Das Projekt "The role of turgor in rain-cracking of sweet cherry fruit" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Biologische Produktionssysteme, Fachgebiet Obstbau durchgeführt. Rain-cracking limits the production of many soft and fleshy fruit including sweet cherries world wide. Cracking is thought to result from increased water uptake through surface and pedicel. Water uptake increases fruit volume, and hence, turgor of cells (Pcell) and the pressure inside the fruit (Pfruit) and subjects the skin to tangential stress and hence, strain. When the strain exceeds the limits of extensibility the fruit cracks. This hypothesis is referred to as the Pfruit driven strain cracking. Based on this hypothesis cracking is related to two independent groups of factors: (1) water transport characteristics and (2) the intrinsic cracking susceptibility of the fruit defined as the amount of cracking per unit water uptake. The intrinsic cracking susceptibility thus reflects the mechanical constitution of the fruit. Most studies focussed on water transport through the fruit surface (factors 1), but only little information is available on the mechanical constitution (i.e., Pfruit and Pcell, tensile properties such as fracture strain, fracture pressure and modulus of elasticity of the exocarp; factors 2). The few published estimates of Pfruit in sweet cherry are all obtained indirectly (calculated from fruit water potential and osmotic potentials of juice extracts) and unrealistically high. They exceed those measured by pressure probe techniques in mature grape berry by several orders of magnitude. The objective of the proposed project is to test the hypothesis of the Pfruit driven strain cracking. Initially we will focus on establishing systems of widely differing intrinsic cracking susceptibility by varying species (sweet and sour cherry, Ribes and Vaccinium berries, plum, tomato), genotype (within sweet cherry), stage of development and temperature. These systems will then be used for testing the hypothesis of Pfruit driven strain cracking. We will quantify Pfruit und Pcell by pressure probe techniques and compression tests and the mechanical properties of the exocarp using biaxial tensile tests. When the presence of high Pfruit and Pcell is confirmed by direct measurements, subsequent studies will focus on the mode of failure of the exocarp (fracture along vs. across cell walls) and the relationship between failure thresholds and morphometric characteristics of the exocarp. However, when Pfruit und Pcell are low, the hypothesis of Pfruit driven strain cracking must be rejected and the mechanistic basis for low pressures (presence of apoplastic solutes) clarified on a temporal (in the course of development) and a spatial scale (exocarp vs. mesocarp). We focus on sweet cherry, because detailed information on this species and experience in extending the short harvest period is available. Where appropriate, other cracking susceptible species (sour cherry, plum, Vaccinium, Ribes, tomato) will be included to further extend the experimental period and to maximize the range in intrinsic cracking susceptibility.
Das Projekt "B 1.2: Efficient water use in limestone areas - Phase 2" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre durchgeführt. The elevated areas of Northern Thailand highlands are inhabited by ethnic minorities. On the other hand, the Thai majority prefers the valley bottoms. Population growth of all groups, reforestation and commercialisation of agriculture lead to an increasing pressure on land and water resources. Therefore, intensified land and water use systems are desired which are resource conserving at the same time. Here, special problem areas are the karstic limestone catchments due to the limited of surface waters.Own pre-investigations together with subproject A1 have shown, that land use systems there are subsistence oriented and local farmers do not use irrigation. But they would like to develop such technology, especially in order to increase staple crop production (highland rice, maize). But lack of irrigation possibilities is also responsible for the lack of diversification of land use systems with respect to orchards. One possibility to increase staple crop yields is to prolong the vegetation period by use of water harvesting technologies. Aim of this project is to develop such low cost water harvesting technologies (together with subproject B3.1) based on a participatory approach and to model the effect of these on the water balance at the catchments scale. This will be done on the basis of the previous variability studies and should lead to model tools, which allow to evaluate ex ante SFB innovation effects on the water balance. The project area is the Bor Krai catchments. Here, weirs will be installed to quantify surface water availability. An investigation plot will be situated near the village of Bor Krai which serves for water balance measurements (TDR/densitometry) and at the same time as demonstration plot for the local community. Here water harvesting by means of filling the soils field capacity at the end of the rainy season by gravity irrigation in order to prolong the vegetation period will be researched. Through cropping of participatory evaluated varieties the crop yield should be increased. The water consumption of traditionally managed and dominant crops (including orchards) will be measured at three further sites in the catchment (TDR, tensiometer). The water balance of the soil cover in the karst catchment will be based on the coupling of a SOTER map with a water transport model. The data base will be completed by soil type mapping, spatially randomised collection of soil physical properties (texture, bulk density, infiltration, water retention curve) and determination of the ku-function at two representative sites. As project results the available water amount for irrigation purposes will be quantified. The effective use of this water reserve will lead to increased productivity of the dominant crops and limitations to orchard productivity will be reduced. (abridged text)
