Das Wassergütemessnetz 2 (WGMN2) stellt im Rahmen der nationalen und internationalen Meldepflichten aktuelle Daten der interessierten Öffentlichkeit zur Verfügung. Bürger, Schulen und Behörden haben ein reges Interesse an den Daten des WGMN. Deshalb werden die Daten in sechs stationären Gewässergütemessstationen im Zehn-Minuten-Takt aktualisiert. So stehen die erhobenen Parameter in Echtzeit zur Verfügung. Hierbei werden physikalische, hydrologische, meteorologische und biologische Messgrößen erfasst, die eine dynamische Sicht auf die Gewässerbeschaffenheit ermöglichen. Die Messstationen sind an ausgewählten Standorten an der Elbe, Havel, Teltowkanal, Oder und Neiße positioniert. Die Gewässergütemessstationen sind Bestandteil langfristig konzipierter Sanierungsmaßnahmen und dienen dem Nachweis der Gewässergüte und ihrer zeitlichen Veränderung im Rahmen von international abgestimmten Mess- und Untersuchungsprogrammen, der aktuellen Gewässerüberwachung (Warndienste), der Beweissicherung und der Gewinnung von wasserwirtschaftlichen Informationen. Das WGMN trägt dazu bei, dass Auswirkungen von Störfällen bei Industriebetrieben oder von Schiffsunglücken zeitnah ermittelt und zügig Maßnahmen ergriffen werden können. Aber auch kleinere Verunreinigungen wie illegal entsorgtes Altöl vom Auto fallen durch die Messungen schnell auf. Mit der Erkennung von akuten Verschmutzungen und dem Erfassen langfristiger Trends dient das WGMN auch dazu, entsprechende Forderungen der Europäischen Wasserrahmenrichtlinie in Brandenburg umzusetzen. Hier können alle Datensätze abgerufen werden. Derzeit werden die Messwerte im Netz als Grafiken dargestellt.
Der Hochpräzise Echtzeit Positionierungs-Service SAPOS-HEPS dient der satellitengestützten Positionsbestimmung mit einer Genauigkeit von 1 - 2 cm (Lage) und 2 - 5 cm (Höhe). Der Dienst stellt Beobachtungsdaten (Code und Trägerphase) von vier GNSS-Systemen (GPS, GLONASS, Galileo, BeiDou) zur Verfügung. Die Übertragung erfolgt durch Datenstreaming via Internet (Ntrip).
Der Echtzeit Positionierungs-Service SAPOS-EPS dient der satellitengestützten Positionsbestimmung mit einer Genauigkeit von 0,3 bis 0,8 Meter. Der Dienst stellt Korrekturen und Änderungsraten für die Code-Beobachtungen von GPS- und GLONASS-Satelliten im Format RTCM 2.3 (Radio Technical Commission for Maritime Services) zur Verfügung. Die Übertragung erfolgt durch Datenstreaming via Internet (Ntrip).
Das Projekt "Teilvorhaben 2: Entwurf des Rahmens für einen digitalen Coach" wird vom Umweltbundesamt gefördert und von Forschungsgesellschaft für Arbeitsphysiologie und Arbeitsschutz e.V. - Leibniz-Institut für Arbeitsforschung an der TU Dortmund (IfADo) durchgeführt. In Europa werden jedes Jahr mehr als 400 Millionen m3 Holz geerntet. Moderne Holzerntemaschinen gestalten den Holzernteprozess weitaus rationeller als bei der konventionellen motormanuellen Holzernte mittels Motorsäge. Diese sogenannten Cut-to-length-Systeme (CTL) erfassen bei der technischen Holzproduktion detaillierte Daten über jeden Baum. Diese Daten gewinnen zunehmend an Bedeutung für ihre Nutzung außerhalb des eigentlichen Produktionsprozesses als Basis für die nachhaltige Bewirtschaftung der europäischen Wälder. Allerdings erfordert die Bedienung dieser Spezialmaschinen eine fachbezogenen Aus- oder Weiterbildung mit langwierigen, intensiven Übungen, damit die erforderlichen Kenntnisse und Fähigkeiten erlangt werden. Die Übungsdauer beträgt in der Regel ein Jahr bis die Übungsschwelle und bis zu drei Jahren bis die volle Leistungsfähigkeit erreicht wird. Dennoch weisen Absolventen aktueller Ausbildungsprogramme und selbst Maschinenführer mit langjähriger Erfahrung Produktivitätsunterschiede von bis zu 40% auf. Um den Ausbildungs- und Übungsprozess wirksamer zu gestalten und auch bei routinierter Maschinenbedienung ein hohes Leistungsniveau zu sichern, werden im Projekt neue Coaching-, Assistenz- und Feedback-Systeme für Neueinsteiger und erfahrene Führer von Holzernte- und Holzrückemaschinen entwickelt. Diese sollen dem Forstmaschinenführer eine Eigenkontrolle seiner Leistungsfähigkeit ermöglichen, ihm außerdem Verbesserungsbereiche aufzeigen und im laufenden Betrieb Hilfestellung geben. Methoden der Kognitionswissenschaft werden angewendet, um gezieltes Feedback in geeigneten Formaten und zu optimalen Zeitpunkten bereitzustellen, die die Wahrnehmung und das Verständnis des Bedieners fördern und ihn zu ausgewogeneren Arbeitsmethoden und -techniken anleiten. Dadurch trägt das Projekt zur Effizienzsteigerung, einer verbesserten Nutzung der Holzressourcen und zur Gestaltung eines besseren und sichereren Arbeitsplatzes bei.
