Der Kartendienst (WMS-Gruppe) stellt die digitalen Geodaten aus dem Bereich Erneuerbare Energien des Saarlandes dar.:Photovoltaik Freiflächenanlagen Photovoltaik Stromanlagen, in denen mittels Solarmodulzellen ein Teil der Sonneneinstrahlung in elektrische Energie umgewandelt wird. Die Datei enthält nur größere Anlagen, kleinere Anlagen in privater Hand sind hier nicht enthalten. Die Daten stammen aus dem Marktstammdatenregister (MaStR). Stand: 06.09.2022
Der Kartendienst (WMS-Gruppe) stellt die digitalen Geodaten aus dem Bereich Erneuerbare Energien des Saarlandes dar.:Windkraftanlagen des Saarlandes (Anlagen, die die kinetische Energie des Windes in elektrische Energie umwandelt und in das Stromnetz einspeist). Attribute: RW, HW: Koordinaten des Rechtswertes und Hochwertes; NAMEN: Namen des Windparks; SACHSTAND:UVP Vorprüfung (UVP=Umweltverträglichkeitsprüfung), Laufendes Verfahren, Genehmigte WEA; LEISTUNG: Angabe in Megawatt-MW; NABENHOEHE: Höhe der Gondel über dem Turmfuß; GESAMTHOEH:Rotorblattlänge plus Nabenhöhe ergibt die Gesamthöhe.
Das Projekt "Flammenbeheizte thermionische Energiewandler im Temperaturbereich 1100 Grad C bis 1300 Grad C" wird/wurde gefördert durch: Bundesministerium für Forschung und Technologie / Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Institut für Technische Physik.Direktumwandlung von Flammenwaerme in elektrische Energie, wobei die Eingangswaerme eine Temperatur von ca. 1100 Grad C bis 1300 Grad C besitzt und das Verfahren keine rotierenden oder beweglichen Teile benoetigt.
Das Projekt "Vom Erdeisspeicher zum netzaktiven Prosumer-Quartier, Teilvorhaben: Entwicklung und Umsetzung von ganzheitlichen Geschäftsmodellen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Schleswiger Stadtwerke GmbH.Vorhabensziel des Projekts ist die Überführung des im Vorgängervorhaben 'ErdEis II' umgesetzten Erdeisspeichers in den Vollbetrieb, das wissenschaftliche Monitoring und Benchmarking sowie die Entwicklung eines District Energy Management Systems (DEMS). Hierzu sollen verschiedene Betriebsmodi getestet, die Betriebsweise aufbauend auf den Ergebnissen optimiert, der Einfluss verschiedener Parameter modellgestützt nachvollzogen und das Kalte Nahwärmesystem mit Erdeisspeicher bestmöglich für die Gesamtsystemoptimierung mittels DEMS genutzt werden. Im zukünftigen Energiesystem wird nicht mehr allein auf Energieeffizienz respektive End- und Primärenergiebedarf optimiert werden können. Vielmehr spielt Flexibilität eine zunehmende Rolle, die schließlich gekoppelt an die Verfügbarkeit erneuerbarer elektrischer Energie den tatsächlichen CO2-Ausstoß bestimmen wird. Inzwischen sind Schnittstellen verfügbar, die über Vorhersagen zur CO2-Intensität des Stromnetzes eine entsprechende Optimierung ermöglichen. Diese Optimierung hat im Gesamtkonzept nicht nur wärme- bzw. kälteseitig zu erfolgen, sondern ganzheitlich die Bedarfe und Flexibilitäten des Kalten Nahwärmenetzes, der Haushaltsstromverbräuche, Mobilitätsbedarfe und Eigenenergieerzeugung miteinzuschließen. So kann ein Gesamtoptimum erreicht und Optimierungen von Teilsystemen, die zu Lasten der Gesamtemissionen gehen, vermieden werden. Entsprechend müssen auch Bewertungs- und Benchmarkingmethoden passend weiterentwickelt werden.
