Die Hochwald Foods GmbH verarbeitet als genossenschaftlich strukturiertes Unternehmen die von den bäuerlichen Anteilseignern gelieferte Rohmilch. Am Standort in Hünfeld betreibt das Unternehmen eine Produktionsstätte für Käseprodukte. Als Nebenprodukt bei der Käseherstellung fallen große Mengen Molke an, die bisher als Tierfutter oder als Nahrungsergänzungsmittel genutzt wurde. Um eine höherwertige Verwertung z.B. als Zusatz in Säuglingsnahrung, zu erreichen, wurde in Hünfeld ein neues Demineralisierungs- und Trockenwerk gebaut. Dieses erreicht hohe Demineralisierungsgrade und ist das erste Werk dieser Art in Deutschland. Die aus diesem Werk anfallenden, hoch organisch belasteten und stark salzhaltigen Abwasserströme konnten nicht wie bisher die Abwässer der Käseproduktion der kommunalen Kläranlage zugeführt werden. Daher wurde eine Industrieabwasserreinigungsanlage (IAR) geplant, gebaut und parallel zum Demineralisierungs- und Trockenwerk in Betrieb genommen. Es fallen pro Tag ca. 2300 Kubikmeter Abwasser an, mit hohen Belastungen an chemischem Sauerstoffbedarf (CSB), Phosphor, Chlorid und Kalium. Das Abwasseraufkommen verteilt sich etwa gleich auf vier Teilströme, organisch gering belastete Abwässer, organisch hoch belastete Abwässer und überwiegend mineralisch belastete Abwässer aus dem Trockenwerk sowie einen Teilstrom aus der Käseproduktion. Zur zielgerichteten Behandlung werden diese in separaten Leitungen der IAR zugeführt. Die Behandlung erfolgt in den Verfahrensschritten: Elektrodialyse; Reduzierung der Chloridfracht um 1/3 und der Kaliumfracht um 2/3 gegenüber dem Ausgangswert, das entspricht einer Eliminationsleistung von min. 2.200 Kilogramm Chlorid pro Tag bzw. 1.600 Kilogramm Kalium pro Tag Flotation ungelöster Stoffe Anaerobe Abwasserbehandlung; CSB- Abbau, Erzeugung von Biogas als Wertstoff aus einem salzreichen Substrat MAP- Fällung; Entfernung von Phosphor und Erzeugung von Magnesiumammoniumphosphat als Wertstoff Aerobe Abwasserbehandlung in SBR- Reaktoren; weitergehende P- und N- Elimination in einem salzreichen Substrat Die Teilströme, die hohe Konzentrationen an anorganischen Salzen enthalten, werden der Elektrodialyse zugeführt, wobei die Ionen über monovalente Membranen aufkonzentriert und ausgeschleust werden. Die Trockenwerksabwässer, die stark mit organischen Verbindungen (Molkeprotein, ungelöste Stoffe) verunreinigt sind, werden der Flotationsanlage zugeführt, in der unter Zuhilfenahme von Flockungsmitteln ein Teil des CSB sowie Schwebstoffe entfernt werden. Im Wesentlichen wird die Flotation im Sinne einer Fettabscheidung betrieben. Das aus der Flotation ablaufende Wasser wird anschließend dem anaerob arbeitenden R2S- Reaktor zugeführt, in dem der überwiegende Teil der Organik abgebaut wird. Dann wird das Abwasser der MAP-Fällstufe zugeführt, wobei vorgesehen ist, das ausgefällte Magnesiumammoniumphosphat als Wertstoff zu vermarkten. Der Ablauf der MAP-Fällstufe wird anschließend im Belebungsverfahren aerob weiterbehandelt. Dabei kommen zwei SBR- Reaktoren (Sequencing Batch Reaktor) zum Einsatz, die wechselseitig beschickt werden. Zusätzlich besteht die Möglichkeit, mittels Nachfällung weitere Phosphorverbindungen zu eliminieren. Die Eliminationsleistung von Phosphor beträgt über 99,5 Prozent, die gute Eliminationsleistung der organischen Belastung ist über die über 99-prozentige Minderung des chemischen Sauerstoffbedarfs ersichtlich. Diese erstmalig angewendete Technikkombination kann außer bei weiteren Molkedemineralisierungs- und trockenwerken auch zu Minderung von Gewässerbelastungen durch Abwassereinleitungen in anderen Branchen zum Einsatz kommen, die durch hohe organische Frachten als auch hohen Frachten an einwertigen Ionen gekennzeichnet sind. Als Beispiele sind die Zucker- bzw. Bioethanol- und die Lederherstellung zu nennen. Branche: Nahrungs- und Futtermittel, Getränke, Landwirtschaft Umweltbereich: Wasser / Abwasser Fördernehmer: Hochwald Foods GmbH Bundesland: Hessen Laufzeit: 2014 - 2016 Status: Abgeschlossen
Das Projekt "Laborschiff zur Analyse der Gewaesserqualitaet in Fluessen, dazu Entwicklung von Schnelltests" wird vom Umweltbundesamt gefördert und von Fachhochschule Bingen, Fachbereich Umweltschutz durchgeführt. Konzeptionen der Schadstoffmessung, einschliesslich und Strahlen.
