Das Projekt "Eisspeicher in Stahlleichtbauweise als Komponente für netzdienliche Gebäude (TP 2)" wird/wurde ausgeführt durch: Forschungsvereinigung Stahlanwendung e.V..
Das Projekt "Nachhaltige Kälte- und Wärmeversorgung urbaner Räume mittels Fernkälte- bzw. Fernwärmenetzen unter dem Einsatz energieeffizienter und HFKW-freier Techniken" wird/wurde gefördert durch: Bundesministerium für Umwelt, Klimaschutz, Naturschutz und nukleare Sicherheit (BMUKN) / Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: IREES GmbH - Institut für Ressourceneffizienz und Energiestrategien.Durch den Klimawandel steigt der Bedarf an Komfortklimakälte auch in Deutschland stetig an. Viele Bestandsgebäude werden mit Klimatechnik auf- oder nachgerüstet, Neubauten im Nichtwohngebäudebereich werden selten ohne maschinelle Klimatisierung errichtet. Der Bedarf wird meist gebäudeindividuell ermittelt und die entsprechende Technik installiert. Durch den Anschluss an ein Fernkältenetz entfallen wesentliche Komponenten wie Kältemaschine(n) und Rückkühlwerk, was nicht nur den Raum zur Aufstellung dieser einspart, sondern die Kunden auch von der Einhaltung der damit verbundenen Verordnungen (z.B. 42. BImSchV, F-Gas-V) befreit. Ähnliches gilt analog für Fernwärmenetze. Durch die zentrale Bereitstellung von Kaltwasser ergeben sich mehrere positive Umwelt- und Wirtschaftlichkeitseffekte: Der aggregierte Energiebedarf ist abzüglich der Leitungsverluste ca. 40-50% niedriger gegenüber der gebäudeindividuellen Lösung. Die Spitzenlast eines Fernkältenetzes ist niedriger als die der Gebäude mit eigenem System aufsummiert, dementsprechend fällt die installierte Leistung niedriger aus (Ressourcen- und Investitionskostenersparnis). Lastverschiebungen durch Eisspeicher sind in zentralen Einrichtungen mit dem nötigen Fachpersonal einfacher und effizienter zu betreiben als in den einzelnen Gebäuden. Weiterhin sind in Fernkältezentralen oftmals verschiedene Techniken zur Deckung des Kältebedarfs (Kompressionskälte, Absorptionskälte, Nutzung von natürlicher Kälte (Flüsse, Stadtbäche, Seen, Brunnenkühlung)) installiert, die je nach Situation nahe am optimalen Betriebspunkt eingesetzt werden können. Die Hürden, Kältemaschinen mit umweltfreundlichen natürlichen Kältemitteln wie z.B. Ammoniak und Kohlenwasserstoffe einzusetzen, sind in Fernkältezentralen deutlich niedriger als in den Einzelgebäuden (insbesondere im Bestand).
Das Projekt "Solare kalte Nahwärme der zweiten Generation, Teilvorhaben: Rahmenbedingungen und Implementierung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Viessmann Holding International GmbH.
Das Projekt "Solare kalte Nahwärme der zweiten Generation, Teilvorhaben: Entwicklung und Erprobung Gesamtsystem" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Gebäudeenergetik, Thermotechnik und Energiespeicherung.
Das Projekt "Solare kalte Nahwärme der zweiten Generation, Teilvorhaben: Entwicklung zentrale Wärmepumpe" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Energietechnik, Bitzer-Stiftungsprofessur für Kälte-, Kryo- und Kompressorentechnik.
Gegen die Hitze: Das können Sie im Sommer für kühle Räume tun Wie Sie Ihr Zuhause kühl halten und der Hitze trotzen Halten Sie mit dem richtigen Verhalten die Hitze draußen. Bauliche Maßnahmen tragen dazu bei, dass Räume kühl bleiben. Wenn nichts mehr hilft: klimafreundliches und geräuscharmes Klimagerät anschaffen und sparsam betreiben. Gewusst wie Heiße Sommertage bringen oft Innentemperaturen über 30 °C mit sich. Dafür gibt es verschiedene Ursachen: Die dichte Bebauung in Städten führt tags und nachts zu höheren Temperaturen. Aber auch Mängel am Gebäude und das Nutzerverhalten tragen ihren Teil zur Überhitzung von Räumen bei. Mit ihrem Alltagsverhalten beeinflussen Sie, wie stark sich Ihre Wohnung erwärmt. Ist die Temperatur in der Wohnung erst einmal hoch, ist es schwer, die Raumtemperatur wieder zu senken. Deshalb ist es wichtig, dass sich die Wohnung erst gar nicht aufheizt. Fenster tagsüber schließen: Halten Sie die Fenster tagsüber geschlossen, damit die warme Außenluft nicht in die Wohnung dringen kann. Wenn Ihnen im Laufe des Tages unbehaglich warm wird (ab einer bestimmten Luftfeuchte kühlt die Verdunstung über die Haut nicht mehr genug), sollten Sie trotz Hitze auch tagsüber Feuchtigkeit und CO 2 weglüften – zunächst stoßweise. Sonnenschutzvorrichtungen richtig bedienen: Für eine optimale Wirkung muss der Sonnenschutz geschlossen werden, sobald die Sonne auf das Fenster scheint, z. B. früh morgens bei Ostfenstern. Nachts auf Durchzug lüften: Öffnen Sie abends alle Fenster (und auch die Türen zwischen den Räumen), sobald es draußen kühler ist als in der Wohnung. Während der Nacht kühlt dann die Außenluft die Wohnung. Schließen Sie die Fenster, wenn morgens die Außentemperatur wieder steigt. Ventilatoren senken die gefühlte Temperatur: Decken- oder Tischventilatoren sorgen zwar nicht für weniger Wärme in der Wohnung, aber die Luftbewegung kühlt die Haut. Das ist durchaus effektiv. Ventilatoren sind relativ billig und brauchen nur wenig Strom, weil sie eine 20 bis 50 Mal kleinere Leistungsaufnahme als ein Klimagerät haben. Nicht benötigte Geräte abschalten: Jedes laufende Elektrogerät erzeugt zusätzliche Wärme und heizt so die Räume weiter auf. Also alles abschalten, was gerade nicht gebraucht wird: Drucker, Kaffeemaschine, unnötige Beleuchtung, Fernseher und so weiter. Bauliche Maßnahmen begrenzen die Wärmeströme nach innen und sind die Voraussetzung für das richtige Verhalten im Alltag. Sie sollten deshalb bereits bei der Planung eines Neubaus oder einer Sanierung mit den beteiligten Planer*innen besprochen und durchgerechnet werden. Gute Voraussetzungen für angenehme Sommertemperaturen bieten Wohnungen mit folgenden Eigenschaften: Sonnenschutz anbringen: An Ihrem eigenen Haus sollten Sie außenliegenden Sonnenschutz vor den Fenstern anbringen, damit die Sonnenenergie gar nicht erst eindringen kann. Das können Rollläden, Schiebeläden oder Jalousien sein. Effektiver Sonnenschutz hält die Sonnenenergie ab, lässt aber dennoch etwas Tageslicht in den Raum. Der "Abminderungsfaktor" F C sollte bei höchstens 0,2-0,1 liegen (fragen Sie nach dieser Herstellerangabe). Als Mieter*in können Sie Ihren Vermieter davon überzeugen oder Sie schaffen sich selbst Klemm-Rollos an, die an der Außenseite des Fensters ohne Bohren montiert werden können. Besser als nichts sind innen liegende Jalousien, Faltrollos oder Vorhänge. Diese sollten möglichst hell sein – dunkle Stoffe heizen den Raum zusätzlich auf. Kleine Fenster mit wirksamem Sonnenschutz: Fenster sind beim Kühlhalten der Räume ganz entscheidend. Sie sollten gut isolieren und nicht zu groß sein, weil sie im Sommer mehr Wärme einlassen als eine gut gedämmte Wand. Sie sollten zudem einen effektiven Sonnenschutz haben. Es gibt auch spezielle Sonnenschutzverglasung. Wärmedämmung hilft: Eine gute Wärmedämmung der Wände und Fenster hält auch Sommerhitze aus der Wohnung fern. Ist es innen bereits zu warm, ist – unabhängig vom Dämmstandard – die Nachtlüftung über die Fenster die effektivste Maßnahme zur Kühlung (siehe oben). Wände und Böden sollten frei zugänglich bleiben und nicht abgedeckt oder zugebaut werden. In Häusern mit Leichtbauwänden muss der Hitzeschutz sorgfältiger geplant werden, weil der Speichereffekt gering ausfällt. Mit minimalem Energieaufwand "passiv kühlen": Erd- oder Eisspeicher-Wärmepumpen kühlen besonders energiesparend und umweltfreundlich, indem sie die Wärme aus den Räumen direkt in das Erdreich oder den Eisspeicher leiten. Das funktioniert gut mit Fußbodenheizungen. Wärmepumpen haben eine Kühlfunktion, müssen dafür aber wie im Heizbetrieb "aktiv" gegen die Außentemperatur anarbeiten, brauchen daher mehr Energie und erzeugen Geräusche, die die Nachbarschaft belästigen können. Durchdachte Gestaltung: Vor allem nachts, bei niedrigeren Außenlufttemperaturen, ist sie sehr wirksam und trägt zur Entladung der tagsüber aufgeheizten Speichermassen bei. Dachüberhänge oder Balkone über den Fenstern spenden Schatten. Das Gleiche gilt für Bäume vor Fenstern oder der Fassade und für begrünte Dächer und Fassaden. Pflanzen wirken außerdem kühlend auf das Mikroklima. Wenn sich ein Raum immer noch überhitzt, sollten Sie ein klimafreundliches Klimagerät auswählen und es möglichst sparsam nutzen: Energieeffizient und geräuscharm: Das Klimagerät sollte so energieeffizient und geräuscharm wie möglich sein. Die effizientesten Geräte erreichen die Effizienzklasse A+++. Geräuscharme Geräte haben einen Schallleistungspegel im Freien (im Kühlbetrieb) von weniger als 55 dB. Sie finden alle Angaben in der Energielabel-Datenbank der EU . Klimafreundliches Kältemittel nutzen: Viele Klimageräte verwenden noch immer Kältemittel, die ein hohes Treibhauspotenzial haben, wenn sie bei Montage, Störungen im Betrieb oder Entsorgung freigesetzt werden. Es gibt klimafreundliche Klimageräte, die das natürliche Kältemittel Propan (R-290) nutzen ( Blauer Engel ). Kühltemperatur sparsam einstellen: Stellen Sie eine möglichst hohe Kühltemperatur ein, so dass es gerade noch angenehm ist: Versuchen Sie es zunächst mit 3-4 °C unter der Außentemperatur, aber nicht unter 26 °C. Split-Klimageräte: Sie kühlen Räume effektiv und effizient. Denken Sie aber auch ans Ausschalten. Der erreichbare Komfort kann zu langer Betriebszeit verleiten, so dass der Stromverbrauch steigt. Nur Fachleute dürfen ein Split-Klimagerät aufgrund des enthaltenen klimaschädlichen Kältemittels installieren. In Mehrfamilienhäusern müssen Eigentümer(gemeinschaft) oder Hausverwaltung die Außeneinheit genehmigen, da sie das äußere Erscheinungsbild des Gebäudes verändert. Das Außengerät sollte möglichst leise arbeiten und so aufgestellt werden, dass sein Geräusch weder Sie selbst noch die Nachbarn stört. Bewegliche Klimageräte vermeiden: Sie sind ineffizient und sollten, wenn überhaupt, nur ausnahmsweise genutzt werden. 