Das Projekt "Teilvorhaben 3: Prototyp Realisierung des digitalen Coaches mit Potenzialanalyse" wird vom Umweltbundesamt gefördert und von Landesbetrieb Wald und Holz Nordrhein-Westfalen durchgeführt. Ein digitales Coaching-, Assistenz- und Feedback-System soll Produktivität und Arbeitszufriedenheit von Forstmaschinenführern bei verringerter mentaler Belastung verbessern und die Ausbildung von Nachwuchskräften attraktiver und effizienter gestalten. Damit soll ein wesentlicher Beitrag geleistet werden, Wertschöpfung und Ressourcenausnutzung im Sinne einer nachhaltigen und wettbewerbsfähigen europäischen Bio-Ökonomie zu steigern. Das übergeordnete Ziel dieses Arbeitspakets, besteht darin, die in den Arbeitspaketen 2 und 3 entwickelten Systeme zu testen und zu bewerten und Empfehlungen für die zukünftige Entwicklung und Implementierung einer Bedienerschnittstelle mit optimalem Zeitpunkt der Feedback-Interpretation (aus Arbeitspaket 5) für die Entscheidungsunterstützung zu geben. Ziel 6.1: Der Prototyp des digitalen Coaches wird in Forstmaschinen in Deutschland und Skandinavien integriert und auch als Testumgebung in den Simulatoren des FBZ eingesetzt. Bei der Bewertung der Anwendungsfälle wird die Verbesserung der Logistikkette Wald-Holz durch die Pilotfälle kritisch bewertet. Darüber hinaus zeigt die Bewertung der Interessengruppen und der Nutzer der Piloten, wie gut das Projekt die Marktanforderungen erfüllt, was für alle am Projekt beteiligten Partner von entscheidendem Interesse ist Ziel 6.2: Der Ansatz des Projektkonsortiums in Bezug auf Schulungen besteht darin, sicherzustellen, dass das erworbene Wissen von den Nutzern optimal angewendet werden kann. Das Forstliche Bildungszentrum in Nordrhein-Westfalen bietet dazu optimale Voraussetzungen. Es werden mit Hilfe moderner Simulationstechnik und Echtmaschinen permanent Schulungen für Bediener von Forstmaschinen durchführt. Man bietet diese Kurse nicht nur auf nationaler Ebene, sondern auch auf internationaler Ebene an. (Es bestehen beispielsweise Kooperationen mit der Schweiz).