Das Projekt "Recycling von Prozessabwasser mit Rueckgewinnung von Schwefelsaeure in der Batterieherstellung" wird vom Umweltbundesamt gefördert und von VHB Industriebatterien durchgeführt. Bei der Batterieherstellung fallen beim Saeurefreiwaschen der formierten Elektroden grosse Mengen Abwasser an, die mit Schwefelsaeure, Blei und anderen Schwermetallen belastet sind. Zur Verminderung dieser Belastungen werden bisher die mehrstufige Kaskadenspuelung im Gegenstrom und Ableitung des anfallenden Spuelkonzentrats ueber eine Neutralisationsfaellung oder die Kreislauffuehrung ueber eine dreistufige Faellung nach dem Walhalla-Verfahren eingesetzt. Nachteilig hierbei ist der Schlammanfall, der mit grossem Aufwand verwertet werden muss. Im vorliegenden Vorhaben wird der Gesamtanfall von Abwasser im Bereich der Elektrodenwaesche durch die Anwendung und Optimierung von physikalischen Kreislaufbehandlungsverfahren mindestens halbiert und die anfallenden Reststoffe intern oder extern verwertet. Folgende Verfahrenskombinationen kommen zur Anwendung. Optimierung des Waschverfahrens zur Erhoehung der Konzentration der Spuelwaesser und Minimierung der Wassermenge. Entfernung des feinpartikulaer vorhandenen Bleis durch eine optimierte Mikrofiltration. Der zurueckgehaltene Bleischlamm kann in der Sekundaerverhuettung wieder eingesetzt werden. Entfernung der geloesten Schwermetalle durch Kationentauscher. Aufkonzentrierung der Loesung durch eine Elektrodialyse. Die hierbei erzeugte 10-prozentige Schwefelsaeure wird in die Produktion zurueckgefuehrt, das an Schwefelsaeure verarmte Wasser wird wieder im Spuelprozess eingesetzt. Bei dieser Verfahrensweise werden die Ableitung von grossen Mengen sulfathaltiger Abwaesser und die Entstehung von schwermetallhaltigen Gipsschlaemmen aus der konventionellen Abwasserbehandlung vermieden.
Das Projekt "Aufarbeitung von Molke durch Ultrafiltration und Elektrodialyse" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Milchforschung durchgeführt. Die Untersuchungen sollen dazu dienen, durch eine verbesserte Aufarbeitung von Molke die Gefahr ihres Ableitens in Gewaesser zu verhindern und dadurch zur Loesung der Probleme des Abwassers bzw. des Gewaesserschutzes beizutragen. Die Betriebsparameter auf den Trenneffekt fuer Inhaltsstoffe, erreichbaren Konzentrationsgrad, Leistung und mikrobiologische Beschaffenheit der Konzentrate sollen untersucht werden. Ermittlung der funktionellen Eigenschaften der Konzentrate und Filtrate, Bestimmung des Einflusses der Betriebsparameter auf den Entsalzungsgrad und den Mengendurchsatz bei der Elektrodialyse.