Das Projekt "Modulare, regenerative und autarke Energieversorgung mit H2-Technik" wird/wurde ausgeführt durch: Infineon Technologies AG.Das Konsortium des Verbundprojekts MarrakEsH hat es sich zum Ziel gesetzt, für die Energieversorgung von Privathaushalten, kleineren Unternehmen, kritischen Infrastrukturen (z.B.Kommunikationsanlagen) und/oder mobilen Netzersatzanlagen sowie netzfernen Verbrauchern ein regeneratives, effizientes, autarkiefähiges Konzept zu erforschen und dieses als Demonstrator umzusetzen. Schlüsselelemente sind dafür ein neuartiger, modularer Multi-Port-Umrichter auf der Basis von Gallium-Nitrid-Leistungshalbleitern und dazu passenden Magnetika, die konfigurierbare Firmware für eine Mikrocontroller Unit mit Schaltfrequenzen im Megahertz-Bereich und eine innovative Wasserstofftechnik, bestehend aus einem Metallhydrid-basierten Wasserstoffspeicher samt dem dafür optimierten Brennstoffzellensystem. In einem Gesamtsystem, das aus mehreren Teilsystemen zur Erzeugung, Umwandlung und Speicherung von Energie besteht, ermöglicht der modulare Multi-Port-Umrichter gegenüber einem konventionellen Ansatz eine deutliche Reduktion der Wandlungsschritte elektrischer Energie und der damit einhergehenden Verluste. Durch den Einsatz des Metallhydrid-basierten Wasserstoffspeichers kann die Wasserstofftechnik ohne Bedenken auch in Privathaushalten oder besonders gefährdeten Umgebungen sicher verwendet werden. Das optimierte Management der elektrischen und thermischen Energieflüsse im System gewährleistet jederzeit die Verfügbarkeit der notwendigen elektrischen Energie. Zudem erlaubt die systematische Hebelung von Synergien zwischen den Teilsystemen eine effiziente, sinnvolle Nutzung der unvermeidbaren Abwärme. Der modulare Aufbau mit neuesten Bauteiltechnologien erlaubt eine einfache Skalierung und/oder Erweiterung des Systems und dient zudem der Verringerung von Wartungsaufwand, Herstellungskosten und Bauraum. Der Fokus von Infineon liegt in seinem Teilvorhaben dabei auf der Erforschung einer High Power Mikrocontroller Unit für die modulare, regenerative und autarke Energieversorgung.
Das Projekt "Etablierung einer nachhaltigen methanogenen Kohlendioxidreduktion in bioelektrochemischen Systemen und Identifizierung kinetischer und thermodynamischer Restriktionen." wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Ruhr-Universität Bochum, Institut für Infrastruktur und Umwelt, Lehrstuhl für Siedlungswasserwirtschaft und Umwelttechnik.Bioelektrochemische Systeme ermöglichen die Speicherung elektrischer Energie in Form von Methan (CH4), jenem transportablen Gas, dessen spätere energetische Verwertung bereits von einer vorhandenen Erdgasinfrastruktur profitieren kann. In den genannten Bioreaktoren stellt eine Kathode Elektronen für die Reduktion von Kohlendioxid (CO2) zu Methan (CH4) über ein anaerobes Mikrobiom bereit. Die Ziele dieses Vorhabens können in zwei Bereiche unterteilt werden: i) Entwicklung und Untersuchung von Fe4.5Ni4.5S8-Elektroden, die die katalytischen Eigenschaften wichtiger Enzyme der methanogenen Prozesse imitieren; und ii) Verwendung der Kohlenstoffisotopenanalyse zur Unterstützung einer umfassenden Prozessanalyse und zur Simulation der CH4-Bildung aus CO2 in Bioreaktoren. Die Hypothese für die Untersuchungen zu den Isotopeneffekten ist, dass bei der CH4-Bildung unter Verwendung direkter Elektronenübertragungswege die 13C-Fraktionierung von der verfügbaren freien Energie für den methanogenen Stoffwechsel abhängig ist, analog zur hydrogenotrophen Methanogenese. Eine variable 13C-Fraktionierung wird auch bei autotrophen CO2-Fixierungsprozessen durch Bakterien, Archaeen und Algen beobachtet. Mit Hilfe dieser Hypothese werden wir eine Modellstruktur auf Basis der 13C-Analysedaten zur detaillierten Beschreibung der Produktbildungserträge mit thermodynamisch abhängiger Wachstumskinetik und detaillierter Berechnung der stabilen Kohlenstoffisotopenfraktionierung entwickeln. Dieses Modell soll für den methanogenen CO2-Reduktionsweg mit verschiedenen Elektronendonatoren gelten. Daher werden Gasdiffusionskathoden eingesetzt, um eine sofortige Änderung der Elektronendonatorquelle zu ermöglichen, durch eine Begasung mit Wasserstoff (H2) oder durch die Bereitstellung eines elektrischen Stroms. Letztendlich werden durch die 13C-basierte thermodynamische Analyse ideale Bedingungen für den Vergleich des neuen Fe4.5Ni4.5S8-Elektroden mit Benchmark-Elektroden geschaffen. Wir gehen davon aus, dass die funktionellen biomimetischen Hydrogenase und CO-Dehydrogenase Modelle aus den Fe4.5Ni4.5S8-Elektroden die methanogene CO2-Reduktion begünstigen können, was aus den thermodynamischen Randbedingungen direkt abgeleitet werden kann. Die Untersuchungen werden parallele biologische Experimente mit offenen Mikrobiomen und Reinkulturen umfassen. Assays mit Methanogenen aus der Gattung Methanothrix sind vielversprechend für eine direkte Bestimmung der 13C-Fraktionierung bei der H2-freien Methanogenese aus CO2, da diese die CO2-Reduktion nur durch direkte Elektronenübertragungsmechanismen durchführen können.
