Das Projekt "Iron cycling in freshwater sediments under oxic and anoxic conditions" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe Geomikrobiologie durchgeführt. Eisen gehört zu den quantitativ bedeutendsten Elementen in der Erdkruste. Darüber hinaus gehört es zu den häufigsten redoxaktiven Elementen in oberflächennahen aquatischen Ökosystemen und spielt eine Schlüsselrolle für das Umweltverhalten zahlreicher Nähr- (z.B. Phosphor) und Schadstoffe (z.B. toxische Metallionen wie Arsen und organische Verbindungen wie Nitroaromaten oder Organohalogene). Obwohl seit langem bekannt ist, dass Mikroorganismen zum globalen Eisenkreislauf beitragen, wurden die Wechselwirkungen und Interaktionen zwischen biotischen und abiotischen Reduktions- und Oxidationsprozessen in einem einzigen Ökosystem bis jetzt nicht komplett untersucht und beschrieben. Das beantragte Projekt erforscht deshalb den biogeochemischen Eisenkreislauf in einem repräsentativen Süßwasser-Ökosystem. Zu diesem Zweck werden physiko-chemische Parameter, Redoxgradienten und die Zusammensetzung der mikrobiellen Gemeinschaft im littoralen Sediment des Bodensees untersucht. Die erhaltenen Daten werden verwendet, um die biogeochemischen Prozesse im Sediment zu modellieren und das verfügbare Energiebudget für mikrobielles Wachstum, insbesondere für die Oxidation von Fe(II) und Reduktion von Fe(III), zu quantifizieren. Die Ergebnisse dieser Modellierung werden mit dem Vorkommen entsprechender Mikroorganismen qualitativ und quantitativ verglichen. Weiterhin soll durch den Modellierungsansatz bestimmt werden, welche Prozesse sich unter verschiedenen Bedingungen während der Kompetition von abiotischen und biotischen Prozessen im Eisenkreislauf durchsetzen. Die Resultate dieses Forschungsprojektes werden wichtige Informationen für das mikrobiell-ökologische und umweltwissenschaftliche Verständnis von Böden und Sedimenten liefern. Weiterhin können die Schlussfolgerungen und entwickelten Konzepte für ingenieurwissenschaftliche Projekte im Bereich der Wasseraufbereitung von großem Nutzen sein.
Das Projekt "Untersuchung der Neutralisierungsprozesse in Sedimenten saurer Braunkohletagebaurestseen zur Abschaetzung der Langzeitentwicklung" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Lehrstuhl für Hydrologie, Limnologische Station durchgeführt. In fuenf verschiedenen sauren Restseen einer Restlochkette des ehemaligen Tagebaugebiets Plessa/Gruenewalde wurden verschiedene geochemische und mikrobiologische Aspekte hinsichtlich der Frage der Langzeitentwicklung der Gewaesserguete untersucht. Hauptaugenmerk wurde auf den Restsee 77 gelegt, der im unmittelbaren Abstrom hochmineralisierten Kippenwassers liegt und den Beginn der Seenkette markiert. Die anderen Seen sind ueber ein Grabensystem mit dem Restsee 77 verbunden. Ein gutes Mass fuer die Menge an Aziditaet, die in den Sedimenten der Restseen neutralisiert wurde, ist der Gehalt an reduziertem Schwefel, der sich im Sediment akkumuliert hat. Dieser nimmt mit zunehmender Entfernung zu den Kippen zu. Im selben Masse sinkt auch die Aziditaet des Seewassers, d.h. die Basenpufferungskapazitaet. Ausschlaggebend fuer die im Sediment akkumulierte Menge an reduziertem Schwefel ist der Eintrag von dreiwertigem Eisen in das Sediment, da dadurch der Elektronenfluss im Sediment entscheidend beeinflusst wird. Im Restsee 77, dem am staerksten vom Eiseneintrag gepraegten See, wirkt sich dies auf zweierlei Weise aus: Zum einen bildet sich ein stabiler Eisenkreislauf an der Sediment-Wasser-Grenzschicht aus, der permanent Aziditaet generiert und damit die mikrobielle Sulfatreduktion unterdruekt. Zum anderen findet in der darunter liegenden Zone der Sulfatreduktion eine anaerobe Oxidation von Sulfid an Eisenoxiden statt, die einer Fixierung von Sulfidschwefel entgegen wirkt. Einen ganz entscheidenden Einfluss auf den Saeure-Base-Haushalt von Restsee 77 hat die Bildung von Schwertmannit im See, einem Eisenoxihydroxosulfat, der als Aziditaetsspeicher absedimentiert und seine Aziditaet durch Transformation zu Goethit im Sediment wieder abgibt. Durch diese Protonenpumpe erfolgt eine zusaetzliche Stabilisierung der metabolischen Aktivitaet auf der dissimilatorischen Eisenreduktion, so dass auch langfristig nicht mit einer nennenswerten Eisensulfidbildung im Sediment zu rechnen ist. Aus diesem Grunde wird auch in Zukunft Restsee 77 eine hohe Konzentration alt Aziditaet aufweisen. Im Gegensatz dazu ist sowohl die Sulfidakkumulation als auch die Sulfatreduktion in den im Abstrom gelegenen Restseen deutlich ausgepraegter. Trotz des Mangels an biologisch verfuegbaren Kohlenstoffs entspricht die Neutralisationsrate Werten, wie sie auch in anderen, durch atmosphaerische Saeureeintraege gepraegten Seen beobachtet wurden. Dies ist nach unserer Einschaetzung auf die Retention von Eisen im Restsee 77 zurueckzufuehren, so dass die fuer diesen See beobachteten Folgen des Eiseneintrags in den abstromig liegenden Seen, denen zusaetzlich weniger mineralisiertes Grundwasser zufliesst, deutlich vermindert sind. Diesen Effekt koennte man nach unseren Untersuchungen noch erheblich steigern, wenn man den Eisenfluss in die abstromigen Seen weiter verringert. Wir schlagen daher eine gezielte Rueckhaltung von Eisen im Restsee 77 vor.