API src

Found 293 results.

Related terms

Flach lagernde Salze in Deutschland

Welche Salzformationen eignen sich zur Speicherung von Wasserstoff oder Druckluft? Im Forschungsprojekt InSpEE-DS entwickelten Wissenschaftler Anforderungen und Kriterien mit denen sich mögliche Standorte auch dann bewerten lassen, wenn sich deren Erkundung noch in einem frühen Stadium befindet und die Kenntnisse zum Aufbau der Salinare gering sind. Wissenschaftler der DEEP.KBB GmbH, Hannover erarbeiten gemeinsam mit ihren Projektpartnern der Bundesanstalt für Geowissenschaften und Rohstoffe und der Leibniz Universität Hannover, Institut für Geotechnik Hannover, Planungsgrundlagen zur Standortauswahl und zur Errichtung von Speicherkavernen in flach lagernden Salzen und Mehrfach- bzw. Doppelsalinaren. Solche Kavernen könnten erneuerbare Energie in Form von Wasserstoff oder Druckluft speichern. Während sich das Vorgängerprojekt InSpEE auf Salzformationen großer Mächtigkeit in Norddeutschland beschränkte, wurden jetzt unterschiedlich alte Salinar-Horizonte in ganz Deutschland untersucht. Zur Potenzialabschätzung wurden Tiefenlinienkarten des Top und der Basis sowie Mächtigkeitskarten der jeweils betrachteten stratigraphischen Einheit und Referenzprofile erarbeitet. Informationen zum Druckluft- und Wasserstoff-Speicherpotential in den einzelnen Bundesländern sind an die identifizierten Flächen mit nutzbarem Potential gekoppelt. Die Daten können über den Webdienst „Informationssystem flach lagernde Salze“ genutzt werden. Der Darstellungsmaßstab hat eine untere Grenze von 1 : 300 000. Die Geodaten sind Produkte eines BMWi-geförderten Forschungsprojektes „InSpEE-DS“ (Laufzeit 2015-2019). Das Akronym steht für „Informationssystem Salz: Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (Wasserstoff und Druckluft) – Doppelsalinare und flach lagernde Salzschichten“.

Potentialgebiete zur Speicherung von Druckluft in Schleswig-Holstein

Die Karte zeigt Potentialgebiete zur Anlage von Druckluftspeichern in Salzskavernen im Schleswig-Holsteinischen Festlandsbereich und die Lage der Salzstrukturen im Untergrund. Zur Abgrenzung von untersuchungswürdigen Horizonten zur Druckluftspeicherung in Salzkavernen diente im Wesentlichen die Tiefenlage des Salzstockdaches (Top der Zechstein- und Rotliegend-Ablagerungen) bis 800 m unter NHN als maximal für die Aussolung von Kavernen vertretbare Tiefe (derzeitiger Kenntnisstand).

INSPIRE: Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers (InSpEE-DS)

Which salt formations are suitable for storing hydrogen or compressed air? In the InSpEE-DS research project, scientists developed requirements and criteria for the assessment of suitable sites even if their exploration is still at an early stage and there is little knowledge of the salinaries’ structures. Scientists at DEEP.KBB GmbH in Hanover, worked together with their project partners at BGR and the Leibniz University Hanover, Institute for Geotechnics, to develop the planning basis for the site selection and for the construction of storage caverns in flat layered salt and multiple or double saliniferous formations. Such caverns could store renewable energy in the form of hydrogen or compressed air. While the previous project InSpEE was limited to salt formations of great thickness in Northern Germany, salt horizons of different ages have now been examined all over Germany. To estimate the potential, depth contour maps of the top and the base as well as thickness maps of the respective stratigraphic units were developed. Due to the present INSPIRE geological data model, it was necessary, in contrast to the original dataset, to classify the boundary lines of the potential storage areas in the Zechstein base and thickness layers, whereby the classification of these lines was taken from the top Zechstein layer. Consequently, the boundary element Depth criterion 2000 m (Teufe-Kriterium 2000 m) corresponds on each level to the 2000 m depth of Top Zechstein. However, the boundary of national borders and the boundary of the data basis could not be implemented in the data model and are therefore not included in the dataset. Information on compressed air and hydrogen storage potential is given for the identified areas and for the individual federal states. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE-DS (INSPIRE) is stored in 18 INSPIRE-compliant GML files: InSpEE_DS_GeologicUnit_Isopachs_Zechstein.gml contains the Zechstein isopachs. InSpEE_DS_GeologicUnit_Isobaths_Top_Zechstein.gml and InSpEE_DS_GeologicUnit_Isobaths_Basis_Zechstein.gml contain the isobaths of the top and basis of Zechstein. The three files InSpEE_DS_GeologicStructure_ThicknessMap_Zechstein, InSpEE_DS_GeologicStructure_Top_Zechstein and InSpEE_DS_GeologicStructure_Basis_Zechstein represent the faults of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Boundary_element_Potential_areas_Zechstein.gml contains the boundary elments of the potential areas at the top and the basis of Zechstein as well as of the Zechstein body. The three files InSpEE_DS_GeologicUnit_Uncertainty_areas_ThicknessMap_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Top_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Basis_Zechstein.gml represent the uncertainty areas of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Potentially_usable_storage_areas_Storage_potential_in_the_federal_states.gml comprises the areas with storage potential for renewable energy in the form of hydrogen and compressed air. The six files InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Malm.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Keuper.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Muschelkalk.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Roet.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Zechstein.gml and InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Rotliegend.gml represent the salt distribution of the respective stratigraphic unit. InSpEE_DS_GeologicUnit_General_salt_distribution.gml represents the general salt distribution in Germany. This geographic information is product of a BMWi-funded research project "InSpEE-DS" running from the year 2015 to 2019. The acronym stands for "Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers".

