API src

Found 184 results.

Verhaltensversuche zu Fragen der Magnetfeldperzeption bei Vögeln

Voraussagen, die sich aus den beiden zur Zeit diskutierten Hypothesen zur Perzeption des Magnetfelds - über Photopigmente und über Magnetit - ergeben, sollen mit verhaltensbiologischen Methoden an Zugvögeln und Brieftauben überprüft werden. Zur Frage der Beteiligung lichtabhängiger Prozesse soll das Orientierungsverhalten unter Licht verschiedener Wellenlängen und Intensitäten sowie unter Mischlicht untersucht werden, und zwar bei unterschiedlichen Zuständen der Adaptation. Zur Frage der Beteiligung von Magnetit ist zum einen geplant, die Magnetisierung solcher Teilchen durch Pulsmagnetisierung zu verändern und die Auswirkungen auf das Orientierungsverhalten zu untersuchen, zum anderen soll überprüft werden, ob die kürzlich in der Schnabelhaut von Tauben gefundenen Magnetkristalle tatsächlich an der Magnetperzeption beteiligt sind.

Nachhaltiges Eisenenergiesystem für Industrie und Haushalt, Teilprojekt: Energiespeicherung durch Eisenoxid-Reduktion

Nutzung eisenbasierter Module zur Versorgung mit hochreinem Wasserstoff unter Druck auf der Basis der Luftvergasung biogener Reststoffe, Teilvorhaben: Reinigung wasserstoffhaltiger Gase aus der Biomassevergasung, Speicherung und Generierung hochreinen Wasserstoffes

Micro-scaled hydraulic heterogeneity in subsoils

Nutrient and water supply for organisms in soil is strongly affected by the physical and physico-chemical properties of the microenvironment, i.e. pore space topology (pore size, tortuosity, connectivity) and pore surface properties (surface charge, surface energy). Spatial decoupling of biological processes through the physical (spatial) separation of SOM, microorganisms and extracellular enzyme activity is apparently one of the most important factors leading to the protection and stabilization of soil organic matter (SOM) in subsoils. However, it is largely unknown, if physical constraints can explain the very low turnover rates of organic carbon in subsoils. Hence, the objective of P4 is to combine the information from the physical structure of the soil (local bulk density, macropore structure, aggregation, texture gradients) with surface properties of particles or aggregate surfaces to obtain a comprehensive set of physical important parameters. It is the goal to determine how relevant these physical factors in the subsoil are to enforce the hydraulic heterogeneity of the subsoil flow system during wetting and drying. Our hypothesis is that increasing water repellency enforces the moisture pattern heterogeneity caused already by geometrical factors. Pore space heterogeneity will be assessed by the bulk density patterns via x-ray radiography. Local pattern of soil moisture is evaluated by the difference of X-ray signals of dry and wet soil (project partner H.J. Vogel, UFZ Halle). With the innovative combination of three methods (high resolution X-ray radiography, small scale contact angle mapping, both applied to a flow cell shaped sample with undisturbed soil) it will be determined if the impact of water repellency leads to an increase in the hydraulic flow field heterogeneity of the unsaturated sample, i.e. during infiltration events and the following redistribution phase. An interdisciplinary cooperation within the research program is the important link which is realized by using the same flow cell samples to match the spatial patterns of physical, chemical, and biological factors in undisturbed subsoil. This cooperation with respect to spatial pattern analysis will include the analysis of enzyme activities within and outside of flow paths and the spatial distribution of key soil properties (texture, organic carbon, iron oxide content) evaluated by IR mapping. To study dissolved organic matter (DOM) sorption in soils of varying mineral composition and the selective association of DOM with mineral surfaces in context with recognized flow field pattern, we will conduct a central DOM leaching experiment and the coating of iron oxides which are placed inside the flow cell during percolation with marked DOM solution. Overall objective is to elucidate if spatial separation of degrading organisms and enzymes from the substrates may be interconnected with defined physical features of the soil matrix thus explaining subsoil SOM stability and -dynami

Dynamic (redox) interfaces in soil - Carbon turnover in microbial biomass and flux into soil organic matter

Existing models of soil organic matter (SOM) formation consider plant material as the main source of SOM. Recent results from nuclear magnetic resonance analyses of SOM and from own incubation studies, however, show that microbial residues also contribute to a large extent to SOM formation. Scanning electron microscopy showed that the soil mineral sur-faces are covered by numerous small patchy fragments (100 - 500 nm) deriving from microbial cell wall residues. We will study the formation and fate of these patchy fragments as continuously produced interfaces in artificial soil systems (quartz, montmorillonite, iron oxides, bacteria and carbon sources). We will quantify the relative contributions of different types of soil organisms to patchy fragment formation and elucidate the effect of redox con-ditions and iron mineralogy on the formation and turnover of patchy fragments. The develop-ment of patchy fragments during pedogenesis will be followed by studying soil samples from a chronosequence in the forefield of the retreating Damma glacier. We will characterize chemical and physical properties of the patchy fragments by nanothermal analysis and microscale condensation experiments in an environmental scanning electron microscope. The results will help understanding the processes at and characteristics of biogeochemical interfaces.

Nutzung eisenbasierter Module zur Versorgung mit hochreinem Wasserstoff unter Druck auf der Basis der Luftvergasung biogener Reststoffe, Teilvorhaben: Bereitstellung wasserstoffhaltiger Reduktionsgase aus der Biomassevergasung für den Speicher- und Reinigungsprozess

Sorption und Transformation von Aminopolyphosphonat-Komplexbildnern in natürlichen und technischen Systemen - Prozessaufklärung durch komponentenspezifische Isotopenanalyse

Aminopolyphosphonate (APPs) sind starke Komplexbildner für Metalle, die zunehmend in der Industrie und im Haushalt eingesetzt werden. Sie sind gut wasserlöslich, nicht flüchtig und besitzen eine geringe Affinität zu organischen Phasen. Dennoch scheint in Kläranlagen die Sorption an Klärschlamm ein wichtiger Eliminierungssprozess zu sein. Die Polyphosphonat-Konzentrationen in deutschen Flüssen liegen derzeit im ng L-1- bis niedrigen µg L-1 Bereich. Es wird jedoch ein Anstieg der Polyphosphonat-Konzentrationen aufgrund einer erhöhten Produktion und Nutzung vorhergesagt. Das Umweltverhalten dieser Substanzen kann derzeit jedoch nicht zuverlässig abgeschätzt werden, was in erster Linie auf Wissenslücken bezüglich der Bedeutung von Sorptions- und Abbauprozessen für die Gesamtentfernung von APPs in natürlichen und technischen Systemen zurückzuführen ist. Darüber hinaus sind die Reaktionsmechanismen und -wege von AAPs nicht vollständig identifiziert. Dies erschwert sowohl die Vorhersage der Auswirkungen von Umweltparametern auf den Verbleib von APPs als auch die Entwicklung von Verfahren zur effizienten Entfernung in technischen Systemen. Ziel der vorgeschlagenen Forschung ist es daher, Sorbentien, Reaktanten und Umweltbedingungen zu identifizieren, die die Entfernung von APPs aus natürlichen Gewässern und in der Wasseraufbereitung begünstigen. Wir schlagen vor, die Auswirkungen wichtiger Umweltparameter (z.B. pH-Wert, Komplexbildung) auf Sorptions- und Abbausprozesse von APPs in sorgfältig konzipierten Laborexperimenten an zwei Vertretern dieser Substanzklasse zu untersuchen: ATMP (Amino-tris(methylenphosphonsäure) und EDTMP (Ethylendiamin-tetra¬(methylenphosphonsäure). Durch die Kombination von Isotopenanalyik und hochauflösender Massenspektrometrie unter Einbeziehung weiterer moderner Verfahren sollen die wichtigsten Sorptions- und Abbauprozesse sowie die Umwandlungsprodukte von APPs identifiziert werden. Die vorgeschlagenen Forschungsarbeiten umfasse drei Teilbereiche. Zunächst soll die Sorption von APPs an Eisen(hydr-)oxiden, Tonmineralen und Aktivkohle/Biokohle untersucht und die potenziellen Isotopenfraktionierungseffekte aufgrund der Sorption quantifiziert werden. Dann werden wir uns mit den natürlichen Umwandlungsprozessen von AAPs befassen, wobei der Schwerpunkt auf der Oxidation durch Manganoxide und der direkten Photolyse von APP-Fe(III)-Komplexen liegt. Schließlich werden AAP-Abbauprozesse in technischen Systemen wie Ozonolyse und elektrochemischen Oxidation untersucht.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Untersuchung der Rolle biologischer Eisenreduktion als lebenserhaltenden Prozess am potentiellen Temperaturlimit der tiefen Biosphäre in marinen Sedimenten (IODP Expedition 370) (RESPIRE)

