Biosynthetische Polymere werden in zunehmender Zahl und Menge eingesetzt und sind aus vielen Bereichen des Alltags nicht mehr wegzudenken. Waren es frueher vorwiegend von hoeheren Lebewesen synthetisierte Polymere, so gewinnen nun von Mikroorganismen synthetisierte Polymere als Werkstoffe sowie als Hilfs- und Nebenstoffe an Bedeutung. Mikroorganismen synthetisieren in vielfaeltiger Form Polymere fuer technische Anwendungen. Die meisten technisch genutzten mikrobiellen Polymere werden heute als Hilfs- und Nebenstoffe eingesetzt, einige auch direkt zu Werkstoffen verarbeitet. Mikrobielle Polymere werden als Rohstoffe zu anderen Werkstoffen oder Hilfs- und Nebenstoffen verarbeitet oder dienen als Ausgangsmittel fuer weitere chemische Synthesen. Der Einsatz von Mikroorganismen bei der biotechnologischen Produktion von Polymeren ermoeglicht haeufig die Nutzung nachwachsender Rohstoffe als Substrate und Kohlenstoffquelle fuer die Produktion wie zB die Nutzung pflanzlicher Photosynthetate, die von der Land- und Forstwirtschaft in grossen Mengen bereitgestellt werden koennen. Die Kenntnis der Biosynthesewege fuer Polymere in Bakterien in Verbund mit der Gentechnik ermoeglicht zudem die Erzeugung transgener Pflanzen, die zur Produktion neuer Polymere anstelle von Bakterien herangezogen werden koennen. 1) Biosynthese von Polyestern: Mikrobielle, aus Hydroxyfettsaeuren aufgebaute Polyester (PHF) machen seit einigen Jahren als neue biologische abbaubare Werkstoffe von sich reden. Neben 3-Hydroxybuttersaeure sind mittlerweile mehr als 100 verschiedene Hydroxyfettsaeuren als Bausteine von PHF bekannt. Seit ca 10 Jahren wird in der Arbeitsgruppe die Biosynthese dieser wasserunloeslichen Polyester untersucht. Als Modellorganismen dienten zunaechst Alcaligenes eutrophus und Pseudomonas aeruginosa; Rhodococcus ruber und zahlreiche anoxygene phototrophe Bakterien wie zB Chromatium vinosum wurden spaeter ebenfalls untersucht. Diese Untersuchungen haben zur Aufklaerung von Biosynthesewegen der PHF und zur Entdeckung neuer Bausteine von PHF sowie zur Klonierung und Ermittlung der Primaerstrukturen des Schluesselenzyms PHF-Synthase aus ca 20 Bakterien beigetragen. Durch Screening nach neuen Wildtypen, durch Verwendung von Mutanten und mit gentechnischen Methoden gelang es, Polyester mit ungewoehnlichen Hydroxyfettsaeuren aus einfachen Kohlenstoffquellen verfuegbar zu machen. In Zusammenarbeit mit Industriepartnern und gefoerdert durch das BMBF und das BML sollen Reststoffe, Kohlen und nachwachsende Rohstoffe fuer die Produktion dieser Polyester erschlossen werden. Ein Biotechnikum mit Bioreaktoren von 1 bis 20 l Nutzvolumen, welches demnaechst durch einen Anbau und einen Bioreaktor von 450 L Nutzvolumen erweitert wird, erlaubt die Herstellung von Polymermustern zur Ermittlung der Materialeigenschaften durch hieran interessierte Kooperationspartner. Ferner kommt der Zusammenarbeit mit Pflanzengenetikern, die Gene fuer PHF Biosynthese aus Bakterien in Pflanzen ...
Das Ziel des geplanten Verbundforschungsvorhabens besteht in der Entwicklung neuartiger Werkstoffe für tribologische Anwendungen auf Basis von elastomeren, thermoplastischen und duromeren Grundwerkstoffen mit chemisch gekoppelten Polytetrafluorethylen-Mikropulvern (PTFE) bzw. inkorporiertem PE. Aus dem gesamten Spektrum der technischen Polymere werden repräsentative Vertreter aus den drei Kunststoffgruppen ausgewählt und für tribologische Einsatzgebiete entsprechend modifiziert. Carbonsäurefunktionalisierte PTFE-Mikropulver als Basismaterialien entstehen durch Strahlenmodifizierung von PTFE in Gegenwart von Sauerstoff. Die Synthese der speziell für die Kopplung mit anderen Polymersystemen modifizierten PTFE-Mikropulver bildet somit den Ausgangspunkt für die ingenieurtechnischen Arbeiten. Die Modifizierung von PA-66 durch chemische Kopplung mit maleinsäureanhydridgepfropftem Polyethylen (PE) mit der anschließenden selektiven Vernetzung des PE ist ein weiteres Arbeitsziel für vergleichende Untersuchungen zu den chemisch gekoppelten PTFE-Polyamidmaterialien. PTFE und PE zeichnen sich durch niedrige adhäsive Haftung bzw. Reibungszahl aus. PE besitzt zwar eine geringe Wärmeformstabilität, liegt aber preislich weit unterhalb von PTFE-Werkstoffen. Nach der Herstellung der neuen Werkstoffsysteme werden diese hinsichtlich der mechanischen und tribologischen Eigenschaften charakterisiert. Analog zu den Ergebnissen aus vorangegangenen Untersuchungen zur Herstellung und Charakterisierung von PTFE-Polyamid-6-Materialien am IPF und LKT wird durch die chemische Kopplung von PTFE bzw. PE mit den Matrixpolymeren anstelle der bisherigen physikalisch gebundenen Einlagerung die Verbesserung der tribologischen Eigenschaften und vor allem eine Erniedrigung der Reibungszahl und die Erhöhung der Verschleißfestigkeit angestrebt. Die chemisch gekoppelten PTFE bzw. PE-Werkstoffsysteme besitzen den Vorteil, dass die für die Verbesserung der tribologischen Eigenschaften verantwortlichen Zusatzstoffe nicht mehr aus der Matrix heraus gerieben werden können. Es sind somit die werkstoff- und verfahrenstechnischen Grundlagen für völlig neuartige Tribowerkstoffe zu entwickeln.Über die Untersuchung der Verarbeitungsbedingungen und eine erste Optimierung der tribologischen und Werkstoffeigenschaften werden grundlegende Erkenntnisse zu den Zusammenhängen zwischen den Strukturbildungs- und Struktur-Eigenschaftsbeziehungen erarbeitet. Der Ausgangspunkt für die Forschungsarbeiten in diesem Verbundprojekt sind die bisher erfolgreich durchgeführten Arbeiten zu einer chemischen Kopplung zwischen PTFE und PA-6 am IPF. Für die Elastomerkopplung werden die PTFE-PA-Produkte mit olefinischen Doppelbindungen modifiziert, die in der Mischungsherstellung bzw. während der Vulkanisation unter chemischer Kopplung mit dem Matrixelastomer reagieren. usw.