API src

Found 286 results.

VP-3.2./BioWPC

Das Projekt "VP-3.2./BioWPC" wird vom Umweltbundesamt gefördert und von Herotron E-Beam Service GmbH durchgeführt. Im Teilvorhaben 4 (Herotron) wird die Behandlung mit Elektronenstrahlung zur Modifizierung der Ausgangsstoffe, Komposite und Bauteile untersucht. Das Ziel ist es die Parameter der Anlage für die verschiedenen Materialien zu validieren und eine Anlage für eine kontinuierliche Verfahrensweise zu konzipieren. Dieses Teilvorhaben dient zur Modifizierung der Buchenholzfasern, der Holz-Polymer-Werkstoffe und der Bauteile mit Hilfe der Behandlung mit Elektronenstrahlung. Je nach Material muss die Strahlenintensität und die Verweilzeit angepasst werden. Als Ausgangsstoff werden die Hackschnitzel mit Hilfe der Elektronenstrahlung modifiziert. Die bestrahlten Hackschnitzel werden anschließend im TV1 zu Refinerfasern verarbeitet. Ziel ist es wie im TV2 eine Verbesserung des mechanischen Aufschlusses der Fasern zu erreichen und die Geruchsemissionen zu mindern. Die für die Komposite in TV3 entwickelten reinen Polyamidblends und -copolymere und die mit den Additiven für die Strahlenvernetzung werden zum Vergleich ebenfalls einer Strahlenbehandlung unterzogen. Die Entwicklung von PA-Blends, -copolymeren und Additivierung wird iterativ optimiert. Anschließend werden die aus den Kompositen in TV8 hergestellten Prüfkörper und Bauteile durch die Strahlenbehandlung modifiziert und im TV9 charakterisiert und bewertet. Zum Vergleich werden auch die in TV5 und TV7 hergestellten Bauteile bestrahlt und im Rahmen von TV5 und TV7 geprüft.

Teil 1

Das Projekt "Teil 1" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Landesanstalt für Agrartechnik und Bioenergie (740) durchgeführt. Ziel des Forschungsvorhabens ist die Entwicklung eines vollkommen neuen Verfahrens zur Erzeugung von gasförmigen Kraftstoffen aus organischen Abfallstoffen. Dazu werden erstmals fermentative Verfahren und bio-elektrische Systeme zu einem neuen Prozess kombiniert. In diesem Prozess werden die Abfallstoffe zunächst in einem 'dark fermentation reactor' fermentativ in organische Säuren umgewandelt und anschließend einer bio-elektrochemischen Konversion, bestehend aus einer Anoden- und einer Kathodenkammer zugeführt werden. An der Anode werden die gelösten organischen Säuren durch exoelektrogene Bakterien zu CO2, H+ und e- oxidiert. Während die Protonen durch eine PEM (proton exchange membrane) der Kathode zugeführt werden, geben die Bakterien die freiwerdenden Elektronen an die Anode ab, so dass diese über eine elektrische Verbindung an die Kathode weiter geleitet werden. Das gebildete CO2 wird ergänzend bedarfsgerecht der Kathode zugeführt. Die Einzelziele des Projektes sind wie folgt definiert: - Entwicklung und Erprobung eines geeigneten Anoden- und Kathodenmaterials und Optimierung der Elektrodenstruktur - Untersuchung der biologischen Diversität der Mikroorganismen an den Elektroden - Optimierung des fermentativ bioelektrochemischen Gesamtverfahrens unter technischen Aspekten im Labormaßstab. Im Berichtszeitraum wurden im Wesentlichen folgende Arbeiten durchgeführt: Ausgehend von Vorarbeiten zur Wasserstoffproduktion mit Edelstahlkathoden in dem für die Methanogenen geeigneten Kulturmedium, wurde iterativ ein auf die Anforderungen der Kathodenentwicklung hin optimiertes Reaktorkonzept entwickelt. Eine Hauptanforderung an den Reaktor ist dabei die integrierte CO2-Versorgung. Hinsichtlich der Entwicklung eines geeigneten Biofilm-Trägermaterials wurden vergleichende Untersuchungen mit Glasfasern und Nanofasern aus Polyacrylnitril (PAN) in einer Kultur von M. barkeri durchgeführt. Die PAN-Nanofasern wurden teilweise zusätzlich mit (3-Aminopropyl)triethoxysilan (ATPES) behandelt, um deren Oberfläche mit positiven Ladungen auszurüsten und so die Biofilmansiedlung zu verbessern. In verschiedenen Langzeitexperimenten mit bioelektrochemischen Systemen, die mit Perkolat als Substrat betrieben wurden, konnte gezeigt werden, dass die bereits im Perkolat bestehende Community an Organismen in der Lage ist, die enthaltenen organischen Säuren komplett zu oxidieren. Dabei konnten Stromstärken von bis zu 0,5 mA/cm2 Anodenfläche gemessen werden. Die durchgeführten Untersuchungen zum fermentativen Aufschluss der Abfallstoffe belegen, dass die gewählten Substrate sehr gut in organische Säuren überführt werden können. Es traten keinerlei Prozessstörungen auf. In HPLC-Untersuchungen konnten keine Alkohole und Zucker im Perkolat nachgewiesen werden. Die Untersuchung des Perkolats zeigte für pH-6,0 die höchsten Konzentrationen an organischen Säuren, besonders die Gehalte an Essigsäure und Buttersäure lagen im Vergleich deutlich über den Werten bei pH-5,5.