Dieses Projekt trägt zu Forschungsfragen der IODP Expedition 370: T-Limit of the Deep Biosphere off Muroto bei. Die Temperatur an Site C0023 (Nankai Trog, Japan) steigt bis 1.2 km Tiefe auf ca. 120 Grad C an - das Maximum dessen, was potentiell von Mikroorganismen toleriert werden kann. Nährstoffarme tiefe Sedimente werden wahrscheinlich bei 80-90 Grad C sterilisiert. Ziel der Expedition war es, herauszufinden, wie und gesteuert durch welche Faktoren sich die Mikroorganismen-Vergesellschaftung mit der Tiefe ändert und wo Leben erlischt. Teil des wissenschaftlichen Programms ist die Untersuchung mikrobiell nutzbarer Substrate und eindeutiger geochemischer und mikrobieller Signaturen, die eine Identifizierung von biotischem und abiotischem Bereich bzw. dessen Übergang ermöglichen. Es wurden hochauflösende und präzise Porenwasserdaten gewonnen, die Reaktionsfronten, potentielle mikrobielle Aktivität und hydrothermale Überprägung anzeigen. Ein Teil der Sedimente ist Methan- und Sulfat-frei. Mikrobielle Aktivität hängt also von anderen Elektonenakzeptoren als Sulfat ab. Aktuelle Studien zeigen, dass die klassische Redoxkaskade durch Fe- und Mn-Reduktion in methanführenden Sedimenten ergänzt werden muss und, dass biogeochemische Prozesse in natürlichen Systemen stärker durch Mineralogie als durch eine strikte Abfolge von Reaktionen, die sich aus theoretischen Berechnungen ergibt, bestimmt sind. Fe(III)-Reduktion ist eine der ältesten Formen der mikrobiellen Respiration. Eisenreduzierer können unter hohen T- und Druckbedingungen wachsen, was nahelegt, dass diese einen Großteil der tiefen Biosphäre ausmachen. Fe- und Mn wird in Sedimenten von Lokation C0023 freigesetzt. Durch sequentielle Extraktionen soll aufgezeigt werden, welche Fe- und Mn-Phasen als Elektronenakzeptoren verfügbar sind und wie stark primäre Minerale diagenetisch überprägt wurden. Von besonderem Interesse sind Aschelagen, die an anderer Stelle bereits als Hotspots für mikrobielles Leben identifiziert wurden. Diese sind zahlreich in C0023 Sedimenten und typischerweise reich an Fe und Mn. Mikrobielle Fe-Reduktion führt zu einer Anreicherung von 54Fe im Porenwasser und sich daraus bildenden authigenen Mineralen (z.B. Siderit, Magnetit). Dementgegen führen abiotische Reaktionen mit Sulfid zu einer Anreicherung von 56Fe in der gelösten Phase. Stabile Fe-Isotope von gelöstem Fe2+ und reaktivem Fe in der Festphase sollen genutzt werden, um biologische und abiotische Fe-Reduktion zu unterscheiden. Die d56Fe Signatur wird an Karbonat-gebundenem Fe, der Ferrihydrit+Lepidkrokit-Fraktion, Goethit+Hämatit sowie Magnetit gemessen. Weiterhin soll das Ausmaß der Sulfidisierung, die Auswirkungen auf die Interpretation von Daten zu magnetischen Eigenschaften hat, durch sequentielle Extraktion von Fe-Monosulfiden und Pyrit erfasst werden. Ziel des Projekts ist es, die Rolle von Eisenoxiden für mikrobielle Respiration und entsprechende diagenetische Alterationen in tiefen Sedimenten von Site C0023 zu erfa

Biogeochemical interface formation in soils as controlled by different components