1 Sie kühlen nicht effektiv, da die warme Abluft nach draußen gefördert wird und die nachströmende Luft den Aufstellraum sogar noch mehr aufheizt. Seit 2020 sind für solche Geräte nur noch Kältemittel mit Treibhauspotenzial (GWP) < 150 zulässig, i.d.R. wird das umweltfreundliche Kältemittel Propan genutzt. Hintergrund Umweltsituation: Die Klimawirkungs- und Risikoanalyse für Deutschland zeigt, dass die Außentemperaturen infolge des Klimawandels auch in Deutschland zunehmen. Trotz aller Bemühungen beim Klimaschutz ist damit zu rechnen, dass beispielsweise die Sommertage (ab 25 °C) um 40 % häufiger werden und die Hitzetage (ab 30 °C) sich verdoppeln können. 2 Deswegen werden Lösungen für Gebäudekühlung bereits stärker nachgefragt. Statt aktiver Klimaanlagen, die Energie verbrauchen und Treibhausgasemissionen verursachen, sollten vor allem passive Kühlmaßnahmen wie Sonnenschutz oder Nachtlüftung genutzt werden, die fast ohne Energie auskommen. 2023 verbrauchten die Klimageräte in Haushalten laut Arbeitsgemeinschaft Energiebilanzen 1,3 TWh Strom. Das entspricht einem Prozent des Stromverbrauchs aller Haushalte. 3 Nicht-Wohngebäude zu kühlen verbrauchte 12,6 TWh Strom. Insgesamt entfielen 2023 in Deutschland 2,8 Prozent des Stromverbrauchs auf die Klimatisierung von Gebäuden. Klimaanlagen tragen nicht nur durch den Stromverbrauch, sondern auch durch freigesetzte Kältemittel (mittlerweile bei Neugeräten im Wesentlichen R‑32, GWP=675 gemäß viertem IPCC Assessment Report) zur Erderwärmung bei. Das GWP ( Global Warming Potential ) ist ein Maß für die Treibhauswirksamkeit eines Stoffes. Der GWP für CO 2 beträgt 1, sodass im Falle von R-32 die Treibhauswirksamkeit 675mal so groß ist wie die von CO 2 . Daher haben auch relativ kleine Mengen, die in die Atmosphäre entweichen, eine hohe klimaschädliche Wirkung. Der Blaue Engel für Raumklimageräte zeigt für Klimageräte, wie es besser geht. Gesetzeslage: Das Gebäudeenergiegesetz schreibt vor, dass der Sonneneintrag in Neubauten durch einen ausreichenden sommerlichen Wärmeschutz begrenzt werden muss. Allerdings bezieht sich dieses Kriterium auf das Klima der Vergangenheit. Damit blendet es die seither eingetretene und in den nächsten Jahrzehnten noch zu erwartende Klimaerwärmung aus. Für bestehende Gebäude oder für Gebäudesanierungen gelten keine Anforderungen. Es ist daher ratsam, bei Neubau und Sanierung das zukünftige Klima zu berücksichtigen, um Überhitzung auch in den nächsten Jahrzehnten vorzubeugen. Die Verordnung (EU) Nr. 206/2012 bewirkt mit den Ökodesign-Anforderungen, dass die ineffizientesten und lautesten Klimageräte bis 12 kW Nennkälteleistung in der EU nicht mehr verkauft werden dürfen. Die Energieverbrauchskennzeichnung nach Verordnung (EU) Nr. 626/2011 macht Energieeffizienz und Lautstärke der Klimageräte beim Kauf erkennbar. Bestimmte Klimageräte dürfen gemäß Anhang IV der F-Gas-Verordnung ( Verordnung (EU) Nr. 2024/573 ) nicht mehr auf den europäischen Markt gebracht werden. Seit 2020 zählen hierzu bereits bewegliche Klimageräte mit einem GWP des Kältemittels ≥ 150. Ab dem Jahr 2029 gilt dieser GWP-Grenzwert auch für Split-Klimageräte ("Luft-Luft-Splitsysteme") bis 12 kW Nennkälteleistung. Außerdem wird gemäß Anhang VII die Menge an HFKW (teilfluorierte Kohlenwasserstoffe, z.B. R-32), die auf den europäischen Markt kommt, schrittweise reduziert und bis 2050 auf null gesenkt. Marktbeobachtung: Die Wirkung von Sonnenschutz beschreibt der so genannte Abminderungsfaktor F C gemäß DIN 4108-2. Um effektiv vor Überhitzung zu schützen, sollte er, je nach Bauart des Raums und Größe des Fensters, bei höchstens 0,2-0,1 liegen, also 80 bis 90 Prozent der Sonneneinstrahlung abhalten. Außenliegender Sonnenschutz wie Jalousien, Rollläden, Fensterläden oder durchscheinende Textilscreens erreichen solche Werte problemlos. Zum Vergleich: Innenliegende Rollos halten nur 5 bis 45 Prozent der Sonneneinstrahlung ab – ein entscheidender Unterschied! Zwei Arten von Klimageräten sind besonders häufig: Split-Klimageräte bestehen aus zwei Teilen: Das Außengerät mit Kompressor und Kondensator verflüssigt ein Kältemittel, das zum Innengerät geleitet wird, dort verdampft und so dem zu kühlenden Raum Wärme entzieht. Der erwärmte Dampf strömt zurück zum Außengerät, wo die Raumwärme an die Umgebung abgeleitet wird. Die am Innengerät kondensierende Raumfeuchte muss entweder aufgefangen oder mit neu zu verlegenden Kondensatleitungen abgeleitet werden können. Die Kühlwirkung von Split-Geräten ist im Allgemeinen gut. Die Stiftung Warentest rechnet für den Betrieb eines Klimageräts mit Stromkosten über 10 Jahre von 400-560 Euro (1.000-1.400 kWh mit 40 Cent/kWh). In Deutschland werden seit dem Jahr 2019 etwa 200.000 Monosplit-Klimageräte jährlich verkauft. Installiert sind fast 1,6 Millionen Geräte, ein Teil davon auch in privaten Haushalten. Diese Zahlen werden im Rahmen der Treibhausgasberichterstattung zur Klimarahmenkonvention ( UNFCCC ) ermittelt und stützen sich auf Erhebungen der japanischen Kälte/Klima-Fachzeitschriften JARN ( Japan Air Conditioning, Heating and Refrigeration News ) und des Verbandes JRAIA ( Japan Refrigeration and Air Conditioning Industry