Teil 3

Das Projekt "Teil 3" wird vom Umweltbundesamt gefördert und von Albert-Ludwigs-Universität Freiburg, Institut für Mikrosystemtechnik durchgeführt. Ziel des Forschungsvorhabens ist die Entwicklung eines vollkommen neuen Verfahrens zur Erzeugung von gasförmigen Kraftstoffen aus organischen Abfallstoffen. Dazu werden erstmals fermentative Verfahren und bio-elektrische Systeme zu einem neuen Prozess kombiniert. In diesem Prozess werden die Abfallstoffe zunächst in einem 'dark fermentation reactor' fermentativ in organische Säuren umgewandelt und anschließend einer bio-elektrochemischen Konversion, bestehend aus einer Anoden- und einer Kathodenkammer zugeführt werden. An der Anode werden die gelösten organischen Säuren durch exoelektrogene Bakterien zu CO2, H+ und e- oxidiert. Während die Protonen durch eine PEM (proton exchange membrane) der Kathode zugeführt werden, geben die Bakterien die freiwerdenden Elektronen an die Anode ab, so dass diese über eine elektrische Verbindung an die Kathode weiter geleitet werden. Das gebildete CO2 wird ergänzend bedarfsgerecht der Kathode zugeführt. Die Einzelziele des Projektes sind wie folgt definiert: - Entwicklung und Erprobung eines geeigneten Anoden- und Kathodenmaterials und Optimierung der Elektrodenstruktur - Untersuchung der biologischen Diversität der Mikroorganismen an den Elektroden - Optimierung des fermentativ bioelektrochemischen Gesamtverfahrens unter technischen Aspekten im Labormaßstab. Im Berichtszeitraum wurden im Wesentlichen folgende Arbeiten durchgeführt: Ausgehend von Vorarbeiten zur Wasserstoffproduktion mit Edelstahlkathoden in dem für die Methanogenen geeigneten Kulturmedium, wurde iterativ ein auf die Anforderungen der Kathodenentwicklung hin optimiertes Reaktorkonzept entwickelt. Eine Hauptanforderung an den Reaktor ist dabei die integrierte CO2-Versorgung. Hinsichtlich der Entwicklung eines geeigneten Biofilm-Trägermaterials wurden vergleichende Untersuchungen mit Glasfasern und Nanofasern aus Polyacrylnitril (PAN) in einer Kultur von M. barkeri durchgeführt. Die PAN-Nanofasern wurden teilweise zusätzlich mit (3-Aminopropyl)triethoxysilan (ATPES) behandelt, um deren Oberfläche mit positiven Ladungen auszurüsten und so die Biofilmansiedlung zu verbessern. In verschiedenen Langzeitexperimenten mit bioelektrochemischen Systemen, die mit Perkolat als Substrat betrieben wurden, konnte gezeigt werden, dass die bereits im Perkolat bestehende Community an Organismen in der Lage ist, die enthaltenen organischen Säuren komplett zu oxidieren. Dabei konnten Stromstärken von bis zu 0,5 mA/cm2 Anodenfläche gemessen werden. Die durchgeführten Untersuchungen zum fermentativen Aufschluss der Abfallstoffe belegen, dass die gewählten Substrate sehr gut in organische Säuren überführt werden können. Es traten keinerlei Prozessstörungen auf. In HPLC-Untersuchungen konnten keine Alkohole und Zucker im Perkolat nachgewiesen werden. Die Untersuchung des Perkolats zeigte für pH-6,0 die höchsten Konzentrationen an organischen Säuren, besonders die Gehalte an Essigsäure und Buttersäure lagen im Vergleich deutlich über den Werten bei pH-5,5.

