Das Projekt "Auswirkungen von Klima und Landnutzung auf die Diversität und Funktion von Bestäubern, Zersetzern und Herbivoren" wird vom Umweltbundesamt gefördert und von Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Institut für Biowissenschaften, Biozentrum, Lehrstuhl für Zoologie III (Tierökologie und Tropenbiologie) durchgeführt. SP7 analyses two important ecosystem processes: pollination and decomposition. Species richness and abundance of pollinators sampled with coloured UV-reflecting pan traps will be related to floral diversity (SP4, SP5), vegetation type, altitude and climate (SP1 to SP3). Plant-pollinator interaction webs will be quantified to estimate specialization and connectance in relation to climatic variables (SP1), land use and biodiversity (SP4, SP5, SP8). Fruit and seed set of five abundant flowering plant species will be measured for open, hand-pollinated and exclosure treatments to evaluate pollinator limitation in relation to climate, land use and biodiversity. Transplant and pollination experiments with an endemic and a wide-spread Impatiens species will be performed to analyse the importance of pollinator-mediated gene flow (SP4). From combined litter and soil samples the meso- and macrofauna will be extracted. Furthermore the epigaeic fauna is sampled using pitfall traps. Identification to morphospecies, measuring of body size and DNA-barcoding will be applied to estimate biodiversity and size structure (SP 8). Diversity, abundance and size structure of soil fauna taxa will be related to floral diversity, climate, land use, biogeochemical processes (SP1-3) and aboveground diversity (SP4-8). Decomposition rates and the contribution of size classes of decomposers will be measured using litter bags differing in mesh size. Experiments with litter mixtures will be performed to test for adaptations of decomposers to local conditions as well as the effect of litter diversity on decomposition rates along altitudinal gradients.
Das Projekt "Tree mycobiota and emerging diseases" wird vom Umweltbundesamt gefördert und von Eidgenössische Technische Hochschule Zürich, Professur für Forstschutz und Dendrologie durchgeführt. We study the diversity and biology of endemic and introduced mycobiota which is associated with woody plants. Fungal pathogens are major causes of tree diseases and fungal diseases are frequently triggered by environmental change and biological globalization. New species are increasingly introduced, host jumps occur and hybridization events create new diseases. In this project we study actually and potentially emerging fungal diseases as well as the endophytic tree mycobiota in Switzerland by taxnomic, genetic and phytopathological methods. Examples comprise Lecanosticta-needlecast of pines (caused by Mycosphaerella dearnessii), dogwood anthracnose (Discula destructiva). ash dieback associated with Chalara fraxinea and Phytophthora-diseases. Non-native sentinel hosts are regularly observed and fungi associated with symptoms are recorded. Within the context of this project, we are also involved in the FORTHREATS-network (Emerging Diseases and invasive Species Threats to European Forest Ecosystems).