Salzstrukturen in Norddeutschland

Die Anwendung „Informationssystem Salzstrukturen“ liefert Informationen zur räumlichen Verteilung von Salzstrukturen (Salzstöcke und Salzkissen) in Norddeutschland. Zusammen mit allgemeinen Struktur beschreibenden Angaben, wie beispielsweise Teufenlage und sekundärer Mächtigkeit, sowie Internbautyp, Nutzungsarten oder Erkundungsgrad lassen sich Abfragen durchführen und Salzstrukturumrisse in vier Tiefenschnitten bis zu einer maximalen Tiefe von 2000 m u. NN anzeigen. Zu jeder Salzstruktur ist ein Datenblatt mit Informationen und weiterführender Literatur hinterlegt. Der Darstellungsmaßstab hat eine untere Grenze von 1:300.000, da der Bearbeitungsmaßstab des Systems nicht für Einzelstrukturuntersuchungen geeignet ist. Die Webanwendung ist das Produkt eines BMWi-geförderten Forschungsprojektes „InSpEE“(Laufzeit 2012-2015). Das Akronym steht für „Informationssystem Salzstrukturen: Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (Wasserstoff und Druckluft).

Förderschwerpunkt 1: Energieeffizienz

Zur Steigerung der Energieeffizienz im Land Berlin werden in diesem Förderschwerpunkt Vorhaben gefördert, die durch energieeffiziente, technologieoffene Lösungen zur Senkung der Emissionen klimaschädlicher Gase beitragen. Hier geht es zu den Aufrufen Senkung der Emissionen klimaschädlicher Gase durch energieeffiziente, technologieoffene Lösungen in öffentlich zugänglichen Gebäuden und Unternehmen in folgenden Bereichen: Gebäudehülle/-technik, Gebäudeleittechnik; Umstellung von Heizungsanlagen mit fossilen Brennstoffen auf Fernwärme/ Nutzung regenerativer Energien; Nutzung von Abwasser- und Abluftwärme, z. B. Lüftungsanlagen mit Wärmerückgewinnung; Wasserstofftechnologie/ Brennstoffzellen, wenn der Wasserstoff mit Energie aus erneuerbaren Quellen erzeugt wird; Nutzung von Überschussstrom aus erneuerbaren Energien für Wärme; Kälte-/ Klimatechnologie; Kraft-Wärme-Kopplung; mit verbesserter Energieeffizienz einhergehende Verbesserung von Stoffstrom-/ Ressourceneffizienz; energieeffiziente Umgestaltung von Produktionsanlagen/ Produktionsprozesse (z. B. Kühl- und Wärmekonzepte in Bäckereien, Feinkost, u. a.); hocheffiziente und am Markt verfügbare Querschnittstechnologien (wie Antriebe, Motoren, Druckluft, Beleuchtung, Lüftung, IT). Im Rahmen des Förderschwerpunktes können auch integrierte Maßnahmen gefördert werden, die neben den o. g. Effizienzmaßnahmen auch folgende Punkte beinhalten können: Maßnahmen zur klimaneutralen Erzeugung, effizienten Nutzung und Einsparung von Energie; Unterstützung der Wärmeerzeugung/ Heizung (z. B. Solarthermie, Biogas, Geothermie) oder Stromerzeugung (z. B. Photovoltaik, Windenergie) aus erneuerbaren Energien und deren Zwischenspeicherung; Klimaaktive Vegetationsflächen an und um Gebäuden (z. B. naturbasierte Lösungen, Dach- und Fassadenbegrünung zur Adiabaten Kühlung; Regenwassernutzung/-versickerung; Sonnenschutz); Digitalisierung; intelligente Steuerungssysteme für Energieverbraucher im Gebäude; begleitende Gutachten und Studien. Unternehmen inkl. Großunternehmen Hauptverwaltungen, sowie deren nachgeordnete Behörden und die Bezirksverwaltungen, Körperschaften, Anstalten und Stiftungen des öffentlichen Rechts öffentliche Unternehmen gemeinnützige, mildtätige und kirchliche Einrichtungen Hier finden Sie eine Übersicht abgelaufener Förderaufrufe. Informationen zu den Förderbedingungen Informationen zur Antragstellung Fragen und Antworten Weitere Informationen Zum BENE 2-Förderportal

Preis der Umweltallianz Sachsen-​Anhalt 2024 Innovative Umweltideen aus Sachsen-Anhalt Jury 2024 Preiskategorie „Produkte und Technologien“ Preiskategorie „Konzepte und Projekte“ Preiskategorie "Sonderpreis der Umweltallianz" Galerie zum Preis der Umweltallianz 2024