Teil 2

Das Projekt "Teil 2" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Angewandte Biowissenschaften, Abteilung Angewandte Mikrobiologie durchgeführt. Ziel des Forschungsvorhabens ist die Entwicklung eines vollkommen neuen Verfahrens zur Erzeugung von gasförmigen Kraftstoffen aus organischen Abfallstoffen. Dazu werden erstmals fermentative Verfahren und bio-elektrische Systeme zu einem neuen Prozess kombiniert. In diesem Prozess werden die Abfallstoffe zunächst in einem 'dark fermentation reactor' fermentativ in organische Säuren umgewandelt und anschließend einer bio-elektrochemischen Konversion, bestehend aus einer Anoden- und einer Kathodenkammer zugeführt werden. An der Anode werden die gelösten organischen Säuren durch exoelektrogene Bakterien zu CO2, H+ und e- oxidiert. Während die Protonen durch eine PEM (proton exchange membrane) der Kathode zugeführt werden, geben die Bakterien die freiwerdenden Elektronen an die Anode ab, so dass diese über eine elektrische Verbindung an die Kathode weiter geleitet werden. Das gebildete CO2 wird ergänzend bedarfsgerecht der Kathode zugeführt. Die Einzelziele des Projektes sind wie folgt definiert: - Entwicklung und Erprobung eines geeigneten Anoden- und Kathodenmaterials und Optimierung der Elektrodenstruktur - Untersuchung der biologischen Diversität der Mikroorganismen an den Elektroden - Optimierung des fermentativ bioelektrochemischen Gesamtverfahrens unter technischen Aspekten im Labormaßstab. Im Berichtszeitraum wurden im Wesentlichen folgende Arbeiten durchgeführt: Ausgehend von Vorarbeiten zur Wasserstoffproduktion mit Edelstahlkathoden in dem für die Methanogenen geeigneten Kulturmedium, wurde iterativ ein auf die Anforderungen der Kathodenentwicklung hin optimiertes Reaktorkonzept entwickelt. Eine Hauptanforderung an den Reaktor ist dabei die integrierte CO2-Versorgung. Hinsichtlich der Entwicklung eines geeigneten Biofilm-Trägermaterials wurden vergleichende Untersuchungen mit Glasfasern und Nanofasern aus Polyacrylnitril (PAN) in einer Kultur von M. barkeri durchgeführt. Die PAN-Nanofasern wurden teilweise zusätzlich mit (3-Aminopropyl)triethoxysilan (ATPES) behandelt, um deren Oberfläche mit positiven Ladungen auszurüsten und so die Biofilmansiedlung zu verbessern. In verschiedenen Langzeitexperimenten mit bioelektrochemischen Systemen, die mit Perkolat als Substrat betrieben wurden, konnte gezeigt werden, dass die bereits im Perkolat bestehende Community an Organismen in der Lage ist, die enthaltenen organischen Säuren komplett zu oxidieren. Dabei konnten Stromstärken von bis zu 0,5 mA/cm2 Anodenfläche gemessen werden. Die durchgeführten Untersuchungen zum fermentativen Aufschluss der Abfallstoffe belegen, dass die gewählten Substrate sehr gut in organische Säuren überführt werden können. Es traten keinerlei Prozessstörungen auf. In HPLC-Untersuchungen konnten keine Alkohole und Zucker im Perkolat nachgewiesen werden. Die Untersuchung des Perkolats zeigte für pH-6,0 die höchsten Konzentrationen an organischen Säuren, besonders die Gehalte an Essigsäure und Buttersäure lagen im Vergleich deutlich über den Werten bei pH-5,5.

