Der Überfall Russlands auf die Ukraine sowie die folgende Energiekrise haben im vergangenen Winter den Betrieb von Kläranlagen beeinträchtigt. Zeitweise konnten die Anlagenbetreiber keine Fällmittel für die Behandlung des Abwassers mehr ordern. Betroffen von den Lieferengpässen waren auch Anlagen aus Sachsen-Anhalt. Umweltminister Prof. Dr. Armin Willingmann empfiehlt deshalb, die Lager rechtzeitig zu füllen. „Aktuell können die Betreiber von Kläranlagen wieder genügend Fällmittel am Markt beschaffen“, erklärte der Minister am Donnerstag. „Die Gelegenheit ist insoweit günstig, Lagerbestände aufzustocken.“ Fällmittel wie Eisen- und Aluminiumsalze kommen in Kläranlagen zum Einsatz, um Phosphor aus dem Abwasser zu entfernen. Gelangt zu viel Phosphor in Gewässer, kann dies starkes Algenwachstum und einen höheren Sauerstoffverbrauch auslösen, der Tier- und Pflanzenarten im Wasser bedroht. Im vergangenen Winter wichen Kläranlagenbetreiber engpassbedingt auf alternative Stoffe für die Abwasserbehandlung aus, um wasserrechtlich relevante Grenzwertüberschreitungen zu vermeiden. Eine dauerhafte Alternative stellen diese jedoch nicht dar, weil sie unter anderem weniger effektiv sind als Fällmittel aus Eisensalzen. Nach Angaben der Bund-Länder-Arbeitsgruppe Abwasser werden aufgrund gesunkener Energiepreise wieder mehr Fällmittel produziert, so dass sich die Versorgungslage für Kläranlagenbetreiber insgesamt entspannt hat. Sie müssten sich dennoch auf lange Lieferzeiten und höhere Preise einstellen. Dem Arbeitskreis zufolge könne auch eine erneute Mangellage noch nicht ausgeschlossen werden. „Unnötige Einleitungen von Phosphor in unsere Gewässer gilt es auch in Zukunft zu vermeiden. Hitze- und Trockenperioden stellen bereits jetzt eine große Belastung für die Ökosysteme dar“, betonte Willingmann. „Deshalb ist es notwendig, dass die Anlagenbetreiber rechtzeitig Vorkehrungen treffen, um einen reibungslosen Betrieb zu gewährleisten.“ Aktuelle Informationen zu interessanten Themen aus Wissenschaft, Energie, Klimaschutz und Umwelt gibt es auch auf den Social-Media-Kanäle n des Ministeriums bei Facebook , Instagram , LinkedIn , Mastodon und Twitter .
In der Folge des Angriffskriegs der Russischen Föderation auf die Ukraine zeichnet sich eine massive Verknappung von Betriebsmitteln für die Abwasserbehandlung (insbes. Eisensalze als Fällmittel für die Phosphor-Elimination in Kläranlagen) ab. Infolgedessen kann nicht ausgeschlossen werden, dass insbesondere die in der Abwasserverordnung festgelegten Grenzwerte für Phosphor und die Überwachungswerte nach dem Abwasserabgabengesetz teilweise erheblich überschritten werden. Das Gutachten untersucht, wie dies unter ordnungs- und abgabenrechtlichen Gesichtspunkten einzuschätzen ist und welche Handlungsoptionen die Regelungen den Behörden und den Betreibern eröffnen. Veröffentlicht in Texte | 147/2022.