Die Verleihung des 9. Preises der Umweltallianz stand in diesem Jahr unter dem Motto „25 Jahre Umweltallianz – Innovative Umweltideen aus Sachsen- Anhalt“. Er wurde in den Kategorien „Produkte und Technologien“ und „Konzepte und Projekte“ vergeben. Außerdem wurde erneut der „Sonderpreis der Umweltallianz“ verliehen, der ausschließlich Mitgliedern vorbehalten ist. Insgesamt hat die Umweltallianz Sachsen-Anhalt Preisgelder in Höhe von 24.000 Euro ausgelobt. Eine fünfköpfige Jury hatte in einem ersten Bewertungsschritt aus allen Bewerbern zunächst neun Finalisten ausgewählt. Diese konnten sich im September persönlich der Jury präsentieren und erhielten ein professionell produziertes Video für die eigene Öffentlichkeitsarbeit. Die Preisverleihung fand am 13.11.2024 im Palais am Fürstenwall der Staatskanzlei Sachsen-Anhalt statt. Vorsitz: Prof. Dr.-Ing. Daniela Thrän Leiterin Department Bioenergie am Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, in Kooperation mit dem Deutschen Biomasseforschungszentrum gemeinnützige GmbH – DBFZ Mitglieder: Gesa Kupferschmidt Abteilungsleiterin Technischer Umweltschutz, Bodenschutz, Klimaschutz am Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Klaus Olbricht Präsident der Industrie- und Handelskammer Magdeburg Fabian Hoppe Geschäftsführer Kommunikation, Bildung und Nachhaltigkeit, Pressesprecher beim Verband der Chemischen Industrie e.V., Landesverband Nordost (VCI Nordost) Robert Gruhne Reporter Landesredaktion Magdeburger Volksstimme bei Volksstimme Investigation GmbH Preisträger: Inflotec GmbH aus Magdeburg Preisgeld: 8000 Euro Würdigung für: Energieeffiziente und ressourcenschonende Wasseraufbereitung Die Inflotec GmbH hat eine innovative, ressourcenschonende und energieeffiziente Technologie entwickelt, mit der sich autark überall jegliches Wasser zu Trink- oder Brauchwasser aufbereiten lässt (Kreislaufsystem). Im Vergleich zu herkömmlichen Umkehrosmose-Aufbereitungssystemen wird nur ein Fünftel an Energie benötigt. Durch die Rückspül- und Selbstreinigungsfunktion der Anlagen müssen zudem keine Filter gewechselt werden. Die modularen, autonomen und mobilen Systeme können praktisch überall eingesetzt werden. Die Innovation hierbei ist die Entwicklung eines einzigartigen neuen Membranprozesses zur ressourceneffizienten Wasseraufbereitung. Eine herkömmliche Keramikmembran (Ultrafiltration) wird durch Post-Modifikation mit Polyelektrolyten zu einer Nanofiltrationsmembran mit einzigartigen Trenn- und Materialeigenschaften. Das System ermöglicht in einem Aufbereitungsschritt die sichere Reinigung selbst von schwer behandelbaren Wasserressourcen (z. B. kontaminierten Abwässern). Neben Partikeln (Mikroplastik, Medikamentenrückstände, Schwermetalle, Uran, Arsen, PFAS etc.), Bakterien und Viren können auch gelöste Wasserinhaltsstoffe (Organik, Salze) sowie Öle und Fette zurückgehalten werden. Finalist: IPT-Pergande Gesellschaft für innovative Particle Technology mbH Würdigung für: Reduzierung des CO₂-Fußabdrucks in der Wirbelschichtgranulation durch Nutzung von Abwärme IPT-Pergande betreibt am Standort Weißandt-Gölzau mehrere Produktionsanlagen zur Herstellung von Produkten für die chemische Industrie. Eine Schlüsseltechnologie ist hierbei die Wirbelschicht-Granulation. Bei diesem Prozess wird eine wässrige Suspension mit einem erwärmten Prozessgas getrocknet und dabei granuliert. Die signifikante Reduzierung des CO₂-Fußabdrucks des Gesamtverfahrens wurde durch die Nutzung der Abwärme von Kompressoren für die Erzeugung von Druckluft erreicht, indem das Prozessgas vorgewärmt wird, wodurch sich eine Reduzierung des Heizdampfes ergibt. Der reduzierte Dampfbedarf führt wiederum zu einer Verringerung des Erdgasverbrauches. Die resultierende CO 2 -Einsparung pro Jahr liegt bei 400 bis 500 t. Finalist: POLICYCLE Deutschland GmbH Würdigung für: Energieeffizientes Recycling für echte Härtefälle | Kleberbeschichtete Altfolien werden erstmals wieder zu Folie Kleberbeschichtete Schutzfolien, die fast in jeder Industrie Anwendung finden, sind heute nicht recyclingfähig. Auf Grund ihrer Beschichtung werden sie bis dato thermisch verwertet. Beim Recycling führen sie zu einem Verblocken und Verkleben der Anlagen oder der späteren Folie auf Grund von Klebermigration. Gleichzeitig ist die Folienindustrie dazu angehalten, die Verfügbarkeit von Rezyklaten am Markt zu steigern und Kreisläufe zu etablieren. Daher war das Ziel der Entwicklung seitens der POLICYCLE Deutschland GmbH bisher nicht recyclebare Folien erstmals zu recyclen, in eine neue Folie zurückzuführen und dabei das energieintensive Recycling wirtschaftlicher und automatisierter zu gestalten. Mit dem so entstandenen Fluff-to-Film-Prozess werden durch Auslassen eines gesamten Prozessschritts gegenüber dem klassischen Recycling bis zu 40 % Energie und die damit verbundenen CO 2 -Emissionen in der Produktion eingespart. Gleichzeitig ist das entstehende Folienendprodukt „Müllsack“ bis zu dreimal dünner, aber ebenso belastbar wie ein vergleichbarer Standardmüllsack. Der mit dem „Blauen Engel“ zertifizierte Müllsack besteht aus mehr als 95 % post-consumer-Rezyklat, 70 % davon machen die kleberbeschichteten Altfolien aus. Durch den hohen Polyethylen-Anteil wäre der Müllsack, je nach vorliegendem Entsorgungssystem, selbst wieder recyclingfähig. Preisträger: GMBU e.V. Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien, Halle Preisgeld: 8000 Euro Würdigung für: Schäumbare Verbundmaterialien auf Pflanzenbasis Die GMBU e. V. bietet innovative Rezepturen für pflanzenbasierte und rezyklierbare Komposite mit natürlichen Füllstoffen an, die sich für den 3D-Druck, den Spritzguss und hydraulisches Pressen eignen. Als Füllstoffe dienen natürliche Reststoffe, wie Hanf- und Hopfenschäben, Kakao- und Kaffeeschalen sowie Kokos- und Papierfasern. Anbauflächen zur Kultivierung werden nicht benötigt, da die Reststoffe prozessgebunden anfallen. Durch die Zugabe der Füllstoffe können 10 % Basispolymer eingespart werden. Dadurch wird eine Reduktion der CO 2 -Emissionen von 60 % im Vergleich zum Einsatz erdölbasierter Kunststoffe erreicht. Die Filamente und Granulate lassen sich wie herkömmliche Compounds verarbeiten und bieten eine holzähnliche Oberfläche. Durch Einarbeitung von zusätzlichem Treibmittel entsteht ein schäumbares Material für den 3D-Druck, welches beispielsweise als Sandwichmaterial im Leichtbau eingesetzt werden kann. Die Expansion des Treibmittels erfolgt während des Druckprozesses und wird über die Düsentemperatur gesteuert. Dadurch kann eine Gewichtsreduzierung von circa 50 % erzielt werden. Finalist: Agrar Burgscheidungen eG, Laucha an der Unstrut Würdigung für: Wasserrecycling für eine integrierte Symbiose der Algenkultivierung im Weinbau: Wi-Sa-We Die Agrar Burgscheidungen eG hat in Kooperation mit der GMBU e. V. – Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien ein Verfahren zur symbiotischen Aufzucht von Mikroalgen für den Weinbau entwickelt. Durch die Bewässerung von Wein mit aufbereitetem Kulturmedium der Mikroalgen wird Wasser recycelt, die Biodiversität gestärkt, das Pflanzenwachstum verbessert und ein resilientes Mikrobiom geschaffen. Der Nährstoffeintrag aus dem Medium spart Kosten für Düngemittel, was die ökonomische Ressourceneffizienz unterstreicht. Das Verfahren ist vielfältig übertragbar und weist enormes ökologisches Potenzial mit ökonomischen Erfolgsaussichten auf. Finalist: Synthos Schkopau GmbH, Schkopau Würdigung für: Synthesekautschuk für verbesserten Reifenabrieb – ein Beitrag zur Mikroplastikreduktion Die Synthos Schkopau GmbH baut als größter Anbieter von Synthesekautschuk in Europa die Palette nachhaltiger Produkte kontinuierlich aus. In den letzten 15 Jahren wurden am Standort Schkopau erfolgreich SSBR-Typen (Solution Styrene Butadiene Rubber) für energieeffiziente Reifen entwickelt und vermarktet. Dem Synthos-Forscherteam ist es gelungen, zusätzlich den Reifenabrieb zu verringern und damit auch die Mikroplastikbildung aus Reifen zu minimieren. In Hochleistungsreifen verwendete Synthesekautschuke müssen umfangreiche Nachhaltigkeitskriterien erfüllen. Für den ökologischen Fußabdruck von Reifen sind umweltverträgliche Zusatzstoffe sowie der Einfluss neuer Synthesekautschuke, z.B. SSBR, relevant. Leistungseigenschaften des Reifens, die mit dem Fahrverhalten und der Sicherheit des Fahrzeugs verbunden sind, müssen mit einem geringen Rollwiderstand und einem niedrigen Abrieb korreliert werden. Während ein hoher Rollwiderstand den Energieverbrauch der Fahrzeuge erhöht, verursacht ein hoher Abrieb die verstärkte Bildung von Mikroplastik. Die neue Technologie verbessert den Abrieb um ca. 8 %, ohne die Leistungseigenschaften negativ zu beeinträchtigen. Preisträger: MOL Katalysatortechnik GmbH, Merseburg Preisgeld: 8000 Euro Würdigung für: Kühlwasserbehandlung in der Kernfusion In technischen Kühlkreisläufen wird das Kühlwasser mittels Kreiselpumpen in eine turbulente Strömung versetzt. Übersteigt die in das Wasser eingetragene Pumpenergie die Stabilisierungsenergie des Wassers, dann bilden sich Wasserdampfbläschen. Bläschen mit einem Durchmesser um 1 Mikrometer sorgen selektiv für saubere Oberflächen auch auf Schweißnähten. Größere Bläschen begünstigen Bakterien und Korrosion bis hin zur Kavitation. Durch Installation spezieller, von der MOL Katalysatortechnik GmbH entwickelter Mineral-Metall-Folien auf der Saugseite der Kreiselpumpen im turbulenten Strömungsbereich wird die Bildungsgeschwindigkeit der Wasserdampfbläschen beschleunigt, so dass anstelle weniger großer gefährlicher Wasserdampfbläschen viele sehr kleine nützliche gebildet werden. Dadurch ist es möglich, Kühlwasser mit hoher technischer und hygienischer Sicherheit und ohne Einsatz von Chemikalien und Bioziden dauerhaft sicher und wirtschaftlich vorteilhaft zu behandeln. Finalist: LEUNA-Harze GmbH, Leuna Würdigung für: Großtechnische Synthese von biobasierten Epoxidharzen aus pflanzlichen Altölen Die bisher zur Verfügung stehende Rohstoffbasis für Epoxidharze ist Erdöl. Im Zuge der Rückwärtsintegration der Produktion der LEUNA-Harze GmbH wurde eine eigene Synthesevariante für den zur Herstellung von Epoxiden notwendigen Rohstoff Epichlorhydrin entwickelt und in einer großtechnischen Anlage mit einer Kapazität von 15.000 t/a realisiert. Dabei wird nicht Propylen, sondern Glycerin, ein Nebenprodukt der Biodieselherstellung, als Rohstoff eingesetzt. Als Startpunkt der Wertschöpfungskette dienen gebrauchte Speisefette und -öle, die über Glycerin und Epichlorhydrin in einem Upcyclingprozess zu biobasierten Epoxidharzen umgesetzt werden. Eine neue Produktlinie mit reduziertem CO 2 -Fußabdruck und garantiertem biobasierten Anteil auf Basis von wiederverwerteten, pflanzlichen Altölen konnte vom Unternehmen erfolgreich auf dem Markt eingeführt werden. Dies ermöglicht einen biobasierten Kohlenstoffanteil von bis zu 42 % bei gleichzeitiger, signifikanter Reduktion des CO 2 -Fußabdrucks der so hergestellten Produkte. Diese finden Anwendung in der Wind-, Bau- und Automobilindustrie. Finalist: SKW Stickstoffwerke Piesteritz GmbH, Lutherstadt Wittenberg Würdigung für: ATMOWELL® – Ammoniakreduzierung im Tierstall Ammoniak (NH 3 ) kann bei übermäßiger Freisetzung negative Effekte auf die Umwelt und die Gesundheit von Mensch und Tier haben. Deutschland hat sich verpflichtet die nationalen NH 3 -Emissionen bis zum Jahr 2030 um 29 % zu senken (im Vergleich zu 2005). Mit ca. einem Drittel stammt ein Großteil der nationalen NH 3 -Emissionen aus Tierställen. Der Einsatz eines Ureaseinhibitors in Rinder- und Schweineställen ist ein innovativer Ansatz, um diese Emissionen deutlich zu mindern. Damit kann u. a. die Versauerung und Eutrophierung von Böden und Ökosystemen, die Verschiebung des Artenspektrums und Bedrohung der Artenvielfalt sowie die Gesundheitsbelastung (Schleimhautirritationen, sekundärer Feinstaub, Atemwegserkrankungen) gemindert werden. ATMOWELL® ist ein von SKW Piesteritz patentierter Ureaseinhibitor, welcher NH 3 -Emissionen in Rinderställen um 58 % reduziert. Die so verbesserte Luftqualität schützt vor negativen Auswirkungen des Ammoniaks auf Umwelt, Klima, sensible Ökosysteme und vor der Versauerung von Böden.