The Electron Drift Instrument for CLUSTER II (EDI)

Das Projekt "The Electron Drift Instrument for CLUSTER II (EDI)" wird vom Umweltbundesamt gefördert und von Max-Planck-Gesellschaft zur Förderung der Wissenschaften, Max-Planck-Institut für extraterrestrische Physik durchgeführt. Ziel des Vorhabens EDI ist die genaue Messung des elektrischen Feldes im Rahmen der CLUSTER II Mission. Daneben wird auch der lokale Magnetfeldgradient sowie der Betrag des Magnetfeldes selbst gemessen. Das Messverfahren beruht auf der Bestimmung der Driftgeschwindigkeit von Testelektronen, die von speziell entwickelten Elektronenkanonen emittiert werden. Bei Anwesenheit einer Drift kehren die Elektronen nur fuer ganz bestimmte Emissionsrichtungen zum Satelliten zurueck. Aus Emissionsrichtung und Flugzeit lassen sich dann elektrisches Feld, Magnetfeld und Magnetfeldgradient bestimmen. Die Messung der Flugzeit geschieht mittels Kodierung des Strahls und Korrelation der ankommenden Elektronen. Fuer die Nachfuehrung der Strahlrichtung sind verschiedene Methoden vorgesehen. Eine Kontrolleinheit mit leistungsfaehigem Rechner steuert die Messung. Die Instrumentierung wird in Zusammenarbeit mit drei Gruppen in den USA entwickelt. Dem MPE obliegt die Verantwortung fuer die Elektronenkanone samt Elektronik, die Spannungsversorgung der Detektoroptik, die Korrelatoren, die Fertigung der Kontrolleinheit, die Kontrollsoftware, sowie fuer Integration, Test und Missionsbetrieb.