In der Folge des Angriffskriegs der Russischen Föderation auf die Ukraine und der darauf zurückzuführenden Verwerfungen an den internationalen Energiemärkten zeichnet sich eine massive Verknappung von Betriebsmitteln für die Abwasserbehandlung (insbes. Eisensalze als Fällmittel für die Phosphor-Elimination in Kläranlagen) ab. Es ist zu erwarten, daß die Fällmittel bereits alsbald nur noch zu einem sehr hohen Preis oder auch überhaupt nicht mehr zu Verfügung stehen. Infolgedessen kann nicht ausgeschlossen werden, daß insbesondere die in der Abwas-serverordnung festgelegten Grenzwerte für Phosphor und die Überwachungswerte nach dem Abwasserabgabengesetz teilweise erheblich überschritten werden. Das Gutachten untersucht, wie diese Situation unter ordnungs- und abgabenrechtlichen Gesichtspunkten einzuschätzen ist und welche Handlungsoptionen die Regelungen den Behörden und den Betreibern eröffnen. Quelle: Forschungsbericht
Die Firma Hamburger Phosphorrecyclinggesellschaft mbH, Köhlbranddeich 3, 20457 Hamburg, hat bei der zuständigen Behörde für Umwelt und Energie, Immissionsschutz und Abfallwirtschaft, Abteilung Abfallwirtschaft, am 20.09.2018 zuletzt vervollständigt am 08.03.2019 die Genehmigung zur Errichtung und zum Betrieb einer Anlage zur Rückgewinnung von Phosphaten aus Klärschlammaschen sowie einen Antrag auf Zulassung des vorzeitigen Beginns für Errichtungsarbeiten auf dem Grundstück des Betriebsstandortes Köhlbranddeich 3 in Hamburg-Mitte, Gemarkung Steinwerder-Waltershof, auf dem Flurstück 1442 beantragt. Die Firma beabsichtigt die Errichtung und den Betrieb einer Anlage zur Rückgewinnung von Phosphaten aus Klärschlammaschen. Die Behandlungskapazität beträgt jährlich 22.000 t Klärschlammasche aus der Monoverbrennungsanlage des Klärwerks Köhlbrandhöft. Die Klärschlammasche wird durch Zugabe von Phosphorsäure aufgeschlossen, darin enthaltene Phosphate werden gelöst und können als zusätzliche Phosphorsäure zurückgewonnen werden. Während des Verfahrens werden auch Calcium und Aluminium- und Eisensalze aus der Asche entfernt. Calcium wird in Form von Gips zurückgewonnen, Aluminium- und Eisensalze sollen direkt im Klärwerk als Fällmittel verwendet werden. Das Vorhaben bedarf einer Genehmigung nach § 4 Abs. 1 BImSchG in Verbindung mit Nr. 8.8.1.1, Verfahrensart G des Anhangs 1 zur vierten Verordnung zur Durchführung des BImSchG (4. BImSchV). Es handelt sich um eine Anlage gemäß Artikel 10 der RL 2010/75/EU. Gemäß § 6 Satz 1 Gesetz über die Umweltverträglichkeitsprüfung (UVPG) in Verbindung mit Anlage 1 Nr. 8.5 ist eine Umweltverträglichkeitsprüfung durchzuführen.
Wie das Schwimmbad sauber bleibt Für die Badegäste unsichtbar arbeiten Wasseraufbereitungsanlagen im Verborgenen und sorgen für sauberes und hygienisch einwandfreies Wasser. Wie das funktioniert und was die Badegäste selbst für sauberes Wasser tun können, erklärt unser neuer Ratgeber "Rund um das Badewasser“. Haare und Hautschuppen, Kosmetika und Schweiß – die meisten Verschmutzungen im Beckenwasser stammen von den Badegästen selbst. Jeder Mensch ist von Mikroorganismen besiedelt. So gibt jeder von uns bei jedem Baden rund zwei Milliarden Mikroorganismen (Bakterien und Viren) ab. Davon stammen die meisten von unserer Haut und sind harmlose Bakterien. In Freibädern spielen auch Verunreinigungen aus der Luft eine Rolle. Neben Blättern, Tannen- und Fichtennadeln handelt es sich dabei meist