträger zur Dampferzeugung bei der Kalksandsteinherstellung 1992-94 (#2). Einsatz in % 1992 1993 1994 Heizöl S 16 11 4 Heizöl EL 54 54 56 Erdgas 30 35 40 Nach dem vorgestellten Aufteilungsschlüssel für 1994 ergibt sich folgender Primärenergiebedarf in den Kalkwerken zur Herstellung einer Tonne Kalksandstein: Tab.: Vergleich des durchschnittlichen Energieeinsatzes bei der Herstellung einer Tonne Kalksandsteins aufgeschlüsselt nach dem Einsatz fossiler Energieträger nach der Statistik und der Erhebung des Kalksandstein-Verbandes (#2). Energieträger Energieeinsatz nach Statistik in MJ/t KS Energieeinsatz nach Erhebung in MJ/t KS Heizöl EL(incl. Diesel) 206,64(16) 186(16) Erdgas 147,6 122 Heizöl S 14,76 61 Strom 35 35 Summe 404 404 Wie aus der Tabelle hervorgeht, spiegelt die Erhebung des Kalksandstein-Verbandes nicht den letzten Stand bei der Verschiebung der Nutzung emissionsärmerer Energieträger wider. Die unterschiedlichen Ergebnisse verdeutlichen aber auch, daß die Entwicklung bei der Verschiebung der Nutzung der Energieträger noch nicht abgeschlossen ist. Aus diesem Grunde werden im Sinne einer Fortschreibung in dieser Studie die Werte basierend auf der Aufteilung von 1994 für weitere Berechnungen verwendet. Bei den einzelnen Kalksandstein-Werken kann es hinsichtlich des Energiebedarfs zu nennenswerten Abweichungen vom Durchschnitt kommen. Die zehn am wenigsten Energie verbrauchenden Werke der Untersuchung kommen mit weniger als 65 % des durchschnittlichen Energiebedarfs aus. Dabei handelt es sich meist um neuere Werke, die über eine größere Härtekesselkapazität verfügen und Dampfsteuerungs- und Wärmetauschanlagen betreiben. Weiterhin nutzen sie die Wärmeenergie des anfallenden Härtekondensats (#1). Demgegenüber verbrauchen die zehn am energieintensivsten arbeitenden Werke gemittelt 134 % des durchschnittlichen Energieverbrauchs. Der Spitzenwert liegt bei 972 MJ/t Kalksandstein (#1). Prozeßbedingte Luftemissionen: Prozeßbedingte Luftemissionen neben den Emissionen der Energieerzeugung zur Dampferzeugung treten in dem bilanzierten Rahmen nicht auf. Heizöl EL, Heizöl S und Gas werden in industriellen Kesseln verbrannt. Diesel wird in Motoren verbrannt. Für den Strombedarf wird der Strom-Mix für ein lokales Niederspannungsnetz verrechnet (#1). Wasserinanspruchnahme: Wasser wird zur Aufbereitung der Rohstoffe sowohl im Mischer als auch - je nach Bedarf - im Nachmischer zugegeben. Durchschnittlich werden 0,225 m³/t Kalksandstein benötigt. Das Wasser wird zu zwei Dritteln aus eigenen Brunnen gefördert, zu 10% aus Oberflächengewässern und zu 25% aus der öffentlichen Trinkwasserversorgung (#1). Abwasserinhaltsstoffe: Von den durchschnittlichen 0,083 m³ Abwasser pro t Kalksandstein werden nach #1 mehr als die Hälfte versickert. Ca. ein Drittel wird indirekt über das kommunale Kanalnetz eingeleitet, während weitere 10 % direkt in Oberflächengewässer eingeleitet werden. Das Wasser ist nach #1 durchschnittlich mit einem CSB von 9,4 g/t Kalksandstein belastet. Für den BSB5 wird die Hälfte des CSB - also 4,7 g/t - angesetzt. Mit einer AOX-Belastung ist nicht zu rechnen. Ebenso wird die zusätzliche Stickstoff- und Phosphorbelastung gleich null gesetzt. Reststoffe: Die folgende Tabelle zeigt die pro Tonne Kalksandstein anfallenden Abfälle: Tab.: Abfälle bezogen auf eine Tonne produzierten Kalksandstein (#1). Abfallart Menge in kg/t KS Ölfilter 0,002 feste Betriebsmittel (verunreinigt) 0,008 Altöle 0,059 Ölabscheiderinhalte 0,0003 Ölbinder 0,037 Gewerblicher Restmüll 0,156 Summe 0,2623 Pro Tonne Kalksandstein fallen also ca. 0,26 kg Reststoffe an. Verschleiß der Preß- und Formwerkzeuge sowie Verpackungsmaterialien wurden nicht mitbilanziert. Produktionsabfälle in Form von Kalksandstein können im vollen Umfang in den Prozeß zurückgeführt werden. Kalksandsteine können nach dem Gebrauch auch einem stofflichen Recycling zugeführt werden. Der recycelte Kalksandstein hat eine etwas gröbere Struktur, so daß man streng genommen von einem Downcycling sprechen müßte. Der Einsatzzweck ist jedoch nur als Sichtmauerstein eingeschränkt (#3). Der Recyclingpfad wird aufgrund mangelnder Daten in dieser Studie nicht berücksichtigt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 105% Produkt: Baustoffe