Association ) sowie Expertenschätzungen. Bei beweglichen Klima- oder Mono(block)geräten sind alle Bauteile in einen Apparat integriert. Die Geräte können daher ohne Installationsaufwand nahezu überall eingesetzt werden. Weil sie aber die heiße Abluft über einen Luftschlauch durch ein geöffnetes Fenster ausblasen, strömt im Gegenzug warme Luft von außen in den Raum. Die Folge: Der restliche Raum kann noch wärmer werden, die Kühlwirkung ist vergleichsweise gering, der Stromverbrauch relativ hoch. In Deutschland werden jährlich ca. 90.000 mobile Klimageräte verkauft. Der Bestand in allen Sektoren beläuft sich auf etwa 840.000 Geräte. Weitere Informationen finden Sie unter: Natürliche Kältemittel in stationären Anlagen ( UBA -Themenseite) Geräusche gebäudetechnischer Anlagen (UBA-Themenseite) Quellen: 1 Klimageräte im Test , Stiftung Warentest, 2023 2 Kühle Gebäude im Sommer , Umweltbundesamt, 2023 3 Endenergieverbrauch nach Energieträgern und Anwendungszwecken , Arbeitsgemeinschaft Energiebilanzen
Umweltwärme und Wärmepumpen Abwärme Solarthermie Photovoltaisch-Thermische (PVT) Module Oberflächennahe Geothermie Eisspeicher Biomasse Biogas / Bio-Methan Die neuen Generationen von Wärmenetzen ermöglichen es, Wärme aus der Umgebung für die Versorgung von Gebäuden nutzbar zu machen, die für konventionelle Wärmenetze der älteren Generationen nicht erschlossen werden konnte. Schlüsseltechnologie, um diese Wärmequellen zu nutzen, ist die Wärmepumpe. Das grundlegende Funktionsprinzip einer Wärmepumpe ähnelt einem Kühlschrank, nur, dass der thermodynamische Kreisprozess in die umgekehrte Richtung läuft. Während im Kühlschrank die Wärme aus dem Inneren abgeführt und an die Umgebung übertragen wird, entzieht die Wärmepumpe einer Wärmequelle Energie und hebt diese, angetrieben meist durch Elektrizität, auf ein höheres Temperaturniveau, sodass sie zum Heizen genutzt werden kann. Die Wärmepumpe besteht aus einem geschlossenen Kreislauf, in dem ein Kältemittel zirkuliert und einen thermodynamischen Kreisprozess durchläuft. Die wesentlichen Komponenten einer Wärmepumpe sind Verdampfer, Verdichter, Kondensator und Drosselventil. Der Verdampfer ist ein Wärmeübertrager, in dem die Wärme der externen Wärmequelle an das Kältemittel in der Wärmepumpe übergeht, wodurch dieses verdampft. Durch den Verdichter wird der Druck des nun gasförmigen Kältemittels erhöht. Dadurch kommt es auch zu einer Erhöhung der Temperatur des Kältemittels. Diese muss oberhalb der zu erreichenden Heiztemperatur liegen, damit es im Kondensator, einem weiteren Wärmeübertrager, zur Abgabe der Wärme an das Heizwasser kommt. Durch die Wärmeabgabe kondensiert das Kältemittel im Kondensator und liegt wieder flüssig vor. Der Kondensator wird daher auch oft als Verflüssiger bezeichnet. Das Drosselventil reduziert den Druck des Kältemittels, wodurch die Temperatur weiter abfällt und der Kreisprozess mit Wiedereintritt in den Verdampfer von vorn beginnen kann. Zu den möglichen Wärmequellen zählen unter anderem Außenluft, Oberflächengewässer und Grundwasser sowie die oberen Schichten des Erdreichs (oberflächennahe Geothermie). Entsprechend kommen folgende Wärmepumpen-Typen zum Einsatz: Luft-Wasser-WP; Außenluft oder Abluft einer technischen Anlage Sole-Wasser-WP; Erdkollektoren und -sonden, PVT, Eisspeicher, etc Wasser-Wasser-WP; Grundwasser, Flusswasser, Abwasser, Kühlwasser Weiterführende Informationen Umweltbundesamt Bundesverband Wärmepumpe zur grundlegenden Funktionsweise von Wärmepumpen Bundesverband Wärmepumpe zur Rolle von Wärmepumpen in Nah- und Fernwärmenetzen Abwärme ist Wärme, die als Nebenprodukt in einem Prozess entsteht, dessen Hauptziel die Erzeugung eines Produktes, die Erbringung einer Dienstleistung oder eine Energieumwandlung ist, und ungenutzt an die Umwelt abgeführt werden müsste . Kann die Abwärme nicht durch eine Optimierung der Prozesse, bei denen sie entsteht, vermieden werden, wird sie als unvermeidbare Abwärme bezeichnet. Aus Effizienzgründen sollte eine hierarchisierte Verwendung mit Abwärme angestrebt werden: 1. Verfahrensoptimierung/ Vermeidung, 2. prozess- bzw. anlageninterne Nutzung, 3. betriebsinterne Nutzung, 4. außerbetriebliche Nutzung. Je nach Temperaturniveau der Abwärme lässt sie sich für unterschiedliche Zwecke nutzen. Abwärme kann bei ausreichend hohen Temperaturen direkt in Fern- und Nahwärmenetze eingespeist werden oder über Wärmepumpen auf das benötigte Temperaturniveau angehoben werden. Bei niedrigen Temperaturen ist die Nutzung in LowEx- oder teilweise auch kalten Nahwärmenetzen möglich. Unvermeidbare und damit extern nutzbare Abwärme fällt typischerweise in Industrieprozessen an. Aber auch die Abwärme von Kälteanlagen, die beispielsweise zur Kühlung von Rechenzentren oder großer Büro- und anderer Nichtwohngebäude genutzt werden, lässt sich sinnvoll in Wärmenetzen nutzen. Abwasserwärme ist eine weitere übliche Abwärmequelle in urbanen Gebieten, die ganzjährig eine Temperatur zwischen etwa 12 °C und 20 °C aufweist. Sie eignet sich daher besonders für die Nutzung