Das Projekt "Material- und Prozessoptimierung zur Steigerung der Effizienz von laserbehandeltem kornorientiertem Elektroblech, Teilvorhaben: Verbesserung der magnetischen Eigenschaften die eine optimierte Domänenfeinung mittels Hochleistungs-Laser und unter Berücksichtigung des Ausgangsmaterials" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Werkstoff- und Strahltechnik.Im Rahmen des Vorhabens soll die Laserbehandlungstechnologie zur Verlustreduzierung hochpermeabler kornorientierter Eisen-Silizium-Bleche, die als Kernmaterial und a. bei Verteiltransformatoren zum Einsatz kommen, weiterentwickelt werden. Neben der Reduzierung der Ummagnetisierungsverluste der Elektrobleche durch eine Verfahrensoptimierung unter Verwendung hochbrillanter Laserstrahlquellen wird auch die Optimierung des Ausgangsmaterials adressiert. Im Kontext der Energiewende zielt das Vorhaben einerseits auf die unmittelbare Einsparung von Primärenergie ab. Andererseits führt die Effizienzsteigerung von kornorientiertem Elektroblech zur Ressourceneffizienz durch Materialeinsparungen beim Bau der Transformatoren. Darüber hinaus führt die angestrebte Einsparung von Primärenergie dazu, dass aufgrund des Skaleneffekts selbst bei steigendem Strombedarf bestehende Netze einschließlich der dazugehörigen Infrastruktur länger genutzt werden können, was wiederum einen wesentlichen Beitrag zur Ressourceneffizienz liefert.
Das Projekt "Material- und Prozessoptimierung zur Steigerung der Effizienz von laserbehandeltem kornorientiertem Elektroblech" wird/wurde ausgeführt durch: Fraunhofer-Institut für Werkstoff- und Strahltechnik.Im Rahmen des Vorhabens soll die Laserbehandlungstechnologie zur Verlustreduzierung hochpermeabler kornorientierter Eisen-Silizium-Bleche, die als Kernmaterial und a. bei Verteiltransformatoren zum Einsatz kommen, weiterentwickelt werden. Neben der Reduzierung der Ummagnetisierungsverluste der Elektrobleche durch eine Verfahrensoptimierung unter Verwendung hochbrillanter Laserstrahlquellen wird auch die Optimierung des Ausgangsmaterials adressiert. Im Kontext der Energiewende zielt das Vorhaben einerseits auf die unmittelbare Einsparung von Primärenergie ab. Andererseits führt die Effizienzsteigerung von kornorientiertem Elektroblech zur Ressourceneffizienz durch Materialeinsparungen beim Bau der Transformatoren. Darüber hinaus führt die angestrebte Einsparung von Primärenergie dazu, dass aufgrund des Skaleneffekts selbst bei steigendem Strombedarf bestehende Netze einschließlich der dazugehörigen Infrastruktur länger genutzt werden können, was wiederum einen wesentlichen Beitrag zur Ressourceneffizienz liefert.