Das Projekt "Teilvorhaben: Erforschung der Offshore-Erzeugung von verflüssigtem Methan, der CO2-Bereitstellung aus Meerwasser, Untersuchung der H2-Produktion mithilfe der Meerwasserelektrolyse und das Wassermanagement auf einer Offshore Plattform" wird vom Umweltbundesamt gefördert und von DVGW-Forschungsstelle am Engler-Bunte-Institut des Karlsruher Instituts für Technologie durchgeführt. Im Verbundprojekt 2 PtX-Wind - Offshore PtX-Prozesse soll eine offshore Versuchsplattform entwickelt werden, die es ermöglicht innovative und vielversprechende Elektrolyse- und Power-to-X-Konzepte unter realen Bedingungen offshore in einzelnen Prozessschritten und als integrierte Prozesskette zu testen und weiterzuentwickeln, mit dem Ziel Wechselwirkungen zwischen den ausgewählten Prozessen und Anlagenteilen zu untersuchen. Das hier beantragte Teilvorhaben, das vom DVGW-EBI durchgeführt wird, adressiert im Rahmen von H2Mare die CO2- und Wasserstoffgewinnung direkt aus Meerwasser, die anschließende Methanisierung, die Methanverflüssigung und die Bereitstellung von Verfahren zur Wasseraufbereitung für den gesamten offshore Betrieb. Im Folgenden werden die Prozesse entsprechend 'gasseitig' (CO2-Gewinnung, Wasserstoffelektrolyse, Methanisierung) und 'wasserseitig' (Wassermanagement) genannt. Gasseitig werden am DVGW-EBI die innovative Gewinnung von CO2 aus Meerwasser mit der Elektrodialyse bearbeitet. Darüber hinaus soll zusammen mit der TU Berlin das Potenzial und die Risiken (Fouling) der Meerwasserelektrolyse ermittelt werden. Darüber hinaus wird eine Demonstrationsanlage für die Methanisierung umgerüstet und im Verbund mit einer Methanverflüssigung betrieben. In der Methanisierung wird ein neues optimiertes Reaktordesgin im 100-kW-Maßstab getestet. Für das Wassermanagement werden verschiedenen Verfahren im Pilotmaßstab getestet. Dazu gehört die Bereitstellung von VE Wasser für die Elektrolyse und die Behandlung von Abwasser entsprechend den Anforderungen von Einleitungen von offshore Plattformen. Alle einzelnen Prozesse werden abschließend in einem Gesamtkonzept integriert, das sowohl die Masse- und Energieströme und deren Steuerung beinhalten wird.
Das Projekt "Nanofiltration zur Grundwasseraufbereitung und Sulfatabscheidung bei der Trinkwasseraufbereitung am Beispiel von kippenbelastetem Grundwasser in einem Braunkohlentagebaurevier" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Aachener Verfahrenstechnik, Lehrstuhl für Chemische Verfahrenstechnik durchgeführt. Erhöhte Konzentrationen an Sulfat im Trinkwasser können negative Auswirkungen auf die Gesundheit der Konsumenten haben und führen zu einem erhöhten Risiko für Korrosionen im Leitungsnetz. Aufgrund dessen schreibt die Trinkwasserverordnung einen Grenzwert von 240 mg/l vor. Erhöhte Konzentrationen an Sulfat im Grundwasser, die eine spezielle Aufbereitungstechnik erfordern, kommen vor allem durch den Einfluss von Tagebauaktivitäten zustande. Im ausgehobenen Kippenmaterial kommt es zur Oxidation des Pyrits, was nach der Verfüllung der Gruben zu einem Anstieg der Sulfat-, Calcium- und Schwermetallkonzentration im Grundwasser führt. In betroffenen Grundwasservorkommen in Deutschland wurden Konzentrationen von bis zu 2500 mg/l Sulfat gemessen. Die Nanofiltration ist eine mögliche Aufbereitungstechnologie, die die Grundwassernutzung in derart beeinträchtigten Standorten auch nach der Verfüllung der Gruben erlaubt. Es wird erwartet, dass die Nanofiltration im Vergleich zu den anderen in Frage kommenden Technologien Ionenaustauscher, Destillation, Elektrodialyse und Umkehrosmose vor allem bei höheren Sulfatkonzentration in der Größenordnung >1000 mg/l das wirtschaftlichste Verfahren darstellt. In dem Projekt Nanofiltration zur Sulfatabscheidung bei der Trinkwasseraufbereitung wird die Aufbereitung mittels Nanofiltration experimentell im Labor- und Pilotmaßstab untersucht. Es wird dabei schwerpunktmäßig ein Standort betrachtet, der im Einflussgebiet des Braunkohletagebaureviers Inden I liegt und derzeit Sulfatkonzentrationen von 1000-1500 mg/l in einem Trinkwasserbrunnen aufweist. Neben der Untersuchung der Nanofiltration an sich wird eine Konzentrataufbereitung mittels CaSO4-Kristallisation auf ihre Effektivität geprüft.