Das Projekt "Teilvorhaben 1: Umsetzung eines Systemansatzes für Harvester und Forwarder Interaktion" wird vom Umweltbundesamt gefördert und von Georg-August-Universität Göttingen, Burckhardt-Institut, Abteilung Arbeitswissenschaft und Verfahrenstechnologie durchgeführt. Ein digitales Coaching-, Assistenz- und Feedback-System soll Produktivität und Arbeitszufriedenheit von Forstmaschinenführern bei verringerter mentaler Belastung verbessern und die Ausbildung von Nachwuchskräften attraktiver und effizienter gestalten. Damit soll ein wesentlicher Beitrag geleistet werden, Wertschöpfung und Ressourcenausnutzung im Sinne einer nachhaltigen und wettbewerbsfähigen europäischen Bio-Ökonomie zu steigern. Teilvorhaben 1: Umsetzung eines Systemansatzes für Harvester und Forwarder Interaktion Die Arbeitsproduktivität von Kranvollerntern wird weitgehend durch Bestandesbedingungen und Geländeausformung bestimmt. Dagegen wird die Produktivität von Kranrückezügen maßgeblich von der Ausführung der Holzernte einschließlich der Ablage der Rundholzabschnitte an der Rückegasse bestimmt. Daher sind neben der Rückedistanz insbesondere die Ladebedingungen im Bestand, die Vorkonzentration einzelner Sortimente, die Ablageseite der Abschnitte an der Rückegasse sowie die gebündelte Ablage von Abschnitten wesentliche Faktoren für die Dauer der Ladefahrt und damit für den Zeitbedarf eines Rückezyklus. Ziel dieses Teilvorhabens ist es daher, technische Lösungen für eine intensive Interaktion zwischen den Forstmaschinenführern des Kranvollernters und des Kranrückezuges zu entwickeln. Diese sollen zum einen Echtzeitaustausch erfolgsbestimmender Informationen zwischen den Forstmaschinenführern gewährleisten, zum anderen soll die Effizienz der Rückezyklen durch verbesserte Vorkonzentration von Rundholzabschnitten durch den Kranrückezug gesteigert werden.
Das Projekt "European Network on New Sensing Technologies for Air-Pollution Control and Environmental Sustainability (EuNetAir)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt. The main objective of the Action is to develop new sensing technologies for Air Quality Control at integrated and multidisciplinary scale by coordinated research on nanomaterials, sensor-systems, air-quality modelling and standardised methods for supporting environmental sustainability with a special focus on Small and Medium Enterprises. ABSTRACT AND KEYWORDS: This Action will focus on a new detection paradigm based on sensing technologies at low cost for Air Quality Control (AQC) and set up an interdisciplinary top-level coordinated network to define innovative approaches in sensor nanomaterials, gas sensors and devices, wireless sensor-systems, distributed computing, methods, models, standards and protocols for environmental sustainability within the European Research Area (ERA). The state-of-the-art showed that research on innovative sensing technologies for AQC based on advanced chemical sensors and sensor-systems at low-cost, including functional materials and nanotechnologies for eco-sustainability applications, the outdoor/indoor environment control, olfactometry, air-quality modelling, chemical weather forecasting, and related standardisation methods is performed already at the international level, but still needs serious efforts for coordination to boost new sensing paradigms for research and innovation. Only a close multidisciplinary cooperation will ensure cleaner air in Europe and reduced negative effects on human health for future generations in smart cities, efficient management of green buildings at low CO2 emissions, and sustainable economic development. The objective of the Action is to create a cooperative network to explore new sensing technologies for low-cost air-pollution control through field studies and laboratory experiments to transfer the results into preventive real-time control practises and global sustainability for monitoring climate changes and outdoor/indoor energy efficiency. Establishment of such a European network, involving Non-COST key-experts, will enable EU to develop world capabilities in urban sensor technology based on cost-effective nanomaterials and contribute to form a critical mass of researchers suitable for cooperation in science and technology, including training and education, to coordinate outstanding R&D and promote innovation towards industry, and support policy-makers.
Das Projekt "Floating sensorised networked robots for water monitoring (HYDRONET)" wird vom Umweltbundesamt gefördert und von Universitari e di Perfezionamento Sant Anna, Scuola Superiore di Studi durchgeführt. Objective: Water is one of our most precious and valuable resources. It is important to determine how to fairly use, protect and preserve water. New strategies and new technologies are needed to assess the chemical and ecological status of water bodies and to improve the water quality and quantity. The relatively recent progress in micro-electronics and micro-fabrication technologies has allowed a miniaturization of sensors and devices, opening a series of new exciting possibilities for water monitoring. Moreover, robotics and advanced ICTbased technology can dramatically improve detection and prediction of risk/crisis situations, providing new tools for the global management of the water resources. The HydroNet proposal is aimed at designing, developing and testing a new technological platform for improving the monitoring of water bodies based on a network of autonomous, floating and sensorised mini-robots, embedded in an Ambient Intelligence infrastructure. Chemo- and bio-sensors, embedded in the mobile robots will be developed and used for monitoring in real time physical parameters and pollutants in water bodies. Enhanced mathematical models will be developed for simulating the pollutants transport and processes in rivers, lakes and sea. The unmanaged, self-assembling and self-powered wireless infrastructure, with an ever-decreasing cost per unit, will really support decisional bodies and system integrators in managing water bodies resources. The robots and sensors will be part of an Ambient Intelligence platform, which will integrate not only sensors for water monitoring and robot tasks execution, but also communications backhaul systems, databases technologies, knowledge discovery in databases (KDD) processes for extracting and increasing knowledge on water management. Following the computation on stored data, feedback will be sent back to human actors (supervisors, decision makers, industrial people, etc.) and/or artificial actuators, in order to perform actions.