als Wärmequelle für Wärmepumpen oder in kalten Netzen. Eine Herausforderung bei der Nutzung von unvermeidbarer Abwärme können Schwankungen im Wärmeangebot sein. So fällt Abwärme von Kälteanlagen zur Büroklimatisierung hauptsächlich im Sommer an und auch Abwärme aus Industrieprozessen kann z.B. bedingt durch Produktionszyklen volatil sein. Hier ist in der Detailplanung des Nahwärmenetzes darauf zu achten, dass ein unregelmäßiges Abwärmeangebot durch entsprechende Speicher oder andere, regenerative Quellen ausgeglichen werden kann. Weiterführende Informationen Informationen rund um Abwasserwärme der Berliner Wasserbetriebe Analyse zum Abwärmepotenzial der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt Die Einstrahlung der Sonne kann zur direkten Erwärmung eines Wärmeträgermediums genutzt werden. Diese Umwandlung von Sonnenenergie in thermische Energie über Kollektoren wird Solarthermie genannt. Dabei kommen hauptsächlich Flachkollektoren oder Vakuumröhrenkollektoren zum Einsatz. Bei Flachkollektoren sind Kupferrohre in eine verglaste Absorberebene eingelassen. Vakuumröhrenkollektoren zeichnen sich durch einzelne, parallele und vakuumierte Glasröhren aus, in denen das Heizrohr mit Absorber verläuft. In den Kollektoren strömt in der Regel ein Wasser-Glykol-Gemisch, auch Sole, Solarflüssigkeit oder Wärmeträgerflüssigkeit genannt. Das beigemischte Glykol dient als Frostschutz, um bei geringer Einstrahlung und Außentemperatur ein Einfrieren im Winter zu verhindern. Mit Vakuumröhrenkollektoren können höhere Temperaturen und damit höhere Erträge pro Kollektorfläche erzielt werden. Besondere Bauformen besitzen auch Parabolspiegel, die das Sonnenlicht stärker auf die Absorber konzentrieren. Auch Systeme, die Wasser statt Sole führen, werden eingesetzt. Der Vorteil besteht in der höheren Wärmekapazität von Wasser gegenüber Sole, wodurch höhere Erträge und Temperaturen erzielt werden können. In wasserführenden Systemen findet im Winter bei fehlender Einstrahlung in regelmäßigen Abständen eine Zwangsumwälzung des Wassers statt, wodurch ein Einfrieren des Wärmeträgermediums in den Rohren vermieden wird. Mit einem Jahresertrag pro benötigte Grundfläche von 150 kWhth/(m²*a), ist die durchschnittliche Flächeneffizienz von ST-Anlagen beispielsweise um den Faktor 30 höher als die von Biomasseheizwerken bei der Verwendung von Holz aus Kurzumtriebsplantagen. In den letzten Jahren werden Solarthermie-Projekte zur Einspeisung in großstädtische Wärmenetze verstärkt umgesetzt. Bei der Einbindung von Solarthermischen Anlagen in Wärmenetze bietet sich sowohl die zentrale als auch die dezentrale Variante an. Zentrale Systeme speisen am Standort des Hauptwärmeerzeugers oft in einen vorhandenen Wärmespeicher ein. Dazu wird die Wärme von der Anlage über ein separates Rohrsystem zu der Heizzentrale geführt. Zu beachten: Im Sommer kann eine solarthermische Anlage die Deckung der gesamten Wärmelast übernehmen und je nach Auslegung auch einen Wärmespeicher füllen. Im Winter wird in der Regel ein weiterer Wärmeerzeuger eingesetzt, da Leistung und Wärmemenge aus der Solaranlage oft nicht ausreichen. Die Solarthermie kann in Wärmenetzen in Konkurrenz zu Grundlastquellen oder -Erzeugern stehen, z.B. Abwärme, Biomasse oder Blockheizkraftwerk (BHKW) und so den Bedarf an nötigem Wärmespeichervolumen erhöhen Eine Nutzung als Wärmequelle in kalten Netzen gestaltet sich schwierig, da die Sommertemperaturen zu hoch sind Weiterführende Informationen Solarthermie Wärmenetze PVT-Kollektoren sind ein Spezialfall der Sonnenenergienutzung. Sie kombinieren Photovoltaikzellen und solarthermische Kollektoren, um so Wärme und Strom in einem Modul zu erzeugen. Die verfügbare Dachfläche wird so optimal ausgenutzt. Die Kollektoren bestehen aus einem PV-Modul und einem rückseitig montiertem Wärmeübertrager. Dadurch, dass zeitgleich zur Stromerzeugung Wärme abgeführt wird, entsteht ein Kühleffekt, der zu einem höheren Stromertrag führt, da die Effizienz von PV-Modulen temperaturabhängig ist. PVT-Module gibt es in mehreren Varianten, die sich vor allem durch das Temperaturniveau der erzeugten Wärme unterscheiden. Für die Erzeugung hoher Temperaturen wird der Wärmeübertrager vollständig mit Wärmedämmung eingehaust. Dadurch geht jedoch der stromertragssteigernde Kühleffekt an den PV-Zellen verloren, sodass diese Module vor allem zur Erzeugung von Prozesswärme eingesetzt werden. Als Wärmequelle für Wärmepumpen in Nahwärmenetzen eignen sich daher vor allem ungedämmte sogenannte unabgedeckte PVT-Kollektoren, bei denen die Rohre des Wärmeübertragers mit zusätzlichen Leitblechen für einen Wärmeübergang aus der Luft optimiert sind. Diese liefern ganzjährig Energie, die beispielsweise direkt in ein kaltes Nahwärmenetz eingespeist werden kann. Weiterführende Informationen Informationen zu PVT-Modulen und Wärmepumpen im Rahmen des Forschungsprojektes integraTE Verwendung von PVT-Modulen im degewo Zukunftshaus In den oberen Erdschichten folgt die Bodentemperatur der Außenlufttemperatur. Mit zunehmender