Saferty of actinides in the nuclear fuel cycle, 1992-1994

Das Projekt "Saferty of actinides in the nuclear fuel cycle, 1992-1994" wird vom Umweltbundesamt gefördert und von European Commission, Joint Research Centre (JRC). Institute for Transuranium Elements (ITU) durchgeführt. Objective: To carry out safety studies with nuclear fuels under long-term and off-normal conditions, to evaluate and reduce risks associated with storing and handling actinides, to carry out basic solid state studies on actinides and collect data and bibliographic references on properties and applications of transuranium elements. General Information: Progress to end 1991. The Institute continued efforts to contribute to the safety of nuclear fission by concentrating its research activities on investigations of the behaviour of nuclear fuel after prolonged irradiation and under variable reactor operating conditions. Mechanism for the release of fission products from irradiated fuel were further elucidated, and the formation of particular structural features which may limit the fuel lifetime were better understood. First results of the post-irradiation examination of nitride fuels irradiated in the Fench PHENIX reactor were obtained, demonstrating the technological potential and the limitations of this fuel type. The measurement of the physical fuel properties of nuclear fuels at extremely high temperatures was continued, and first results of the thermal expansion of uranium dioxide for above its melting temperature were obtained. A facility was installed in order to study possibilities of (nuclear) aerosol agglomeration under dynamic conditions in a high-power acoustic field at ultrasonic and audible frequencies. Mixed oxide fuel rods containing minor actinides (MA), which had been irradiated in a fast reactor (PHENIX) in order to study possibilities of MA transmutation, were analysed. Np-based specimens, mostly in the form of single crystals, were prepared for basic experimental solid state physics studies at the Institute and in various overseas and European laboratories. Progress was made in understanding the electronic structure of transuranium elements and their compounds by further development of theories and experimental efforts in high-pressure research and photoelectron spectroscopy. Equipment for Moessbauer spectroscopy and for other physical property measurements at cryogenic temperatures was installed in the new transuranium research user facility. Work to adapt instruments and methods developed at the Institute in the frame of the above programme (fast multi-colour pyrometry and enhancement of industrial filter efficiency) to industrial application was continued, together with partners from industry. Four patent proposals (on acoustically enhanced off-gas scrubbing, on laser-enhanced extraction, on production methods for Ac-225 and Bi-213, and on the preparation of amorphous substances) were filed in 1991. 42 articles in scientific-technical journals were published (or submitted for publication) and 82 lectures were given in conferences on various subjects dealing with the safety of actinides in the nuclear fuel cycle in 1991. Detailed description of work foreseen in 1992 (expected results). Studies of fission product migration ...

Sub project: Influence of fluids from the ocean crust on growth and activity of deep-biosphere populations (IODP Leg 301)

Das Projekt "Sub project: Influence of fluids from the ocean crust on growth and activity of deep-biosphere populations (IODP Leg 301)" wird vom Umweltbundesamt gefördert und von Carl von Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres durchgeführt. The sediment column of IODP Site 1301 of the eastern flank of the Juan de Fuca Ridge (water depth: 2650 m, sediment coverage: 265 m) is characterised by a diffusive flow of hydrothermal fluids from the underlying ocean crust, a steep temperature gradient of 0.23 degree C/m and two sulfate-methane transition zones. One goal of our project is to understand the role of fluids as a driving force for the marine deep biosphere by introducing electron acceptors to deeply buried sediments. This hypothesis was supported by cell quantification and activity measurements along the sediment column. Elevated cell numbers at the sediment-basement interface gave the first evidence for a microbial community stimulated by crustal fluids. Potential phosphatase activity was enhanced in phosphate-depleted layers towards the sediment-basement interface. Rates of sulfate reduction and anaerobic oxidation of methane were elevated within the lower sulfate-methane transition zone. Further investigations are focussed on isolation and characterisation of indigenous microorganisms. Molecular screening, used to determine the microbial composition of enrichment cultures from all sediment layers, revealed different phylotypes. However, as we are dealing with slowly growing prokaryotes, they need up to six months to form a colony. Therefore, the isolation and characterisation of new isolates and the preparation of publications will be finished until the end of the application period.

New composite DMFC anode with PEDOT as mixed conductor and catalyst support

Das Projekt "New composite DMFC anode with PEDOT as mixed conductor and catalyst support" wird vom Umweltbundesamt gefördert und von DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts durchgeführt. Project description: The direct methanol fuel cell (DMFC) as electrochemical power source has attracted attention due to its simple system design, low operating temperature, and convenient fuel storage and supply. Major limitations of the DMFC are related to the low power density, which is a consequence of the poor kinetics of the anode reaction, poisoning of the catalyst by reaction intermediates, and methanol crossover. Research efforts have to address improvements of the anode catalyst structure and the ion-exchanger membrane. This project aims at the development of a new type of membrane anode assembly PEM*/PEDOT/CAT based on the conducting polymer PEDOT (Poly(3,4-ethylene-dioxythiophene)) as catalyst support and a new type of proton-exchange membrane (PEM*) with reduced methanol permeability. As the catalyst (CAT) Pt and Pt-Ru will be utilised. The new proton exchange membranes are to be made of thermal-stable polymers of arylide, so that they can be used in fuel cells working at higher temperatures (Tianjin University, China). Conventional Pt/C cathodes will be used for manufacturing the membrane electrode assemblies (MEAs) to be tested in single cell experiments. The application of PEDOT as mixed electronic and ionic conductor is expected to improve the charge transfer kinetics and the transport of protons and electrons within the anode structure leading to a better utilisation of the noble metal catalyst.