um natürliche Stäube, aber auch um Vogelkot, der Krankheitserreger enthalten kann. Neben den meist harmlosen Mikroorganismen können aber auch solche ins Wasser gelangen, die weniger harmlos sind und sogar Erkrankungen wie Magen-Darm-Erkrankungen, Erkrankungen der Haut, der Augen, des Ohres und der Atemwege hervorrufen können. In Seen oder Flüssen erreichen diese durch die starke Verdünnung meist keine hohen Konzentrationen. Im Schwimmbecken ist das anders, hier ist die Badegastdichte sehr viel höher. Daher müssen Verunreinigungen und Mikroorganismen ständig aus dem Badewasser entfernt werden. Welche Bedingungen hierbei einzuhalten sind und wie ein Bad richtig betrieben wird, regelt die Norm DIN 19643 „Aufbereitung von Schwimm- und Badebeckenwasser“ (siehe Regeln und Normen zur Wasserqualität in Schwimmbädern ). Außerdem wird das Wasser anhand einiger sogenannter Indikatorbakterien oder „Anzeigerbakterien“ überwacht. Die Wasseraufbereitung erfolgt im Kreislauf und für die Badegäste unbemerkt. Das Beckenwasser ist ständig in Bewegung – über die Überlaufrinne ab Beckenrand in die Wasseraufbereitung und zurück in das Schwimmbecken. So wird verunreinigtes Badewasser ständig abtransportiert und gereinigtes frisches Wasser nachgeliefert. Flockung und Filtration Ein Schritt in der Aufbereitung von Schwimmbadwasser ist die Filtration des Wassers. Hierbei werden dem Wasser vor der Filtration Flockungsmittel, z.B. Aluminium oder Eisensalze zugesetzt. Schmutzstoffe (zum Beispiel Kosmetika und Mikroorganismen) verbinden sich mit dem Flockungsmittel zu größeren Flocken, die im Filter zurückgehalten werden können. Auch die sogenannte Ultrafiltration wird zur Abtrennung von geflockten Schmutzstoffen aus dem Schwimmbadwasser eingesetzt. Das aufzubereitende Wasser wird bei diesem Verfahren mit Druck durch poröse Membranen gepresst. Aktivkohle, Ozon, UV-Licht Mit der Flockung und Filtration ist es nicht möglich, gelöste chemische Stoffe wie z. B. Harnstoff, das für den typischen Hallenbadgeruch verantwortliche Trichloramin, aus dem Schwimmbadwasser zu entfernen. Dafür gibt es unterschiedliche andere Möglichkeiten. Zum Beispiel wird das Wasser mit Aktivkohle gereinigt. An der porösen Oberfläche bleiben die gelösten Stoffe haften und werden so aus dem Wasser entfernt. Das Gas Ozon wird vor allem in Therapiebädern ins Badewasser gemischt. Das reaktionsfreudige Gas Ozon zerstört viele Wasserinhaltsstoffen (z. B. Harnstoff). Gleichzeitig werden durch Ozon Mikroorganismen, darunter mögliche Krankheitserreger, im Wasser abgetötet. Da Ozon giftig ist, wird es anschließend in einem Aktivkohlefilter wieder aus dem gereinigtem Badewasser entfernt. Auch die Bestrahlung mit ultraviolettem Licht (UV-Bestrahlung) wird bei der Entfernung von unerwünschten gelösten Verbindungen aus dem Badewasser eingesetzt. Chlor Kurz bevor das aufbereitete und nun saubere Wasser in das Becken zurückströmt, fügt man ihm Chlor zur Desinfektion zu. Die von den Badegästen ins Beckenwasser eingetragenen Bakterien und Viren, darunter eventuell Krankheitserreger, werden von dem Desinfektionsmittel innerhalb kurzer Zeit an Ort und Stelle im Becken wirksam dezimiert, bevor sie einem anderen Badegast gefährlich werden könnten. Etwas Chlor im Wasser, gewissermaßen als Depot, ist daher zum Schutz vor Ansteckung notwendig. Viele weitere Informationen finden Sie in unserem Ratgeber Rund um das Badewasser .