Tiefe steigt die Temperatur an und ist ab ca. 15 m unter Gelände Oberkante nahezu konstant. Die Wärme aus dem Erdreich kann über verschiedene horizontale und vertikale Erdwärmeübertrager oder auch Grundwasserbrunnen gewonnen und als Wärmequelle für Wärmepumpen genutzt werden. Horizontale Erdwärmeübertrager werden Erdkollektoren genannt. Es handelt sich hierbei um Rohrregister, üblicherweise aus Kunststoff, die horizontal oder schräg, spiral-, schrauben- oder schneckenförmig in den oberen fünf Metern des Untergrundes verlegt werden. Bei der häufigsten Nutzung der Erdwärme werden Erdsonden – meist Doppel-U-Rohrleitungen in vertikalen Tiefenbohrungen bis 100 m verwendet. Ab Tiefen über 100 m gilt Bergbaurecht, womit komplexere Genehmigungsverfahren verbunden sind, die eine Nutzung in kleinen, dezentralen Netzen in der Regel ausschließen. Perspektivisch wird durch das 4. Bürokratieentlastungsgesetz voraussichtlich die oberflächennahe Geothermie bis 400 m nicht mehr unter das Bergrecht fallen. Es können mehrere Sonden zu einer Anlage vereint werden. Hierbei ist durch einen ausreichenden Abstand der Sonden untereinander eine gegenseitige Beeinflussung auszuschließen. Auch zu benachbarten Grundstücken muss ein entsprechender Abstand gewahrt bleiben. In Erdwärmeübertragern wird ein Gemisch aus Wasser und Frostschutzmittel, Sole genannt, verwendet, da die Temperatur der Sole auch unter 0 °C fallen kann. Aufgrund des Einsatz Wassergefährdender Stoffe und weil der Eingriff in den Wärmehaushalt nach geltendem Recht eine Gewässernutzung darstellt, ist für Erdwärmesonden im Allgemeinen und Erdwärmekollektoren, die weniger als 1 m über dem höchsten Grundwasserstand verlegt werden, in Berlin eine wasserbehördliche Erlaubnis erforderlich. Als Alternative zu Erdsondenanlagen kommen bei größeren Anlagen auch Grundwasserbrunnen in Frage, bei denen über zwei Bohrungen die im Grundwasser enthaltene Wärme genutzt wird. Dabei dient eine Bohrung der Entnahme und eine weitere der Rückspeisung des entnommenen Wassers. Die Eignung des örtlichen Grundwasserleiters für eine Wärmeanwendung muss im konkreten Einzelfall geprüft werden. Für eng bebaute Gebiete eignet sich auch ein Koaxialsystem in Form eines Grundwasserzirkulationsbrunnens, welcher aus nur einer Bohrung besteht. Weiterführende Informationen Informationen und Anforderungen zur Erdwärmenutzung in Berlin Energieatlas mit geothermischen Potenzialen Informationen zur oberflächennahen Geothermie Beim Phasenübergang von flüssig zu fest gibt Wasser bei konstantem Temperaturniveau Energie in Form von Wärme ab. Diese Wärme, die allein bei der Aggregatzustandsänderung transportiert wird, wird als latente Wärme bezeichnet. Bezogen auf die Masse von 1 kg handelt es sich um die Erstarrungsenthalpie eines Stoffes, die bei Wasser in etwa der Energiemenge entspricht, die auch benötigt wird, um dasselbe 1 kg Wasser von 0 °C auf 80 °C zu erwärmen. Zu- oder abgeführte Wärme, die eine Temperaturveränderung bewirkt, wird als sensible Wärme bezeichnet. In Eisspeichern wird eine Wassermenge, z.B. in einer unterirdischen Betonzisterne durch Wärmeentzug vereist. Dazu strömt ein Gemisch aus Wasser und Frostschutzmittel, Sole genannt, mit geringerer Temperatur als dem Gefrierpunkt von Wasser durch Rohrspiralen im Speicher. Durch den Temperaturgradienten kommt es zum Wärmetransport zwischen dem erstarrenden Wasser in der Betonzisterne und der Sole in den Rohrspiralen. Die latente Wärme aus dem Phasenübergang des Wassers wird an die Sole übertragen, welche sich dadurch erwärmt. Die erwärmte Sole dient wiederum einer Wärmepumpe als Wärmequelle. Am Verdampfer der Wärmepumpe gibt die Sole die Wärme wieder ab und kann anschließend erneut Wärme aus dem Eisspeicher aufnehmen. Durch Kombination mit Solarkollektoren kann die Effizienz der Anlage erhöht werden, wenn die damit gewonnene thermische Energie zur Regeneration des Eisspeichers genutzt wird. Weiterführende Informationen Informationen zu Eisspeichern Funktion und Kosten von Eisspeichern im Überblick Bei der Wärmebereitstellung durch Biomasse kommen in der Regel Anlagen zum Einsatz, in denen holzartige Biomasse verfeuert wird. Hierfür gibt es verschiedene Brennstoffe, die sich in Qualität und Kosten z.T. deutlich unterscheiden. Holzpellets sind kleine hochstandardisierte Presslinge mit einer Länge von 2-5 cm, die in unter anderem aus Resten der Holzverarbeitung gepresst werden. Ihr Einsatz in Pelletkessel ist hoch automatisiert und damit nur wenig störanfällig. Dennoch sind jährlich kleinere Arbeiten durch z.B. Ascheaustragung o.