Das Projekt "D 7: Research for improved fish nutrition and fish health in upland aquaculture systems in Yen Chau, Son La Province, Northern Vietnam" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Tierproduktion in den Tropen und Subtropen (480), Fachgebiet Aquakultur-Systeme und Tierernährung in den Tropen und Subtropen (490i) durchgeführt. Background: Aquaculture significantly contributes to protein supply and cash income of Black Thai farmers in Yen Chau, Son La province, Northern Vietnam. Fish is produced for cash income (2/3rd) and subsistence (1/3rd) while self recruiting species (small fish, crustaceans and molluscs) provide additional protein for home consumption. The current aquaculture system is a polyculture of the macroherbivorous grass carp as main species together with 3-5 other non-herbivorous fish species like Common Carp, Silver Carp, Bighead Carp, Mud Carp, Silver Barb and Nile Tilapia. With a rearing period of 21 months, the productivity of the aquaculture system amounts to 1.54 +- 0.33 t ha-1 a-1 and can be characterized as low. Nearly each household has at least one pond, which serves multiple purposes and is operated as a flow-through-system. The steady water flow is advantageous for the culture of grass carp, but causes a continuous loss of nutrients and high turbidity and thereby limits the development of phytoplankton and zooplankton which are natural food for non-herbivorous species. The farmers are using mainly green leaves (banana, bamboo, cassava, maize and grass) and crop residues (rice bran, rice husk, cassava root peel, distillery residue) as feed input, which is available to Grass Carp while non-herbivorous fish species are not fed specifically. Manure is used as fertilizer. The uneaten parts of fed plants are sometimes accumulating in the pond over several years, resulting in heavy loads of organic matter causing oxygen depletion. Anaerobic sediment and water layers limit the development of zoobenthos and may provide a habitat for anaerobe disease agents. Since 2003 an unknown disease condition has been threatening Grass Carp production and is having a major economic impact on the earnings from fish farming in Yen Chau region. Other fish in the same ponds are not affected. Especially in March-April and in September-October the disease is causing high morbidity and mortalities of Grass Carp in affected ponds and is thereby decreasing the dietary protein supply and income generation of Black Thai farmers. Little is known about the definition or aetiology of the disease condition.
Das Projekt "SP 2.2 QTL analysis and optimization of breeding schemes for improved nitrogen-use efficiency of maize and wheat for sustainable cropping systems in the North China Plain" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Pflanzenzüchtung, Saatgutforschung und Populationsgenetik (350), Fachgebiet Angewandte Genetik und Pflanzenzüchtung (350a) durchgeführt. In China, agriculture needs to be intensified by increasing the productivity per unit land. However, the possibility to improve yield by further increasing the amounts of input is very limited due to already very high input amounts of fertilizers and irrigation water in the present cropping system. Hence, the development and characterization of improved varieties, especially with regard to traits of utmost importance for sustainable resource use, such as nitrogen- (NUE) and water-use efficiency (WUE), is crucial for a sustainable agriculture in the North China Plain. The decision about the requirement of one common or two separate breeding programs for developing varieties adapted to low and high N fertilization strongly depends on an appropriate estimation of the correlation between yield at different fertilization levels. Therefore, maize and wheat varieties are evaluated in multiple locations in the North China Plain. Adopting novel breeding approaches based on doubled haploids (DH) can speed up the process of developing new varieties substantially and rapidly provides suitable cultivars for new cropping systems. Therefore, optimum breeding strategies for maize breeding are modeled and simulated to optimize alternative breeding schemes with respect to the optimum allocation of test resources using different optimization criteria. Modeling of production systems and material flows is a powerful tool to increase sustainable resource use by identifying cropping systems, which combine reduced inputs with high yields. However, an appropriate model requires knowledge about the genetics of crop growth and yield and its interaction with environmental factors. Therefore, maize and wheat populations developed by the Chinese partners in the first project phase are phenotyped in multi-location field trials and genotyped with molecular markers to map quantitative trait loci (QTL) for NUE.