Das Projekt "Improving the verification of non-CO2 greenhouse gas emissions in Europe by the Rn-222 tracer method" wird vom Umweltbundesamt gefördert und von Universität Basel, Department Umweltwissenschaften, Humangeographie , Stadt- und Regionalforschung durchgeführt. Non-CO2 greenhouse gases (CH4, N2O, SF6, halocarbons) are responsible for 37 Prozent of the anthropogenic contribution to global warming. Some of these gases (N2O, SF6, chlorinated and brominated halocarbons) are in addition destructive to the stratospheric ozone layer. Regional emission estimates of non-CO2 greenhouse gases are currently much more uncertain than for CO2. Mostly, they are based on 'bottom-up' approaches relying on inventories of known sources and expected emission functions. The 222Rn flux map of Europe produced in the preceding project permits today a more reliable real-world assessment by the 222Rn tracer method, a so-called 'top-down' approach. In previous studies, source strength of 222Rn has been a major uncertainty. Substantial reduction of uncertainty has been achieved so far and further improvements are aimed for in the present project. Future improvements include in particular a better temporal resolution of the 222Rn flux map. Current developments within the EU-driven European Radiological Data Exchange Platform (EURDEP) open the possibility for quasi real-time updates of the European 222Rn source term. The source strength of 222Rn is a key parameter for estimating the source strength of any gas of interest, based on concentration differences observed in the atmospheric boundary layer over time in both, the gas of interest and 222Rn. There are two ways to obtain concentration differences over time. One is during pollution events at otherwise remote 'background' stations. This approach is followed in an associated project at Jungfraujoch (main applicant: Stefan Reimann, EMPA), where we will contribute the 222Rn related parameters. The other approach is to obtain concentration differences during changes in mixing layer height as observed during nocturnal inversions. This aproach will be applied to the measurement of non-CO2 greenhouse gases in the central part of Eastern Europe (Hungary). Emissions from this region just east of the Alpine Ridge are highly uncertain and can not be detected at Jungfraujoch using the first approach.
Das Projekt "SEismic and tsunami risk Assessment and mitigation scenarios in the western HELLenic ARC (SEAHELLARC)" wird vom Umweltbundesamt gefördert und von GEOPRO Gesellschaft für geophysikalische Untersuchungen mbH durchgeführt. The western part of the Hellenic Arc, between Pirgos and Pylos, western Peloponnese, has been repeatedly affected by large magnitude earthquakes that have caused severe destruction and human loss. Some of the largest regional tsunamis in the Mediterranean Sea have also been reported in association with large earthquakes, affecting remote coastal areas, whereas many other earthquakes have caused local but strong tsunami waves. This part of Greece, with its extensive coastal zones, is economically important for its touristic and agriculture activities. Despite the significant progress in construction and earthquake engineering standards, the population growth and extensive urbanization have caused the risk from earthquakes to increase significantly during the recent years. Also a large number of the existing buildings were constructed before the introduction of Greece's first building code of 1959, and are therefore very vulnerable. This situation requires urgent solutions for an effective risk management and mitigation plan. AIM of this proposal is to establish a real-time on/offshore network for simultaneous seismic and tsunami observations in the coastal zones of western Peloponnese. We will consider onshore/offshore observations and integrate offshore real-time data transmission stations in the permanent seismograph network of Greece. Such technology is still missing in Greece or elsewhere in the Mediterranean countries. By observing seismicity in real-time, early warning scenarios will be considered and their possible application will be proposed to local authorities. As a final step, we will provide a pilot study for Pylos and create a GIS database for seismic and tsunami risk and mitigation scenarios. Prime Contractor: Hellenic Centre for Marine Research; Anavissos; Greece.