Das Projekt "Teilvorhaben 1: Up- und Downstream processing" wird vom Umweltbundesamt gefördert und von Universität Rostock, Institut für Chemie durchgeführt. Das Vorhaben hat zum Ziel Melasse als Rohstoff für die elektrochemische Umsetzung zu Folgeprodukten zu verwenden. Bisher wird Melasse vor allem als Futtermittel oder als Kohlenstoffquelle für Fermentationen verwendet. Sie zeichnet sich durch einen hohen Anteil an Kohlenhydraten aus. Diese sollen durch anodische Oxidation zu Hydroxycarbonsäuren bzw. durch gepaarte Elektrolyse zu Polyolen umgesetzt werden, wobei katalytisch aktive Nickelhydroxidelektroden als innovativer Ansatz zur Anwendung kommen sollen. Dabei kommt es zunächst zu einer Spaltung der Kohlenhydrate und Oxidation zu Hydroxycarbonsäuren, welche anschließend kathodisch hydriert werden (Domino-Oxidationsreduktions-Sequenz, DoORs). Neben den im Mittelpunkt stehenden elektrochemischen Umsetzungen sind Untersuchungen zur Zusammensetzung der Melasse sowie zu den möglichen Reaktionsprodukten notwendig. Dazu werden einerseits Kopplungsmethoden wie LC- und GC-MS eingesetzt sowie direkt an die MS gekoppelte elektrochemische Durchflusszellen (EC-MS). Störende Komponenten, die entweder die elektrochemische Umsetzung verhindern oder zu störenden Nebenprodukten führen, sollen durch eine Vorbehandlung der Melasse abgetrennt werden. Hier kommen Membranverfahren wie Nanofiltration oder Elektrodialyse zum Einsatz. Für die Optimierung der Versuchs- und Prozessbedingungen werden notwendige kinetische Parameter bestimmt und auf Basis einfacher formalkinetischer Modelle die Reaktionen beschrieben. Daneben kommen statistische Methoden der Versuchsplanung zum Einsatz, um die komplexen Zusammenhänge im Hinblick auf Selektivität, Ausbeute und Energieverbrauch zu optimieren. In einem abschließenden Arbeitspaket soll in einem Durchflussreaktor unter GMP-Bedingungen Material im kg-Maßstab für Anwendungsuntersuchungen gewonnen werden.
Das Projekt "Teilvorhaben: Grundlagenermittlung, Mitentwicklung und Bewertung des Green Soda Prozesses" wird vom Umweltbundesamt gefördert und von CIECH Soda Deutschland GmbH & Co. KG durchgeführt. In dem geplanten Vorhaben soll eine neue Produktionsroute für Natron (Natriumhydrogencarbonat) und Soda (Natriumcarbonat) bis zum Technikumsmaßstab entwickelt und optimiert werden. Durch die Verwendung von regenerativen Strom biogenem Kohlendioxid aus Biogasanlagen und salzhaltigen Abwässern soll ein nachhaltigerer Prozess als das konventionellen Ammoniak-Soda Verfahren entwickelt werden. Dafür sollen modernste Membrantechnologie und bipolare Elektrodialyse eingesetzt werden, um den Energiebedarf zu minimieren. Das neue Verfahren soll eine nachhaltige Alternative bzw. Ergänzung zum konventionellen Verfahren darstellen und dazu beitragen die Abfallströme der Sodaindustrie (Entsalzung von Abwasser) zu reduzieren, fossile Rohstoffe (Kalkstein, Erdgas, Koks bzw. Anthrazit) zu vermeiden und gleichzeitig als CO2-Senke (Carbon Capture & Utilization) zu wirken. Als zusätzliches Produkt wird bei dem Verfahren Salzsäure produziert. Des Weiteren wird geprüft, inwieweit Calciumchlorid aus den entstandenen Abfallströmen abgeschieden und vermarktet werden kann. Das Projekt wird gemeinsam durch die Partner des Fraunhofer-IKTS, der CIECH Soda Deutschland, dem E.S.C.H. Engineering Service Center und Handel GmbH, dem DBI Gas- und Umwelttechnik GmbH, dem Helmholtz-Zentrum Dresden-Rossendorf und der Wemag Projektentwicklung GmbH bearbeitet.