Das Projekt "14C content of specific organic compounds in subsoils" wird vom Umweltbundesamt gefördert und von Universität zu Köln, Institut für Geologie und Mineralogie durchgeführt. Organic matter (OM) composition and dynamic in subsoils is thought to be significantly different from those in surface soils. This has been suggested by increasing apparent 14C ages of bulk soil OM with depth suggesting that the amount of fresh, more easily degradable components is declining. Compositional changes have been inferred from declining ä13C values and C/N ratios indicative for stronger OM transformation. Beside these bulk OM data more specific results on OM composition and preservation mechanisms are very limited but modelling studies and results from incubation experiments suggest the presence and mineralization of younger, 'reactive carbon pool in subsoils. Less refractory OM components may be protected against degradation by interaction with soil mineral particles and within aggregates as suggested by the very limited number of more specific OM analysis e.g., identification of organic compound in soil fractions. The objective of this project is to characterize the composition, transformation, stabilization and bioavailability of OM in subsurface horizons on the molecular level: 1) major sources and compositional changes with depth will be identified by analysis of different lipid compound classes in surface and subsoil horizons, 2) the origin and stabilization of 'reactive OM will be revealed by lipid distributions and 14C values of soil fractions and of selected plant-specific lipids, and 3) organic substrates metabolized by microbial communities in subsoils are identified by distributional and 14C analysis of microbial membrane lipids. Besides detailed analyses of three soil profiles at the subsoil observatory site (Grinderwald), information on regional variability will be gained from analyses of soil profiles at sites with different parent material.
Das Projekt "The fate of phosphorus in forest and treeline ecosystems in Ecuador" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Fachbereich Geowissenschaften, Forschungsbereich Geographie durchgeführt. Even remote areas such as tropical montane forests suffer from continuously high atmospheric nitrogen (N) and phosphorus (P) deposition. In studies on ecosystem responses to atmospheric nutrient deposition, P cycling has played an underrated role compared to N, although P is thought to limit organism growth in main parts of the Tropics. Furthermore, the responses of tropical montane forests to atmospheric nutrient deposition might depend on the predicted climate change i.e., shifts in temperature and precipitation. Altitudinal gradients represent an ideal means to study environmental changes in tropical montane forests in southern Ecuador, because climate scenarios and unpublished trends in longer-term climate data predict increasing temperatures and decreased moisture which parallels the altitudinal gradient from 4000 m to 1000 m asl.Previous experiments, including the NUMEX experiment in Ecuador, showed that the main proportion of P added to forests to simulate atmospheric deposition was retained in soil. While total P pools in soil respond slowly to low P addition rates, the biological and geochemical processes underlying retention in the organic layer or in soil are expected to react faster. Our overarching objective is to assess the fate of fertilized P in the organic layer and in mineral soil and to elucidate the processes involved in P cycling in soil (immobilization and release rates by microorganisms, sorption/desorption, precipitation/dissolution) along the NUMEX-X altitudinal gradient (1000, 2000, 3000, 4000m; the latter including a Polylepis and a Páramo ecosystem). We will assess P fractions in soil and use a combination of 33P tracer studies and incubation experiments to disentangle biological and geochemical processes controlling P retention. The mechanistic understanding gathered by this proposal is crucial for predictions of ecosystems responses to the continuously high atmospheric N (and P) deposition, because single mechanisms might respond differently (and oppositionally) in the long run. Because the processes involved in P cycling are expected to respond faster to environmental changes than e.g., P pools in soil, these different responses are an essential basis to evaluate effects of environmental change and finally, to develop early-warning ecosystem indicators for environmental change.