ä. erforderlich. Zudem ist eine entsprechende Lagerhaltung in einem sogenannten Bunker inkl. Fördersystem erforderlich. Der Einsatz von Holzhackschnitzeln ist etwas arbeitsaufwändiger, da sowohl Brennstoff als auch das Gesamtsystem zur Wärmeversorgung weniger automatisierbar ist. Die Beschaffung des etwa bis zu 10 cm großen, mechanisch zerkleinerten Holzpartikel ist deutlich günstiger und sie können zudem auch in außenliegenden, überdachten Lagerbereichen oder Wirtschaftsgebäuden gelagert werden. Jedoch bestehen größere Anforderungen an die Einbringtechnik und den Betrieb einer Feuerungsanlage. Durch den gröberen Brennstoff, unterschiedliche Brennstoffqualitäten und Ascheaustrag, kann es gegenüber einem Pelletkessel zu häufigerem Arbeitsaufwand kommen, sodass regelmäßige Präsenzzeiten zur Betreuung erforderlich sind. Des Weiteren kann zur Verteilung des Brennstoffes auch schweres Arbeitsgerät vor Ort erforderlich werden. Neben einer reinen Verbrennung der Holzbrennstoffe kann in einem Vergaser auch Holzgas aus der Biomasse gewonnen werden, um diese anschließend in einem speziellen BHKW in Wärme und Strom umzuwandeln. Holz als Brennstoff ist ein vergleichsweise günstiger und preisstabiler Brennstoff, der jedoch einen gewissen Arbeitsaufwand mit sich bringt. Hierbei sind auch die gegenüber der Verbrennung von gasförmigen Energieträgern erhöhten Staubanteile im Abgas zu beachten, welche im urbanen Bereich stärkere Anforderungen an die Abgasreinigung und Ascheentsorgung mit sich bringen. Auch ist bei der Verwendung von nicht lokal verfügbarer Biomasse ein umfangreicher Logistikaufwand zu betreiben, was zu mehr Verkehr auf den Straßen und einer zusätzlichen Belastung durch Emissionen führt. Ebenso ist bei der Abwägung, ob die Wärme für ein Nahwärmenetz mit Holz erzeugt werden soll, zu berücksichtigen, dass Holz nur bedingt als „klimaneutral“ bezeichnet werden kann. Die Verbrennung setzt neben Feinstaub auch Treibhausgase wie CO 2 und Methan frei. Die Annahme, dass die Wärmeerzeugung mit Holz klimaneutral ist, setzt eine nachhaltige Waldbewirtschaftung voraus, bei der mindestens genauso viel Kohlenstoff durch das Wachstum neuer Bäume gebunden wird, wie durch die Verbrennung von Holz freigesetzt wird. Wird Holz aus nicht nachhaltiger Waldbewirtschaftung (beispielsweise der Abholzung von Urwäldern) für die Wärmeerzeugung verwendet, dann fällt die Bilanz der Umweltauswirkungen negativ aus. Eine stärkere Reduktion von Treibhausgasen kann zudem erreicht werden, wenn das Holz für langlebige Produkte (beispielsweise als Bauholz) verwendet wird, da der Kohlenstoff dann dem natürlichen Kreislauf auf längere Zeit entzogen wird und nicht als CO 2 in die Atmosphäre gelangt. Empfehlenswert für die Wärmeerzeugung ist daher vor allem Restholz aus Produktionsprozessen, das nicht für andere Nutzungen geeignet ist, sowie Altholz, das am Ende der Nutzungskaskade angekommen ist. Die Qualität von Holzbrennstoffen lässt sich verschiedenen Normen in Güteklassen einteilen. Hierfür dient bspw. die DIN EN ISO 17225 oder das DINplus-Zertifizierungsprogramm, um Vergleichbarkeiten zu ermöglichen und eine entsprechende Brennstoffqualität sicherzustellen. Des Weiteren sollten Nachweise über die Herkunft der Biomasse bei den Lieferanten angefragt werden, um möglichst regionale Produkte zu nutzen. Die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt hat zu den Potenzialen von Biomasse in Berlin eine Untersuchung durchführen lassen, deren Ergebnisse hier einzusehen sind: Biomasse . Weitere Informationen zu diesem Thema finden Sie beim Bundesumweltministerium: BMUV: Klimaauswirkungen von Heizen mit Holz sowie beim Umweltbundesamt: Heizen mit Holz . Weiterführende Informationen Hackschnitzel: Qualität und Normen FNR – Fachagentur Nachwachsende Rohstoffe Für die Wärmeerzeugung aus Biogas existieren regionale unterschiedliche Möglichkeiten. Im ländlichen Raum kann häufig direkt Biogas aus Gärprozessen aus der Landwirtschaft verwendet werden. Abfallstoffe wie z.B. Gülle können dafür genutzt werden, wie auch eigens dafür angebaute Energiepflanzen. Die Verwendung von Anbaubiomasse zur Produktion von Biogas steht jedoch in starker Kritik und kann ebenso wie die Produktion von flüssigen Energieträgern auf die Formel ‚Tank oder Teller‘ reduziert werden. Daher wurde mit den letzten Novellen des Erneuerbare-Energien-Gesetzes (EEG) die Nutzung von Anbaubiomasse zu Biogasproduktion immer weiter eingeschränkt (Stichwort ‚Maisdeckel‘). Biogas kann vor Ort genutzt und in Wärme und Strom umgewandelt und verbraucht bzw. über ein kleines Nahwärmenetz verteilt werden. Für eine Einspeisung in das Erdgasnetz ist eine Methan-Aufbereitung des Gases erforderlich. In Berlin besteht die Möglichkeit, ein Biogas- bzw. Biomethanprodukt eines beliebigen Lieferanten aus dem öffentlichen Gasnetz zu beziehen. Dieses Biomethan ist in der Regel aufbereitetes Biogas, z.B. aus Reststoffen oder Kläranlagen, welches in das Netz an einem anderen Verknüpfungspunkt eingespeist wird. Vor Ort zur (Strom- und) Wärmeerzeugung wird dann bilanzielles Biomethan eingesetzt – ähnlich dem Bezug von Ökostrom aus dem öffentlichen Versorgungsnetz. Der tatsächliche Anteil von Biomethan im Erdgasnetz entsprach im Jahr 2022 lediglich etwa 1 %. Bei dem Kauf gibt es entsprechende Nachweiszertifikate (z.B. “Grünes Gas Label” – Label der Umweltverbände oder TÜV) der Anbieter. Die Umsetzung in Wärme (und Strom) erfolgt dann klassisch über Verbrennungstechnologien wie Gaskessel oder BHKW.