Die im Jahr 2017 gegründete ZEI-Tec GmbH mit Sitz in Aalen (Baden-Württemberg) ist ein Hersteller von Komponenten und Halbzeugen für elektrische Maschinen, wie Transformatoren, Elektromotoren und Generatoren. Ziel des Vorhabens ist die Errichtung einer innovativen Fertigungslinie für weichmagnetische Eisenkerne aus rascherstarrten, amorphen FeSiB-Folien, welche zur Herstellung neuartiger, innovativer Transformatorenkerne in Stapelbauweise für Verteiltransformatoren verwendet werden können. Die neuartigen ZEI-Tec-Stapelkerne sollen die derzeit nach dem Stand der Technik in Deutschland und in der EU verwendeten Transformatorenkerne aus Elektroblech ersetzen. Die geplante Produktion unterteilt sich in die Amorphbandherstellung (Rascherstarrungsanlage, Sekundärbandkühlung und Bandwickelanlage) und in die Folienverarbeitung. Das Herzstück der Anlage ist eine Gießanlage für rascherstarrte, amorphe FeSiB-Folien mit einer Dicke von 35-40 Mikrometern und 200 Millimetern Breite. Die jährliche Produktionsmenge beträgt 250 Millionen Meter. Die Qualitäts- und Präzisionsziele erfordern den Anlagenbetrieb im Reinraum. In der Produktion sollen mit der innovativen Anlagentechnik im Vergleich zum Herstellung von Elektroblechkernen (ausgehend von der Roheisenerzeugung im Hochofen), bei einer geplanten Jahresproduktion von 20.000 amorphen Stapelkernen jährlich 66 Gigawattstunden an Energie (80 Prozent), 5.800 Tonnen an Eisensilicid (33 Prozent) durch die Vermeidung von Überproduktion und 35.600 Kubikmeter an Wasser (99 Prozent) eingespart werden können. Die eingesetzte Schmelzenergie soll bis zu 40 Prozent in geschlossenen Kreisläufen rückgewonnen werden (2.600 Megawattstunden pro Jahr nutzbar). Weitere Einsparungen ergeben sich aufgrund der Bauform der amorphen Stapelkerne. So sind diese gegenüber den derzeitig verfügbaren Kernen deutlich kompakter und gegenüber sogenannten Wickelkernen bis zu 40 Prozent leichter. Im Vergleich zum Durchschnittstransformator mit Elektroblechkern (20 Kilovolt/ 400 Kilovoltampere) sollen sich beim Bau von Transformatoren mit dem ZEI-Tec-Kern 19 Prozent an Leitungsmaterial (Aluminium und ggf. Kupfer), 25 Prozent weichmagnetisches Eisensilicid und 22 Prozent Stahl einsparen lassen. Gleichzeitig fallen die Anforderungen an die Kühlung der Transformatoren mit ZEI-Tec-Kern geringer aus. Durch die bauformbedingten Materialeinsparungen, die produktionsbedingten Einsparungen von Prozessenergie, die Vermeidung von Überproduktion sowie der Rückgewinnung von Prozesswärme können jährlich ca. 73.500 Tonnen CO 2 vermieden werden. Für die einzelnen Prozessschritte soll ausschließlich elektrische Energie eingesetzt werden. Darüber hinaus sollen sich insbesondere beim Betrieb von Transformatoren mit dem neuartigen ZEI-Tec-Kern erhebliche Energieeinsparungen erzielen lassen. Gegenüber herkömmlichen Elektroblechkernen sollen die ZEI-Tec-Kerne um bis zu 58 Prozent geringere magnetische Energieverluste aufweisen. Im Netzbetrieb ließen sich damit im Vergleich zu einem Durchschnittstransformator (20 Kilovolt/ 400 Kilovoltampere) bis zu 2,2 Megawattstunden Strom jährlich einsparen. Branche: Sonstiges verarbeitendes Gewerbe/Herstellung von Waren Umweltbereich: Ressourcen Fördernehmer: ZEI-Tec GmbH Bundesland: Baden-Württemberg Laufzeit: seit 2020 Status: Laufend
Das Projekt "CO2-WIN: Gasdiffusionselektroden für gekoppelte mikrobielle-elektrochemische Synthesen aus CO2, Teilvorhaben 1: Mischkulturen." wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Technische Hochschule Mittelhessen, Institut für Bioverfahrenstechnik und Pharmazeutische Technologie (IBPT), Arbeitsgruppe Intensivierung von Bioprozessen (IB).
Origin | Count |
---|---|
Bund | 4072 |
Europa | 2 |
Kommune | 1 |
Land | 130 |
Unklar | 2 |
Wissenschaft | 13 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Chemische Verbindung | 1 |
Ereignis | 10 |
Förderprogramm | 2012 |
Gesetzestext | 2 |
Messwerte | 1 |
Text | 1980 |
Umweltprüfung | 84 |
unbekannt | 104 |
License | Count |
---|---|
geschlossen | 296 |
offen | 2029 |
unbekannt | 1869 |
Language | Count |
---|---|
Deutsch | 3928 |
Englisch | 519 |
Resource type | Count |
---|---|
Archiv | 1859 |
Bild | 5 |
Datei | 1880 |
Dokument | 1971 |
Keine | 1407 |
Multimedia | 1 |
Unbekannt | 4 |
Webdienst | 7 |
Webseite | 842 |
Topic | Count |
---|---|
Boden | 2664 |
Lebewesen & Lebensräume | 1860 |
Luft | 1712 |
Mensch & Umwelt | 4194 |
Wasser | 1599 |
Weitere | 3279 |