Das Projekt "Climate indicators on the local scale for past, present and future and platform data management" wird vom Umweltbundesamt gefördert und von Philipps-Universität Marburg, Fachgebiet Klimageographie und Umweltmodellierung durchgeführt. Predicting future climate change is in itself already difficult, especially in such complex ecosystems as the Andean mountain rain and dry forest as well as the Paramo. The common tools to simulate global climate change are global circulation models (GCM). Because of their coarse resolution they are not able to capture atmospheric processes affecting the local climate. For this reason a dynamical downscaling approach will be used to develop a highly resolved spatial and temporal Climatic Indicator System (hrCIS) to derive ecologically relevant climate change indicators affecting the ecosystems of South Ecuador. A local-limited area model (LAM) will be used to (i) generate a highly resolved gridded climatology for present day (hrCISpr) based on reanalysis data and (ii) to generate a highly resolved gridded climatology for projected future (hrCISpf) based on the new Representative Concentration Pathways (RCP) scenario data. The output of the LAM for present day will be validated with in-situ measurement data and satellite-derived products to ensure the accuracy of the model for the simulations of the projected future. On the basis of statistical analysis of both climatologies changes in climate indicators such as air temperature and precipitation regime will be described. The proper storage, curation and accessibility of environmental data is of crucial importance for global change research particularly for monitoring purposes. This proposal will offer an adequate data management system for the Platform for Biodiversity and Ecosystem Monitoring and Research. This will be archived by extending the web-based information management system FOR816DW (a data warehouse for collaborative ecological research units) with features like automatic upload interfaces, a workbench for integrative analysis and an user defined alert system, which will facilitate environmental monitoring for scientist as well as stakeholders. Beside the development of these innovations a main objective is the transfer of knowledge and information (know how, source code, and collection data) to our partners in Ecuador. For this, and to bring together the existing data sources, we cooperate with university and non-university parties in the joint establishment of a Data access platform for environmental data of the region. This will include considerations on long-term accessibility, which is envisaged by a data transfer to the planned German national data infrastructure GFBio.
Das Projekt "Süd-Nord-Dialog - Gerechtigkeit im Treibhaus" wird vom Umweltbundesamt gefördert und von Wuppertal Institut für Klima, Umwelt, Energie gGmbH durchgeführt. Das Inkrafttreten des Kyoto-Protokolls am 16. Februar 2005 markiert einen Wendepunkt für die internationale Klimapolitik. Erstmals haben die Industriestaaten verbindliche Pflichten zur Begrenzung ihrer Treibhausgasemissionen übernommen. Gleichwohl bleiben die zukünftigen Herausforderungen enorm. Zieht man die Notwendigkeit gesteigerter Emissionseinsparungen zur Vermeidung 'gefährlichen' Klimawandels einerseits und die erforderliche Unterstützung der durch den Klimawandel am verwundbarsten Regionen andererseits in Betracht, werden die Entwicklungsländer im Rahmen der Post-2012 Verhandlungen eine Schlüsselrolle übernehmen. Das zähe Ringen der letzten Jahre um die Zukunft internationalen Klimaschutzes macht den Bedarf für eine sorgfältige Vorbereitung der Verhandlungen um ein Post-2012 Abkommen unter Einbeziehung aller relevanten Akteure offenkundig. Vor diesem Hintergrund haben das Wuppertal Institut und das Energy Research Center (Südafrika) einen Dialog zwischen 14 Wissenschaftlern aus allen Weltregionen, vornehmlich aus Entwicklungsländern, initiiert, um über mögliche Eckpfeiler eines zukünftigen Klimaregimes zu diskutieren. Ziel dieses 'Süd-Nord Dialog - Gerechtigkeit im Treibhaus' war es, einen offenen Austausch über unterschiedliche Sichtweisen und Positionen in einer vertrauensvollen Atmosphäre zu ermöglichen. Ergebnis dieses Dialogs ist der gemeinsame Vorschlag 'Towards an adequate and equitable global climate agreement', der einen Rahmen für die Ausgestaltung eines zukünftigen Klimaabkommens aufzeigt sowie Erfordernisse für den politischen Prozess darlegt. Dieses Paket von Politikempfehlungen umfasst ein Modell für die faire Aufteilung von Klimaschutzpflichten, das eine starke Reduzierung der Emissionen im Norden aber auch Minderungspflichten unterschiedlicher Art für Entwicklungsländer vorsieht. Der Vorschlag beinhaltet darüber hinaus Empfehlungen für die Ausgestaltung einer Politik zur Anpassung an den Klimawandel, da zukünftige Vereinbarungen, wollen sie als fair wahrgenommen werden, Mechanismen für die Unterstützung der am meisten durch den Klimawandel verwundbaren Regionen enthalten müssen. Schließlich wird eine Vorreiterstrategie für den politischen Prozess aufgezeigt, um ein derartiges Klimaschutzabkommen auf internationaler Ebene voranzutreiben. In einer zweiten Projektphase ist der Dialog auf die politische Ebene ausgeweitet worden. Dazu werden in Asien, Afrika und Lateinamerika Workshops mit Klima-Verhandlern aus der jeweiligen Region ausgerichtet. Ziel ist es, zum einen die Kernelemente des Vorschlags zu diskutieren, zum anderen gegenseitiges Verstehen und Vertrauen unter den Klima-Verhandlern zu fördern, um auf diese Weise die Post-2012 Verhandlungen zu erleichtern. Zwei regionale Workshops haben bislang in Dar-es-Salaam (Tansania, Oktober 2004) und in Jakarta (Indonesien, Mai 2005) stattgefunden. Die regionalen Workshops werden durch einen lateinamerikanischen Workshop in Mexiko City im Februar 2006 komplettiert.