Im Rahmen des geförderten Vorhabens soll die Einführung einer kontinuierlichen Regeneration des Fluxbades sowie kompletter, zusammenhängender Einhausungen aller emissionsrelevanten Schritte (Entfetten, Beizen, Fluxen, Trocknen, Verzinken) und die Erfassung und Reinigung der Abluft betrieben werden. Ziele sind hierbei die Reduzierung der Zinkverluste, die Verbesserung der Verzinkungsqualität sowie die Einspa- rung von Primärenergie (Erdgas). Das Feuerverzinkungsverfahren umfasst mehrere Prozessschritte: das Entfetten, das Beizen mit Salzsäure, das Fluxen und das Auftragen der Zinkschicht. Das gelöste Eisen aus den Beizbädern wird über die Fluxbäder in die Verzinkungsbäder verschleppt, wo es den Verzinkungsprozess beeinträchtigt und zu erheblichen Zinkverlusten führt. Das beim Feuerverzinken entstehende Hartzink (eine Verbindung aus Eisen und Zink) kann von der Verzinkerei nicht weiter verwendet werden und muss energieaufwändig in Spezialanlagen wieder zu Reinzink aufgearbeitet werden. Wird ein bestimmter Eisengehalt in einem Fluxbad überschritten, so ist das Fluxbad unbrauchbar und muss in einer zentralen Anlage in Deutschland regeneriert werden, was erhebliche Gefahrguttransporte nach sich zieht. Ziel des neuen Verfahrens ist es, den Eintrag von Eisen in das Zinkbad so gering wie möglich zu halten. Dieses Ziel wird durch Einführung einer kontinuierlichen Regeneration des Fluxbades erreicht. Der Eisengehalt wird hierbei ständig überwacht, und die Regeneration des Fluxbades wird bereits bei niedrigen Eisengehalten durchgeführt. Durch den Einsatz des innovativen Fluxomaten werden die eingeschleppten Eisensalze aus dem Fluxbad kontinuierlich ab gefiltert. Der anfallende stichfeste Schlamm kann normal deponiert werden. Weiterhin ist durch die kontinuierliche Aufbereitung des Fluxbades der Eisengehalt im Fluxbad wesentlich geringer, so dass Zink in nicht unerheblichem Umfang eingespart werden kann. Zusätzlich umweltrelevant ist die komplette Einhausung aller emissionsrelevanten Schritte (Entfetten, Beizen, Fluxen) sowie die Erfassung und Reinigung der Abluft aus diesen Bereichen. Die ausgewaschenen Emissionen werden in die Prozessbäder zurückgeführt. Durch die Neukonzeption des Verzinkungsofens und die konsequente Nutzung der ca. 650 °C heißen Ofenabgase für die Nutzung des Trocknungsprozesses und zur Beheizung der Entfettungs- und Beizbäder wird Primärenergie (Erdgas) eingespart und künftig somit CO2-Emissionen von ca. 1.000 Tonnen pro Jahr vermieden. Durch die Einsparung von Zink (Hartzink) und den mit Zinkgewinnung und -schmelzen nötigen energetischen Aufwand können zusätzlich ca. 1.200 Tonnen CO2 pro Jahr eingespart werden. Weiterhin kann branchenweit der Transport von ca. 2.400 Tonnen Flussmittel pro Jahr vermieden werden, welche sich über das gesamte Bundesgebiet erstrecken und aufgrund des Transportes der hochkonzentrierten Salzlösungen ein hohes Wassergefährdungspotenzial aufweisen. Branche: Metallverarbeitung Umweltbereich: Ressourcen Fördernehmer: Verzinkerei Sulz GmbH Bundesland: Baden-Württemberg Laufzeit: 2008 - 2010 Status: Abgeschlossen
Die verlinkte Webseite enthält Informationen der Website chemikalieninfo.de des Umweltbundesamtes zur chemischen Verbindung Oktansäure Eisensalz. Stoffart: Einzelinhaltsstoff.