INSPIRE: Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers (InSpEE-DS) (WMS)

Which salt formations are suitable for storing hydrogen or compressed air? In the InSpEE-DS research project, scientists developed requirements and criteria for the assessment of suitable sites even if their exploration is still at an early stage and there is little knowledge of the salinaries’ structures. Scientists at DEEP.KBB GmbH in Hanover, worked together with their project partners at BGR and the Leibniz University Hanover, Institute for Geotechnics, to develop the planning basis for the site selection and for the construction of storage caverns in flat layered salt and multiple or double saliniferous formations. Such caverns could store renewable energy in the form of hydrogen or compressed air. While the previous project InSpEE was limited to salt formations of great thickness in Northern Germany, salt horizons of different ages have now been examined all over Germany. To estimate the potential, depth contour maps of the top and the base as well as thickness maps of the respective stratigraphic units were developed. Due to the present INSPIRE geological data model, it was necessary, in contrast to the original dataset, to classify the boundary lines of the potential storage areas in the Zechstein base and thickness layers, whereby the classification of these lines was taken from the top Zechstein layer. Consequently, the boundary element Depth criterion 2000 m (Teufe-Kriterium 2000 m) corresponds on each level to the 2000 m depth of Top Zechstein. However, the boundary of national borders and the boundary of the data basis could not be implemented in the data model and are therefore not included in the dataset. Information on compressed air and hydrogen storage potential is given for the identified areas and for the individual federal states. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE-DS (INSPIRE) is stored in 18 INSPIRE-compliant GML files: InSpEE_DS_GeologicUnit_Isopachs_Zechstein.gml contains the Zechstein isopachs. InSpEE_DS_GeologicUnit_Isobaths_Top_Zechstein.gml and InSpEE_DS_GeologicUnit_Isobaths_Basis_Zechstein.gml contain the isobaths of the top and basis of Zechstein. The three files InSpEE_DS_GeologicStructure_ThicknessMap_Zechstein, InSpEE_DS_GeologicStructure_Top_Zechstein and InSpEE_DS_GeologicStructure_Basis_Zechstein represent the faults of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Boundary_element_Potential_areas_Zechstein.gml contains the boundary elments of the potential areas at the top and the basis of Zechstein as well as of the Zechstein body. The three files InSpEE_DS_GeologicUnit_Uncertainty_areas_ThicknessMap_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Top_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Basis_Zechstein.gml represent the uncertainty areas of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Potentially_usable_storage_areas_Storage_potential_in_the_federal_states.gml comprises the areas with storage potential for renewable energy in the form of hydrogen and compressed air. The six files InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Malm.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Keuper.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Muschelkalk.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Roet.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Zechstein.gml and InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Rotliegend.gml represent the salt distribution of the respective stratigraphic unit. InSpEE_DS_GeologicUnit_General_salt_distribution.gml represents the general salt distribution in Germany. This geographic information is product of a BMWi-funded research project "InSpEE-DS" running from the year 2015 to 2019. The acronym stands for "Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers".