Aufbereitung\Tonerde-RU-2000

GUS - Tonerdeherstellung: Die Aufarbeitung des aluminiumhaltigen Bauxiterzes (vgl. Bauxit-Mixer für Tonerdeherstellung GUS) erfolgt nach dem Bayer-Verfahren durch Zermahlen und Aufschluß in 50 % Natronlauge. Die Mischung wird in Druckbehältern bei Temperaturen bis zu 270 oC mehrere Stunden verrührt. Die unlöslichen Bestandteile des Bauxits fallen als sogenannter Rotschlamm an. Die entstehende Natriumaluminatlauge wird verdünnt und abgekühlt. Das sich in Rührbehältern abscheidende Aluminiumhydroxid (Al(OH)3 wird auf Vakuumfiltern abgetrennt und mit Wasser gewaschen. Anschließend erfolgt die Kalzination (= Wasserentzug) in Drehrohr- oder Wirbelschichtöfen bei 1.000 bis 1.300 oC zu reiner Tonerde (Al2O3) (WIKUE 1995b). Allokationen: keine Genese der Daten: Die Daten für den Einsatz von Brennstoffen für thermische Energie werden generiert, da in der Datenquelle (Metall 1995) keine spezifischen Werte für die GUS genannt werden. Für GEMIS werden 11000 MJ/t Tonerde Gesamtbrennstoff (Achtung. dieser Wert liegt zwischen dem Bedarf in Australien (10920 MJ) und Lateinamerika (11850 MJ)) als GUS-Daten angesetzt, die wie folgt aufgeteilt werden: Steinkohle 7330 MJ/t Tonerde Dieselöl 10 MJ/t Tonerde Erdgas 3660 MJ/t Tonerde Alle anderen Prozessdaten (pro Tonne Tonerde) wie elektr. Strom (839 MJ), Einsatz von Bauxit (2520 kg), Einsatz von 50 % Natronlauge (226 kg) Einsatz von Branntkalk (46 kg) sowie die Daten zu Prozeßwasser (5000 kg), BSB5 (0,4 kg) und CSB (10 kg) werden von #2 entnommen. Als Rückstand fällt nach #1 Rotschlamm mit durchschnittlich 600 kg TS/t Tonerde an. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 39,7% Produkt: Rohstoffe