Das Projekt "Ferrosan - Entwicklung hochvernetzter Biopolymere auf Basis von Glucan-Chitin-Komplexen zur Schwermetallabscheidung insbesondere der Eisenadsorption" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Polymerforschung Dresden e.V. durchgeführt. 1. Vorhabenziel Ein Schwerpunkt der nächsten Jahrzehnte bildet die Eisensulfateliminierung aus Bergbauabwässern. Es ist bekannt, dass Chitosan über sehr gute Schwermetallbindungseigenschaften verfügt. Eigene Forschungen zeigten, dass unerwartet hohe Abreinigungsleistungen möglich sind. Gegenwärtig ist der Bindungsmechanismus nicht stöchiometrisch zu erklären, da eine Salzmineralisation durch Chitosan ausgelöst wird. Mit 50 kg Chitosan konnten im Großversuch 500 t Eisenhydroxid bzw. -sulfat gebunden werden. Damit ist ein kostengünstiger Einsatz bei geringer Modifizierung vorhandener Anlagetechnik gegeben. Für die Einführung dieser Technologie werden jedoch bedeutende Mengen an Chitosan benötigt, die aus Importen bereitgestellt werden müssten. Ein Weg, die Wirksamkeit der Flockungsmittel zu erhöhen und den Bedarf an Chitosan zu verringern, ist die Vernetzung/ Co-Polymerisierung von Chitosan. Die aus Bier- und Gärhefen gewonnen Zellwände, welche aus einem Glucan-Chitin-Komplex bestehen, sollen so modifiziert werden, dass sie zur Vernetzung von Chitosanketten geeignet sind und dadurch hochmolekulare Flockungsmittel mit hoher Reaktivität entstehen. Mit diesen soll verhüttbares Eisen aus Tagebauwässern gewonnen werden. Ziel ist die Technologie- und Ausrüstungsentwicklung für die Produktion der Biopolymere und deren Test bei Eisensulfat haltigen Oberflächenwässern. 2. Arbeitsplan 1. Test verschiedener Methoden zur co-polymeren Vernetzung von Chitosan 2. Auswahl geeigneter neuer Materialkombinationen und Untersuchung der Reaktivität 3. Entwicklung eines praktikablen im Großmaßstab umsetzbaren Verfahrens 4. Optimierung der Prozessstufen zur Trennung von huminhaltigen und mineralischen Stoffen sowie Eisensalzen 5. Schmelz- und Verhüttungsversuche 6. Entwicklung einer Pilotanlage zum Zellaufschluss und Herstellung des aktiven Glucan-Chitin-Chitosan-Komplexes.
Das Projekt "Ferrosan - Entwicklung hochvernetzter Biopolymere auf Basis von Glucan-Chitin-Komplexen zur Schwermetallabscheidung insbesondere der Eisenadsorption" wird vom Umweltbundesamt gefördert und von BioLog Heppe GmbH durchgeführt. 1. Vorhabenziel: Ein Schwerpunkt der nächsten Jahrzehnte bildet die Eisensulfat-Eliminierung aus Bergbauabwässern. Es ist bekannt, dass Chitosan über sehr gute Schwermetallbindungseigenschaften verfügt. Eigene Forschungen zeigten, dass unerwartet hohe Abreinigungsleistungen möglich sind. Gegenwärtig ist der Bindungsmechanismus nicht stöchiometrisch zu erklären, da eine Salzmineralisation durch Chitosan ausgelöst wird. Mit 50kg Chitosan konnten im Großversuch 500 t Eisenhydroxid bzw. -sulfat gebunden werden. Damit ist ein kostengünstiger Einsatz bei geringer Modifizierung vorhandener Anlagetechnik gegeben. Für die Einführung dieser Technologie werden jedoch bedeutende Mengen an Chitosan benötigt, die aus Importen bereitgestellt werden müssten. Ein Weg, die Wirksamkeit der Flockungsmittel zu erhöhen und den Bedarf an Chitosan zu verringern, ist die Vernetzung/ Co-Polymerisierung von Chitosan. Die aus Bier- und Gärhefen gewonnen Zellwände, welche aus einem Glucan-Chitin-Komplex bestehen, sollen so modifiziert werden, dass sie zur Vernetzung von Chitosanketten geeignet sind und dadurch hochmolekulare Flockungsmittel mit hoher Reaktivität entstehen. Mit diesen soll verhüttbares Eisen aus Tagebauwässern gewonnen werden. Ziel ist die Technologie- und Ausrüstungsentwicklung für die Produktion der Biopolymere und deren Test bei Eisensulfat haltigen Oberflächenwässern. 2. Arbeitsplan: 1. Test verschiedener Methoden zur co-polymeren Vernetzung von Chitosan 2. Auswahl geeigneter neuer Materialkombinationen und Untersuchung der Reaktivität 3. Entwicklung eines praktikablen im Großmaßstab umsetzbaren Verfahrens 4. Optimierung der Prozessstufen zur Trennung von huminhaltigen und mineralischen Stoffen sowie Eisensalzen 5. Schmelz- und Verhüttungsversuche 6. Entwicklung einer Pilotanlage zum Zellaufschluss und Herstellung des aktiven Glucan-Chitin-Chitosan-Komplexes.