Jetzt kostenfrei Ultraschallprüfgerät für Ihr Unternehmen ausleihen! Ortung und Behebung von Leckagen ermöglicht Einsparungen von 35 Prozent! Wir unterstützen Sie beim Aufspüren von Leckagen! Wie funktioniert das Ausleihen?

Die Landesenergieagentur Sachsen-Anhalt verleiht ab sofort kostenfrei ein Ultraschallprüfgerät an interessierte Unternehmen. Mithilfe des Messgerätes können Leckagen in Druckluftsystemen aufgespürt werden. Druckluft wird in fast jeder Produktionsstätte genutzt, die Erzeugung und Bereitstellung zählt zu den teuersten Energieformen. Druckluftanlagen stellen in vielen Bereichen innerhalb und außerhalb der Industrie pneumatische Hilfsenergie mittels expansionsfähiger komprimierter Luft zur Verfügung. Je nach Laufzeit der Kompressoren machen die Energiekosten der Erzeugung 60 bis 80 Prozent der Druckluft-Gesamtkosten aus. Bei unregelmäßiger oder vernachlässigter Wartung bleiben häufig hohe Energieverluste unbemerkt. Diese entstehen durch Leckagen, aus denen Druckluft ungenutzt entweicht. Die erfolgreiche Ortung von Leckagen mit modernen Suchgeräten und die in der Folge verbundenen Reparaturen an der druckluftführenden Anlage erzielen durchschnittliche Einsparungen von 35 Prozent. Eine regelmäßige Überprüfung auf Leckagen dient aber nicht nur der Energieeinsparung, sondern erhöht zudem auch die Betriebssicherheit und Anlagenverfügbarkeit. Neben Maßnahmen wie der Erneuerung von Kompressoren oder der Installation einer Abwärmenutzung in Druckluftanlagen ist die zeitgemäße Leckageortung mittels Ultraschallprüfgerät die kostengünstigste Variante, die jedoch aufgrund der hohen Belastung von Druckluftsystemen regelmäßig wiederholt werden muss.