Das Projekt "Solarthermische Aktivierung vorgehängter, hinterlüfteter Fassaden für den Geschosswohnungsbau: Entwicklung, Integration in das Energieversorgungssystem und Demonstration" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Institut für Solarenergieforschung GmbH.
Bei der sogenannten kalten Nahwärme, also den Wärmenetzen der 5. Generation, wird kein erhitztes Wasser durch die Leitungen transportiert, sondern das Wärmeträgermedium im Netz nimmt Wärme aus den Umweltwärmequellen auf dem verfügbaren Temperaturniveau auf und transportiert diese direkt in die angeschlossenen Gebäude. Dort wird die Wärme von dezentralen Wärmepumpen auf das gewünschte Temperaturniveau gebracht. Durch die niedrigen Temperaturen von typischerweise unter 25 °C muss das Leitungsnetz nicht gedämmt werden und statt Wärmeverlusten können sich in der Jahresbilanz sogar Wärmegewinne ergeben, da die erdverlegten Rohre Wärme aus dem Erdreich aufnehmen können. Das erfordert aber auch den Einsatz von Frostschutzmittel, sodass man bei dem eingesetzten Wärmeträgermedium von einem Wasser-Glykol-Gemisch oder kurz Sole spricht. Die Wärmequellen werden an den Orten mit dem höchsten Potenzial unmittelbar an das Netz angeschlossen. Als Wärmequellen eignen sich insbesondere oberflächennahe Geothermie, Abwasserwärme und Solarthermie, z.B. in Form von PVT-Modulen. Aber auch Konzepte mit unvermeidbarer Abwärme und Eisspeichern oder eine Kombination aus verschiedenen Quellen sind möglich. Bei kalten Nahwärmenetzen gilt für die versorgten Gebäude: je niedriger die Heiztemperaturen sind, desto effizienter arbeiten die dezentralen Wärmepumpen. Sanierte Gebäude mit einer guten Dämmung benötigen verhältnismäßig geringe Heizleistungen um die Wohnraumtemperatur zu halten. Die Leistung des Heizsystems zur Bereitstellung der Nutzwärme im Raum ist neben der Temperaturdifferenz zwischen Wärmeträgermedium und Raumluft sowie einem material- und stoffspezifischen Wärmeübertragungskoeffizienten direkt abhängig von der Heizkörperfläche. Große Heizflächen in Form von Fußboden- oder Wandflächenheizung oder große Radiatoren eignen sich daher besonders. In Kombination aus guter Gebäudedämmung und großen Heizflächen lassen sich geringe Vorlauftemperaturen realisieren, die zu einem sehr effizienten Betrieb der dezentralen Wärmepumpen führen. Teilweise macht es dann Sinn, die Warmwasserbereitung separat beispielsweise über ein direktelektrisches System zu realisieren. Ein Vorteil ist, dass kalte Nahwärme auch zur Gebäudekühlung eingesetzt werden kann. Hierbei wird die geringe Netztemperatur genutzt, um im Sommer Wärme aus den Gebäuden über die passiven Wärmeübertrager aus den Gebäuden abzuführen. Die aus dem Gebäude abgeführte Wärme kann zur Regeneration von Geothermiefeldern oder zum Laden von Eisspeichern eingesetzt werden. Informationen zu kalter Nahwärme mit Übersicht zu Quartieren mit kalter Nahwärme
In Nahwärmenetzen der 4. Generation, sogenannten Niedertemperaturnetzen oder Low-Exergie-Netzen, wird die Wärme mit Vorlauftemperaturen zwischen 50 und 70°C zu den Anschlusskunden transportiert. Als Wärmeerzeuger kamen bislang häufig Blockheizkraftwerke (BHKWs) oder Gasbrennwertgeräte zum Einsatz. Zukünftig liegt der Fokus insbesondere auf Großwärmepumpen und der direkten Einbindung von Abwärme, auch Biomassekessel können in begrenztem Maße eingesetzt werden. Als Wärmequellen für die Wärmepumpen eignen sich besser als die reine Außenluft eine Vielzahl von Umwelt- und Abwärmequellen. Verfügbare Potenziale sind immer projektspezifisch zu analysieren. In Berlin stehen insbesondere oberflächennahe Geothermie, Wärme aus Abwasser oder Oberflächengewässern, sowie unvermeidbare gewerbliche Abwärme aus Rechenzentren oder Kühlhäusern zur Verfügung. Auch innovative Konzepte mit PVT-Modulen und Eisspeichern oder eine Kombination aus verschiedenen Quellen sind möglich. In den versorgten Gebäuden muss ggf. die Technische Gebäudeausstattung bzw. das Wärmeverteilsystem optimiert werden, um mit möglichst geringen Vorlauftemperaturen eine angemessene Bereitstellung von Nutzwärme zu gewährleisten. Grundlage ist eine raumweise Heizlastberechnung und der Abgleich mit der Heizkörpernennlast bei unterschiedlichen Vorlauftemperaturen. Gegebenenfalls müssen Heizflächen und Warmwasserbereitung an die niedrigeren Netztemperaturen angepasst werden. Zum Beispiel kann eine Vergrößerung einzelner Heizkörper notwendig sein, wenn die ursprünglich bemessene Wärmeübertragungsfläche auf höhere Heizwassertemperaturen ausgelegt sind.
Origin | Count |
---|---|
Bund | 38 |
Land | 9 |
Type | Count |
---|---|
Förderprogramm | 32 |
Text | 12 |
unbekannt | 3 |
License | Count |
---|---|
geschlossen | 16 |
offen | 31 |
Language | Count |
---|---|
Deutsch | 47 |
Englisch | 5 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 7 |
Keine | 26 |
Webseite | 18 |
Topic | Count |
---|---|
Boden | 25 |
Lebewesen & Lebensräume | 24 |
Luft | 17 |
Mensch & Umwelt | 47 |
Wasser | 23 |
Weitere | 46 |