Das Projekt "Metall(oid)e im Gärsubstrat von landwirtschaftlichen Biogasanlagen: Auswirkungen auf die Gärbiologie sowie mögliche Umweltrelevanz" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fakultät für Ingenieurwissenschaften, Lehrstuhl für Bioprozesstechnik durchgeführt. In Biogasanlagen werden komplexe Gärsubstrate sowie verschiedenste Gärhilfsmittel verwendet. Über diese Komponenten gelangt auch eine Vielzahl von Spur- und Störstoffen in die Anlage, wie Schwermetalle (z.B. Blei, Cadmium) oder Metall(oid)e wie Arsen (As), Antimon (Sb) und Bismut (Bi) und deren Verbindungen. Das Verhalten derartiger Komponenten in den Anlagen, aber auch ihr Austrag in die Umwelt ist bislang noch kaum untersucht. Es ist nach unseren Voruntersuchungen aber durchaus möglich, dass einige dieser Komponenten Probleme bereiten. Dies gilt neben den genannten Schwermetallen insbesondere für Elemente, die von den Mikroorganismen methyliert werden können, d.h. As, Sb, eventuell auch Bi. In der Anlage stoßen diese Substanzen auf eine hochaktive Gemeinschaft von Methanproduzenten. In einer Konkurrenzreaktion zur Methanbildung kommt es zur (Teil)methylierung und damit zur Bildung von geno- und zelltoxischen Verbindungen. Gleichzeitig werden der Methanbildung Methylgruppen entzogen. Bedenkt man die potentiellen ökologischen und ökonomischen Folgen, so ist es überraschend, dass es hierzu noch keine systematische Forschung gibt. Gleichzeitig postulieren wir, dass es mit Hilfe von Eisensalzen möglich sein sollte, das Problem zu managen. Die Entwicklung einer geeigneten Interventionsstrategie könnte Gegenstand eines Folgeprojektes sein, falls sich im Rahmen dieser Vorstudie tatsächlich eine Hemmung landwirtschaftlicher Anlagen durch Metall(oid)e belegen lässt. Wissenschaftlich verankert ist das Projekt an den Zentren für Energietechnik (ZET) bzw. für Ökologie und Umweltforschung (BayCEER) der Universität Bayreuth. In unserem Projekt wollen wir Eintragswege aber auch den Effekt von Metall(oid)en (Schwermetallen, As, Sb, Bi) aus Gärsubstrat und Gärhilfsmittel auf Stabilität und Effizienz der mikrobiellen Umsetzungen untersuchen und gleichzeitig mögliche Konsequenzen für Mensch und Umwelt abschätzen. Hierzu soll ein breites Spektrum von Biogasanlagen untersucht werden.
Origin | Count |
---|---|
Bund | 32 |
Land | 2 |
Type | Count |
---|---|
Chemische Verbindung | 1 |
Förderprogramm | 28 |
Text | 3 |
Umweltprüfung | 1 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 7 |
offen | 27 |
Language | Count |
---|---|
Deutsch | 34 |
Resource type | Count |
---|---|
Dokument | 3 |
Keine | 27 |
Webseite | 4 |
Topic | Count |
---|---|
Boden | 13 |
Lebewesen & Lebensräume | 16 |
Luft | 11 |
Mensch & Umwelt | 34 |
Wasser | 32 |
Weitere | 33 |