Willingmann und Neugebauer eröffnen Hydrogen Lab am Chemiestandort Leuna

Sachsen-Anhalts Wissenschaftsminister Prof. Armin Willingmann und der Präsident der Fraunhofer-Gesellschaft, Prof. Reimund Neugebauer, haben am heutigen Mittwoch offiziell den Bau des Hydrogen Lab Leuna (HLL) an das Fraunhofer-Institut für Windenergiesysteme IWES im Mitteldeutschen Revier übergeben. Zudem überreichte Willingmann den Fördermittelbescheid für das Strukturwandel-Projekt „Hydrogen Competence Hub“ – ein zentraler Hub für Aus- und Weiterbildung. Das Fraunhofer IWES stellt mit dem Hydrogen Lab in Leuna die Weichen für innovative Forschung und Entwicklung zur Erzeugung und zum Einsatz von grünem Wasserstoff in der chemischen Industrie. Grüner Wasserstoff ist ein Schlüsselelement für die Rohstoffversorgung der chemischen Industrie und für das Erreichen der Klimaziele. Die Defossilisierung, also die Umstellung auf grünen Wasserstoff entlang der gesamten Prozesskette, ist essenziell. „Mit dem Hydrogen Lab in Leuna wird der dringend benötigte Markthochlauf von Wasserstoff-Technologien in Sachsen-Anhalt und darüber hinaus beschleunigt. Die hochinnovative Forschungseinrichtung wird wesentlich dazu beitragen, dass sich Sachsen-Anhalt zu einem neuen Kraftzentrum einer nachhaltigen Wasserstoffwirtschaft entwickeln kann. Der Aufbau der Wasserstoffwirtschaft ist darüber hinaus ein wichtiges Element für die erfolgreiche Gestaltung des Strukturwandels in der Region. Mit der Förderung des Aus- und Weiterbildungsprojekts „Hydrogen Competence Hub“ steuern wir zudem gemeinsam mit der Hochschule Merseburg, der Otto-von-Guericke-Universität und der Hochschule Anhalt aktiv gegen den Mangel an Fach- und Führungskräften“, erklärte Willingmann. Damit werden neben regionalen Unternehmen auch internationale Projektpartner und Industriekunden für Leuna angesprochen. „Mit dem Aufbau des Chemie- und Wasserstoffstandorts Leuna, der bereits seit mehreren Jahren einen prosperierenden Nukleus für die erfolgreiche Zusammenarbeit von Wissenschaft und Wirtschaft bildet, zeigt die Fraunhofer-Gesellschaft nicht nur effiziente Wege für die Energiewende, sondern auch für einen gelingenden Strukturwandel im Mitteldeutschen Revier auf. Als eines von deutschlandweit drei Fraunhofer Hydrogen-Labs fokussiert sich das Hydrogen Lab Leuna auf die Forschung entlang der Wertschöpfungskette der Wasserstofferzeugung. Der dort produzierte Grüne Wasserstoff wird vor Ort analysiert, aufbereitet und direkt in die 157 km lange H2-Pipeline eingespeist, von wo aus er zu den Industriestandorten der Region verteilt und in chemischen Prozessen eingesetzt wird. Mit dem neuen »Hydrogen Competence Hub« wird zudem eine wesentliche Herausforderung adressiert, die alle Reviere betrifft: der Mangel an Fach- und Führungskräften. Auch hier leistet die Fraunhofer-Gesellschaft durch Aus- und Weiterbildung einen wichtigen Beitrag zum Strukturwandel“, erläuterte Fraunhofer-Präsident Neugebauer. Das für die Forschungsarbeiten im HLL notwendige Technikum ist baulich fertiggestellt. Derzeit wird der Innenbereich des Technikums mit den erforderlichen Laboreinrichtungen- und Anlagen ausgestattet, die nicht Teil des HLL-Bauprojektes sind. „Wir freuen uns sehr, dass wir das HLL offiziell übernehmen können und somit Platz für den Aufbau unserer umfangreichen Testinfrastruktur haben. Allerdings ist das Technikum bereits jetzt vollständig ausgelastet, sodass wir schon über Erweiterungen nachdenken müssen. Die wissenschaftliche Arbeit an den ersten Projekten hat ebenfalls bereits begonnen und wir sind im Chemiepark Leuna auf dem Weg in eine zukunftsfähige Wasserstoff-Wirtschaft, die wir aktiv forschungsseitig begleiten werden. In diesem Zusammenhang bedanken wir uns ausdrücklich für den Fördermittelbescheid für das »Hydrogen Competence Hub«, mit welchem wir gemeinsam mit der regionalen Hochschullandschaft unseren Beitrag zum Aufbau und Erhalt der dringend benötigten Fachkräfte leisten. Mit dem Hub streben wir eine erhöhte Durchlässigkeit zwischen beruflicher und wissenschaftlicher Weiterbildung an, um die Bedarfe der Industrie mittels des Erwerbs von Zusatzqualifikationen schnell und modular decken zu können“, ergänzte Dr.-Ing. Sylvia Schattauer, kommissarische Institutsleiterin, Fraunhofer IWES. Hydrogen Lab Leuna Im Mitteldeutschen Chemiedreieck stellt die Fraunhofer-Gesellschaft mit dem vom Land Sachsen-Anhalt und der EU geförderten HLL eine neue Generation der Testinfrastruktur für Wasserstofftechnologien bereit. Durch die Verbindung von Methodenkompetenzen und einmaliger Forschungsinfrastruktur entsteht ein nachhaltiges gemeinsames Geschäftsmodell und eine neuartige Kooperationsplattform für Industrie und Forschung. Eingebettet in den Stoffverbund des Chemieparks Leuna bietet das HLL vier Teststände plus Technikum für Elektrolyseure mit einer Leistung von bis 5 Megawatt (MW), die mit deionisiertem Wasser, Dampf, Druckluft, Stickstoff, Wasserstoff und zukünftig auch mit CO2 versorgt werden. Der produzierte grüne Wasserstoff wird vor Ort analysiert, aufbereitet und direkt in die 157 km lange H2-Pipeline eingespeist, von wo aus er zu den Industriestandorten der Region verteilt wird und dort in chemischen Prozessen verwendet werden kann. Das Fraunhofer IWES ist Besitzer und Betreiber der Infrastruktur am HLL. Der Aufbau des „Hydrogen Lab Leuna“ wurde vom Wissenschaftsministerium Sachsen-Anhalt und von der Europäischen Union mit gut acht Millionen Euro gefördert. Das gesamte Bauvolumen für das Hydrogen Lab Leuna beläuft sich auf mehr als 10 Millionen Euro zuzüglich Projektförderungen für die Testinfrastruktur. Aus- und Weiterbildungsprojekt „Hydrogen Competence Hub“ Im nächsten Jahr werden gleich zwei STARK-Projekte ihre Arbeit aufnehmen. Gemeinsam mit der Hochschule Merseburg, der Otto-von-Guericke-Universität und der Hochschule Anhalt soll ab Februar 2023 für zwei Jahre an dem Aufbau eines zentralen Hubs für Aus- und Weiterbildung gearbeitet werden. Konkret wird ein regionales Bildungsnetzwerk etabliert, aber auch eigene Weiterbildungsangebote entwickelt. Damit sollen die Kompetenzen der Region im Bereich digitale Wasserstoff-Technologien gestärkt und ein erhöhter Transfer zwischen beruflicher und wissenschaftlicher Weiterbildung geschaffen werden. Durch Zusatzqualifikationen sollen die Bedarfe der Industrie schnell und modular gedeckt werden. Dieses brandaktuelle und notwendige Projekt erhält den Förderbescheid und damit 2,5 Millionen Euro aus den Mitteln des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) der Förderrichtlinie zur Stärkung der Transformationsdynamik und Aufbruch in den Revieren und an den Kohlekraftwerksstandorten (STARK). Projekt „House of Transfer“ Das zweite Projekt „House of Transfer“ als zentrale Anlaufstelle für Stakeholder aus den Bereichen Chemie, Bioökonomie, Kunststoff und Wasserstoff hat es sich zum Ziel gesetzt, die bestehenden Aktivitäten in der Region zu verzahnen. Hier werden z.B. Technologiegeber mit industriellen Bedarfen, Projektideen mit Investoren sowie Start-Ups mit erfahrenen Playern zusammengeführt. Es entsteht ein umfassendes Beratungs- und Dienstleistungsangebot. Das „House of Transfer“ hat bereits einen Förderbescheid über 4,6 Millionen Euro am 28.09.2022 erhalten und startet im Januar mit der Arbeit. Aktuelle Informationen zu interessanten Themen aus Wissenschaft, Energie, Klimaschutz und Umwelt gibt es auch auf den Social-Media-Kanälen des Ministeriums bei Facebook, Instagram, LinkedIn und Twitter.