Das Projekt "Veredelung von Melasse durch gepaarte Elektrolyse und elektrodialytische Aufarbeitung" wird vom Umweltbundesamt gefördert und von Universität Rostock, Institut für Chemie durchgeführt. Das Vorhaben hat zum Ziel Melasse als Rohstoff für die elektrochemische Umsetzung zu Folgeprodukten zu verwenden. Bisher wird Melasse vor allem als Futtermittel oder als Kohlenstoffquelle für Fermentationen verwendet. Sie zeichnet sich durch einen hohen Anteil an Kohlenhydraten aus. Diese sollen durch anodische Oxidation zu Hydroxycarbonsäuren bzw. durch gepaarte Elektrolyse zu Polyolen umgesetzt werden, wobei katalytisch aktive Nickelhydroxidelektroden als innovativer Ansatz zur Anwendung kommen sollen. Dabei kommt es zunächst zu einer Spaltung der Kohlenhydrate und Oxidation zu Hydroxycarbonsäuren, welche anschließend kathodisch hydriert werden (Domino-Oxidationsreduktions-Sequenz, DoORs). Neben den im Mittelpunkt stehenden elektrochemischen Umsetzungen sind Untersuchungen zur Zusammensetzung der Melasse sowie zu den möglichen Reaktionsprodukten notwendig. Dazu werden einerseits Kopplungsmethoden wie LC- und GC-MS eingesetzt sowie direkt an die MS gekoppelte elektrochemische Durchflusszellen (EC-MS). Störende Komponenten, die entweder die elektrochemische Umsetzung verhindern oder zu störenden Nebenprodukten führen, sollen durch eine Vorbehandlung der Melasse abgetrennt werden. Hier kommen Membranverfahren wie Nanofiltration oder Elektrodialyse zum Einsatz. Für die Optimierung der Versuchs- und Prozessbedingungen werden notwendige kinetische Parameter bestimmt und auf Basis einfacher formalkinetischer Modelle die Reaktionen beschrieben. Daneben kommen statistische Methoden der Versuchsplanung zum Einsatz, um die komplexen Zusammenhänge im Hinblick auf Selektivität, Ausbeute und Energieverbrauch zu optimieren. In einem abschließenden Arbeitspaket soll in einem Durchflussreaktor unter GMP-Bedingungen Material im kg-Maßstab für Anwendungsuntersuchungen gewonnen werden.
Das Projekt "Teilvorhaben 2: Elektrosynthese" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Katalyse e.V. an der Universität Rostock durchgeführt. Das Vorhaben hat zum Ziel Melasse als Rohstoff für die elektrochemische Umsetzung zu Folgeprodukten zu verwenden. Bisher wird Melasse vor allem als Futtermittel oder als Kohlenstoffquelle für Fermentationen verwendet. Sie zeichnet sich durch einen hohen Anteil an Kohlenhydraten aus. Diese sollen durch anodische Oxidation zu Hydroxycarbonsäuren bzw. durch gepaarte Elektrolyse zu Polyolen umgesetzt werden, wobei katalytisch aktive Nickelhydroxidelektroden als innovativer Ansatz zur Anwendung kommen sollen. Dabei kommt es zunächst zu einer Spaltung der Kohlenhydrate und Oxidation zu Hydroxycarbonsäuren, welche anschließend kathodisch hydriert werden (Domino-Oxidationsreduktions-Sequenz, DoORs). Neben den im Mittelpunkt stehenden elektrochemischen Umsetzungen sind Untersuchungen zur Zusammensetzung der Melasse sowie zu den möglichen Reaktionsprodukten notwendig. Dazu werden einerseits Kopplungsmethoden wie LC- und GC-MS eingesetzt sowie direkt an die MS gekoppelte elektrochemische Durchflusszellen (EC-MS). Störende Komponenten, die entweder die elektrochemische Umsetzung verhindern oder zu störenden Nebenprodukten führen, sollen durch eine Vorbehandlung der Melasse abgetrennt werden. Hier kommen Membranverfahren wie Nanofiltration oder Elektrodialyse zum Einsatz. Für die Optimierung der Versuchs- und Prozessbedingungen werden notwendige kinetische Parameter bestimmt und auf Basis einfacher formalkinetischer Modelle die Reaktionen beschrieben. Daneben kommen statistische Methoden der Versuchsplanung zum Einsatz, um die komplexen Zusammenhänge im Hinblick auf Selektivität, Ausbeute und Energieverbrauch zu optimieren. In einem abschließenden Arbeitspaket soll in einem Durchflussreaktor unter GMP-Bedingungen Material im kg-Maßstab für Anwendungsuntersuchungen gewonnen werden.
Origin | Count |
---|---|
Bund | 103 |
Type | Count |
---|---|
Förderprogramm | 101 |
Text | 2 |
License | Count |
---|---|
geschlossen | 3 |
offen | 100 |
Language | Count |
---|---|
Deutsch | 95 |
Englisch | 11 |
Resource type | Count |
---|---|
Dokument | 3 |
Keine | 78 |
Webseite | 24 |
Topic | Count |
---|---|
Boden | 57 |
Lebewesen & Lebensräume | 72 |
Luft | 37 |
Mensch & Umwelt | 103 |
Wasser | 76 |
Weitere | 102 |