We consider clay minerals, iron oxides and charcoal as major components controlling the formation of interfaces relevant for sorption of organic chemicals, as they control the assemblage of organic matter and mineral particles. We studied the formation of interfaces in batch incubation experiments with inoculated artificial soils consisting of model compounds (clay minerals, iron oxide, char) and natural soil samples. Results show a relevant contribution of both iron oxides and clay minerals to the formation of organic matter as sorptive interfaces for hydrophobic compounds. Thus, we intend to focus our work in the second phase on the characterization of the interface as formed by organic matter associated with clay minerals and iron oxides. The interfaces will be characterized by the BET-N2 and ethylene glycol monoethyl ether (EGME) methods and 129Xe and 13C NMR spectroscopy for determination of specific surface area, sorptive domains in the organic matter and microporosity. A major step forward is expected by the analysis of the composition of the interface at different resolution by reflected-light microscopy (mm scale), SEM (scanning electron microscopy, micrometer scale) and secondary ion mass spectrometry at the nanometer scale (nanoSIMS). The outcomes obtained in combination with findings from cooperation partners will help to unravel the contribution of different types of soil components on the formation and characteristics of the biogeochemical interfaces and their effect on organic chemical sorption.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, DeepEarthshape: Geomikrobiologie 'eisenmetabolisierende Bakterien als treibende Kraft für die Verwitterung von Silikat-Mineralen'

Jahrzehntelange Forschung hat die zentrale Rolle von Mikroorganismen für Verwitterungsprozesse in geologischen Systemen gezeigt. Dieser wichtige mikrobielle Beitrag liegt u.a. darin begründet, dass Mikroorganismen Redox-Umwandlungsprozesse von in Mineralien eingeschlossenen Metallen katalysieren können. Im Rahmen dieser bisherigen Untersuchungen wurden v.a. verschiedene Mikroorganismen untersucht, die Eisen(II)-Minerale oxidieren oder Eisenoxid-Minerale reduzieren können, oder es wurde der Effekt von Fe(III)-reduzierenden Mikroorganismen auf Eisen(III)-haltige Tonminerale analysiert. Diese Prozesse mögen wichtige Reaktionen in Verwitterungungsprozessen sein, allerdings sind die erwähnten Minerale selbst Verwitterungsprodukte. Eisen-metabolisierende Bakterien könnten allerdings auch in größerem Maße zur vorherigen Entstehung von verwittertem Bodenmaterial beitragen, allerdings ist die Bedeutung solcher Prozesse bisher nicht bestimmt. Die Ökologie dieser Bakterien in Relation zum Alterungsprozesses des Bodens ist so gut wie unbekannt. Dieses fehlende Wissen der ökologischen Bedeutung ist unter anderem darin begründet, dass Eisen-metabolisierende Bakterien trotz ihrem signifikanten Einfluss auf die Biogeochemie oft in etwas geringerer Zahl, relativ zur gesamten mikrobiellen Population, vorkommen, und dadurch schwieriger zu untersuchen sind. Um den zu erwartenden bedeutenden Effekt von Eisen-metabolisierenden Bakterien auf die Entwicklung des Bodens zu untersuchen, ist eine ausgewählte Kombination aus hochsensiblen molekularen- und wachstums-basierten Experimenten nötig, welche für diese speziellen Mikroorganismen angepasst und entwickelt werden müssen oder bereits entwickelt worden sind. Die Hypothese dieses Projekts ist deshalb, dass sich die Gemeinschaft der Eisen-metabolisierenden Bakterien mit der geologischen Umgebung während der Ausbildung des Bodens gemeinsam mit- und weiterentwickeln wird, und deren Aktivität wiederum die Rate der Bodenausbildung beschleunigen wird. Im Rahmen des hier beantragten Projekts schlagen wir vor, diese Prozesse anhand der drastischen klimatischen Gradienten der chilenischen Küstenkordillere zu untersuchen. Hier kann die Korrelation zwischen Abundanz, Verteilung und Identität der Eisen-metabolisierenden Bakterien und der Art der vorkommenden Eisenquelle entlang des vertikalen Bodenprofiles unter Einwirkung von vier verschiedenen Klimaregimen untersucht werden. Wir werden unter anderem Mikrokosmos-Experimente durchführen, um den Einfluss dieser Bakterien auf die Verwitterungsrate von Eisensilikaten und Raten von Mineraltransformationen zu quantifizieren. Letzten Endes wollen wir damit zeigen, wie diese Mikroorganismen zur Ausgestaltung der Erdoberfläche beitragen.

1 2 3 4 517 18 19