Flach lagernde Salze in Deutschland (WMS)

Welche Salzformationen eignen sich zur Speicherung von Wasserstoff oder Druckluft? Im Forschungsprojekt InSpEE-DS entwickelten Wissenschaftler Anforderungen und Kriterien mit denen sich mögliche Standorte auch dann bewerten lassen, wenn sich deren Erkundung noch in einem frühen Stadium befindet und die Kenntnisse zum Aufbau der Salinare gering sind. Wissenschaftler der DEEP.KBB GmbH, Hannover erarbeiten gemeinsam mit ihren Projektpartnern der Bundesanstalt für Geowissenschaften und Rohstoffe und der Leibniz Universität Hannover, Institut für Geotechnik Hannover, Planungsgrundlagen zur Standortauswahl und zur Errichtung von Speicherkavernen in flach lagernden Salzen und Mehrfach- bzw. Doppelsalinaren. Solche Kavernen könnten erneuerbare Energie in Form von Wasserstoff oder Druckluft speichern. Während sich das Vorgängerprojekt InSpEE auf Salzformationen großer Mächtigkeit in Norddeutschland beschränkte, wurden jetzt unterschiedlich alte Salinar-Horizonte in ganz Deutschland untersucht. Zur Potenzialabschätzung wurden Tiefenlinienkarten des Top und der Basis sowie Mächtigkeitskarten der jeweils betrachteten stratigraphischen Einheit und Referenzprofile erarbeitet. Die Informationen zum Druckluft- und Wasserstoff-Speicherpotential in den einzelnen Bundesländern sind an die identifizierten Flächen mit nutzbarem Potential im Layer "Speicherpotenzial in den Bundesländern" gekoppelt. Mit Hilfe der getFeatureInfo-Anfrage erhält der User weitere Informationen zu den einzelnen Geometrien. Dies ermöglicht u. a. den Zugriff auf das Kriterienkatalog-Datenblatt im Layer "Potenzielle Speichergebiete flach lagernde Salze" jeder stratigraphischen Einheit und auf die Abbildungen von Bohrprofilen und Bohrungskorrelationen im Layer "Bohrungen und Bohrungskorrelationen". Eine räumliche Auswahl und Sachdatenabfragen sind für folgende Datensätze möglich: Bohrungen, Bohrungskorrelationen, Isobathen, Isopachen, Begrenzungselemente der Potenzialgebiete Top Zechstein, sowie das Speicherpotenzial in den Bundesländern und potenzielle Speichergebiete flach lagernder Zechsteinsalze. Der Darstellungsmaßstab hat eine untere Grenze von 1 : 300 000. Die Geodaten sind Produkte eines BMWi-geförderten Forschungsprojektes "InSpEE-DS" (Laufzeit 2015-2019). Das Akronym steht für "Informationssystem Salz: Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (Wasserstoff und Druckluft) – Doppelsalinare und flach lagernde Salzschichten".

1 2 3 4 528 29 30