Aufbereitung\Tonerde-RU-2005

GUS - Tonerdeherstellung: Die Aufarbeitung des aluminiumhaltigen Bauxiterzes (vgl. Bauxit-Mixer für Tonerdeherstellung GUS) erfolgt nach dem Bayer-Verfahren durch Zermahlen und Aufschluß in 50 % Natronlauge. Die Mischung wird in Druckbehältern bei Temperaturen bis zu 270 oC mehrere Stunden verrührt. Die unlöslichen Bestandteile des Bauxits fallen als sogenannter Rotschlamm an. Die entstehende Natriumaluminatlauge wird verdünnt und abgekühlt. Das sich in Rührbehältern abscheidende Aluminiumhydroxid (Al(OH)3 wird auf Vakuumfiltern abgetrennt und mit Wasser gewaschen. Anschließend erfolgt die Kalzination (= Wasserentzug) in Drehrohr- oder Wirbelschichtöfen bei 1.000 bis 1.300 oC zu reiner Tonerde (Al2O3) (WIKUE 1995b). Allokationen: keine Genese der Daten: Die Daten für den Einsatz von Brennstoffen für thermische Energie werden generiert, da in der Datenquelle (Metall 1995) keine spezifischen Werte für die GUS genannt werden. Für GEMIS werden 11000 MJ/t Tonerde Gesamtbrennstoff (Achtung. dieser Wert liegt zwischen dem Bedarf in Australien (10920 MJ) und Lateinamerika (11850 MJ)) als GUS-Daten angesetzt, die wie folgt aufgeteilt werden: Steinkohle 7330 MJ/t Tonerde Dieselöl 10 MJ/t Tonerde Erdgas 3660 MJ/t Tonerde Alle anderen Prozessdaten (pro Tonne Tonerde) wie elektr. Strom (839 MJ), Einsatz von Bauxit (2520 kg), Einsatz von 50 % Natronlauge (226 kg) Einsatz von Branntkalk (46 kg) sowie die Daten zu Prozeßwasser (5000 kg), BSB5 (0,4 kg) und CSB (10 kg) werden von #2 entnommen. Als Rückstand fällt nach #1 Rotschlamm mit durchschnittlich 600 kg TS/t Tonerde an. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 39,7% Produkt: Rohstoffe

Aufbereitung\Tonerde-RU-2020

Tonerdeherstellung in Russland: Die Aufarbeitung des aluminiumhaltigen Bauxiterzes erfolgt nach dem Bayer-Verfahren durch Zermahlen und Aufschluß in 50 % Natronlauge. Die Mischung wird in Druckbehältern bei Temperaturen bis zu 270 °C mehrere Stunden verrührt. Die unlöslichen Bestandteile des Bauxits fallen als sogenannter Rotschlamm an. Die entstehende Natriumaluminatlauge wird verdünnt und abgekühlt. Das sich in Rührbehältern abscheidende Aluminiumhydroxid (Al(OH)3 wird auf Vakuumfiltern abgetrennt und mit Wasser gewaschen. Anschließend erfolgt die Kalzination (= Wasserentzug) in Drehrohr- oder Wirbelschichtöfen bei 1.000 bis 1.300 °C zu reiner Tonerde (Al2O3). Allokationen: keine Genese der Daten: Die Daten für den Einsatz von Brennstoffen für thermische Energie werden geschätzt, da in #1 keine spezifischen Werte für Russland genannt werden. Für GEMIS werden 11000 MJ/t Tonerde Gesamtbrennstoff (Wert liegt zwischen Bedarf in Australien (10920 MJ) und Lateinamerika (11850 MJ)) für RU angesetzt, die wie folgt aufgeteilt werden: Steinkohle 7330 MJ/t Tonerde Dieselöl 10 MJ/t Tonerde Erdgas 3660 MJ/t Tonerde Alle anderen Prozessdaten (pro Tonne Tonerde) wie elektr. Strom (839 MJ), Einsatz von Bauxit (2520 kg), Einsatz von 50 % Natronlauge (226 kg) Einsatz von Branntkalk (46 kg) sowie die Daten zu Prozesswasser (5000 kg), BSB5 (0,4 kg) und CSB (10 kg) werden von #2 entnommen. Als Rückstand fällt nach #1 Rotschlamm mit durchschnittlich 600 kg TS/t Tonerde an. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 39,7% Produkt: Rohstoffe

1 2 3 4 544 45 46