Das Projekt "Smart Control of Demand for Consumption and Supply to enable balanced, energy-positive buildings and neighbourhoods (SMARTCODE)" wird vom Umweltbundesamt gefördert und von edacentrum GmbH durchgeführt. Future buildings and neighbourhoods are expected to combine a manifold of Energy using Products ( EuP ) ranging from electrical lighting to HVAC with locally available renewable energies (e.g. solar, wind) and with locally available storages (e.g. car batteries). An intelligent management of energy in such a local grid would enable customers to participate in the energy market and even contribute to the stability of the power grid. The problem is that such an energy management requires fine grained infrastructure and expensive hardware. Today, this limits applicability of energy management to large consumers in the industrial and commercial sector. The objective of SmartCoDe is to enable the application of advanced techniques for energy management in private and small commercial buildings and neighbourhoods by - Developing new methods for automated energy management that specifically considers the requirements of Energy using Products in homes / offices and local renewable energy providers, considering the required information security and dependability. - Developing an inexpensive hardware/software implementation that can be integrated into arbitrary Energy using Products, providing them with the ability to communicate and to remotely control its use of power. - Demonstration of technical and economic feasibility and benefit of intelligent energy management in buildings and neighbourhoods with an initial focus on electric lighting. If successful, the project will allow all manufacturers of EuP to add energy management functionality (and maybe additional features such as remote control, etc.) for very little additional cost, and thereby address a new and huge market in homes and offices. The local energy management will enable local entities to participate in the energy market as an intelligent, managed sub-grid that can if necessary even contribute to a demand side management and thereby reducing the required spinning reserve.
Das Projekt "Coupling of the LM and ECHAMS/MESSy for consistently investigating chemistry and transport from the global to the regional scale" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Geowissenschaften durchgeführt. Numerical modelling of chemical processes in the atmosphere is essential to increase our understanding of atmospheric composition and its changes induced by human activity. In recent years, global-scale atmospheric models that calculate the concentration and processing of trace constituents in the atmosphere have been developed. However, for key problems like local air quality, (long-range) transport from local sources and the detailed interpretation of chemical measurements the development of high-resolution models is essential. Proper initial and boundary conditions also for chemical variables must be consistently provided in order to run high-resolution limited-area chemistry models. For the first time, we propose to develop and employ such a model that is driven by consistent meteorological and chemical fields. This will be achieved through coupling of the global ECHAM5/MESSy system with the Local Model (LM). First applications of the newly developed model LM/MESSy will serve to investigate its capabilities for (i) a detailed analysis of field measurements, (ii) the direct simulation of mesoscale chemical perturbations like dust and biomass burning plumes, and (iii) an assessment and eventually forecast of local air quality. On the medium-term, the novel tool, developed jointly within research organisations, will be made available for chemical weather forecasting.
Origin | Count |
---|---|
Bund | 105 |
Type | Count |
---|---|
Förderprogramm | 105 |
License | Count |
---|---|
open | 105 |
Language | Count |
---|---|
Deutsch | 105 |
Englisch | 103 |
Resource type | Count |
---|---|
Keine | 79 |
Webseite | 26 |
Topic | Count |
---|---|
Boden | 97 |
Lebewesen & Lebensräume | 105 |
Luft | 83 |
Mensch & Umwelt | 105 |
Wasser | 88 |
Weitere | 105 |