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Stadtwerke Düsseldorf AG durchgeführt. Bei der Sanierung von Grundwaessern, die mit Chlorkohlenwasserstoffen und Aromaten verunreinigt sind, werden die zu entfernenden Schadstoffe durch Strippen aus der waessrigen in die Gasphase ueberfuehrt und nach Teilentfeuchtung der Stripperabluft an Aktivkohle absorbiert. Bei diesem Verfahren werden insbesondere bei Vorliegen der Abbauprodukte cis-Dichlorethen und Vinylchlorid erhebliche Mengen in die Atmosphaere ausgetragen. Ausserdem fuehrt die beladene Aktivkohle zu neuen Entsorgungsproblemen. In dem beantragten Vorhaben sollen deshalb Verfahren entwickelt werden, die eine weitestgehende Mineralisierung der Schadstoffe zum Ziel haben. Dazu werden folgende Konzepte parallel verfolgt: 1. Zerstoerung der Stoffe in der Gasphase durch Excimer-UV-Strahler (222 und 206 nm); 2. Zerstoerung der Stoffe in der Gasphase durch Elektronenbestrahlung; 3. Versuche mit der offenen Entladungsstrecke zur Zerstoerung der Stoffe in der Gasphase.

Sustainable Chemistry by XES

Das Projekt "Sustainable Chemistry by XES" wird vom Umweltbundesamt gefördert und von Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Fachbereich Chemie durchgeführt. Sus-XES beschreibt den Bau eines dispersiven von Hamos-Spektrometers für die Untersuchung nachhaltiger katalytischer Prozesse zur Erzeugung grüner Treibstoffe mittels resonanter und nicht-resonanter Röntgenemissions-Spektroskopie. Diese Methodik erlaubt ein genaues Abbild der elektronischen Struktur an Metallzentren von Metallkomplexen zur photokatalytischen Wasser-Reduktion. Solche Reaktionen, die molekularen Wasserstoff aus Wasser produzieren, sind für eine zukünftige, nachhaltige Energieversorgung unabdingbar. Die rationale Verbesserung entsprechender Systeme setzt aber eine genaue Kenntnis ihrer Wirkungsmechanismen voraus. Die Aufklärung der Elektronenverteilung am katalytischen Zentrum durch Röntgenemission wird hierzu wichtige Beiträge liefern. Das hierzu nötige von Hamos-Spektrometer ist momentan an keiner nationalen Quelle verfügbar. Es soll deshalb an Hamburger Synchrotron PETRA III aufgebaut und eine Probenumgebung geschaffen werden, die Messungen an der lichtgetriebenen Wasserreduktion in einem breiten Bereich von Zeitskalen ermöglicht. Damit wird auch ein wichtiger Grundstein für die Untersuchung nachhaltiger ultraschneller Reaktionen am freien Röntgenlaser XFEL in Hamburg und anderen internationalen Quellen gelegt. Die erzielten Ergebnisse werden es deshalb mittel- und langfristig erlauben, durch rationales Design definierter elektronischer Katalysatorstrukturen, Prozesse zur Wasserstoffgenerierung durch Sonnenlicht zu optimieren. Experimente zur Untersuchung photokatalytischer Wasser-Spaltungsreaktionen werden zu diesem Zweck so angepasst, dass entsprechende Reaktionen am Synchrotron unter Bestrahlung mit Sonnenlicht und Analyse der entstehenden Gase durchgeführt werden können. Die simultane Kombination von Röntgenemission und IR-Spektroskopie wird ein tieferes Verständnis erlauben, als eine der beiden Methoden allein.

1 2 3 4 527 28 29