API src

Found 5 results.

Teilprojekt C (Vita 34)

Das Projekt "Teilprojekt C (Vita 34)" wird vom Umweltbundesamt gefördert und von Vita 34 AG durchgeführt. Optimierung der biotechnologischen Produktion ausgewählter Pflanzen und deren Inhaltsstoffe; Testung verschiedener Nährmedien zur Optimierung der in vitro Kultivierungsbedingungen (Zusammensetzung des Nährmediums, Phytohormonzusätze); Etablierung von Standardprotokollen; Überführung in Bioreaktorversuche (Airlift, TIS-Kultur); Experimente zur Wirkstoffsteigerung in den Pflanzen (verschiedene Elicitoren, verschiedene Applikationszeitpunkte); Übertragung in den industriellen Scale up Durchführung verschiedener Untersuchungen basierend auf der bei Vita 34/BioPlanta etablierten Bioreaktortechnologie; Batch-, Airlift, TIS-Kultur, Applikation von Elicitoren zur Steigerung der sekundären Inhaltsstoffe.

Nutzung von Resistenzmechanismen verschiedener Rebarten als Alternative zum Einsatz von Kupfer im Ökoweinbau

Das Projekt "Nutzung von Resistenzmechanismen verschiedener Rebarten als Alternative zum Einsatz von Kupfer im Ökoweinbau" wird vom Umweltbundesamt gefördert und von Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Ökologische Chemie, Pflanzenanalytik und Vorratsschutz durchgeführt. Extrakte aus Wildreben bzw. Hybriden mit hoher Resistenz. Es ist zu prüfen, ob durch die Applikation von Blattextrakten von Nicht-Vitis-vinifera-Rebsorten auf Qualitätsrebsorten Plasmopara viticola und andere Krankheiten bekämpft, unterdrückt oder pflanzeneigene Abwehrmechanismen bei Qualitätsrebsorten durch in den Extrakten enthaltene Elicitoren aktiviert werden können resp. ob mit den Pflanzenextrakten eine direkte Bekämpfung dieser Problemschaderreger möglich ist (neue Prinziplösung). Kupferreduktionspotential bei Anbau neuer Vitis vinifera Piwi-Sorten. Der Anbau von Piwis ermöglicht einen weitgehenden Verzicht auf Pflanzenschutz und ist ökologisch und ökonomisch die nachhaltigste Form des Weinbaus überhaupt. Das Kupfereinsparungspotential durch den Anbau von Piwis ist vermutlich abhängig von der Resistenz der Sorte und von den klimatischen Bedingungen am Standort. Das für die jeweilige Sorte notwendige Maß an Pflanzenschutz soll in diesem Projekt erstmals ermittelt werden. Daraus lässt sich ein durchschnittliches Einsparpotential an Kupfer bestimmen. Orientierungsversuche mit geringen Stockzahlen im Freiland an Zuchtstämmen mit bereits pyramidisierten Plasmopara-Resistenzen können in einer 2009 erstellten Prüfanlage mit Überkronenberegnung durchgeführt werden, in der beliebig hohe Befallsbedingungen für die Rebenperonospora geschaffen werden können.

SFB F37 - Fusarium

Das Projekt "SFB F37 - Fusarium" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur Wien, Department für Angewandte Genetik und Zellbiologie durchgeführt. Viele pflanzenpathogene Pilze können auf befallenen Wirtspflanzen toxische Sekundärmetaboliten bilden. Im Mittelpunkt bisheriger Forschungen standen jene Substanzen, die in Getreide und daraus hergestellten Lebens- und Futtermitteln in für Mensch und Tier gesundheitsgefährdenden Mengen vorkommen. Pilze der Gattung Fusarium sind in Europa die wichtigsten Mykotoxin-Produzenten. Sie verursachen Ährenbleiche bei Weizen und anderen Getreidearten und Kolbenfäule bei Mais. In den genetischen Ressourcen und im Zuchtmaterial sind nur polygen vererbte, quantitative Unterschiede vorhanden. Die molekulare Basis von Chromosomenabschnitten, die zu erhöhter Fusarium-Resistenz beitragen, ist weitgehend unbekannt. Das Ziel unseres Projektes ist es durch ein verbessertes Verständnis der Rolle von Pilzmetaboliten in der Ausbildung von Pflanzenkrankheiten zu einem verbesserten Verständnis von Resistenz-Komponenten in der Pflanze zu kommen. Mit Hilfe moderner Methoden der Genom- und Metabolom-Forschung soll Pflanzenzüchtung von einer rein empirischen zu einer auf dem Verständnis molekularer Vorgänge basierenden Wissenschaft werden. Dies sollte es erleichtern, Fusarium-resistente Getreidesorten mit niedrigem Mykotoxingehalt zu züchten. Das Projekt basiert auf der Arbeitshypothese, dass necrotrophe Pilze wie Fusarium eine Vielzahl von Metaboliten bilden können, die die Pathogenabwehr unterdrücken, womit der ungewöhnlich große Wirtsbereich erklärbar wäre. Die bioinformatische Analyse der vollständigen Genomsequenz von Fusarium graminearum ergab, dass dieser Organismus über eine Vielzahl an Genen für Enzyme zur Bildung von Sekundärmetaboliten verfügt (15 Polyketid-Synthasen, 20 nicht-ribosomale Peptid-Synthasen und 17 Terpenoid-Synthasen). Für die meisten dieser Gene ist kein zugehöriger Metabolit bekannt. Ein wesentliches Ziel des vorliegenden Projektes ist es durch funktionelle Genomik (mittels Gendisruption) und mittels hochentwickelter Metabolom-Analysemethoden solche neuen Suppressor-Metaboliten zu identifizieren. Wenn diese Substanzen verfügbar sind, soll ihr Wirkungsmechanismus in Modellpflanzen untersucht werden. Weites soll die Transkriptom-Veränderung nach Pathogen-Infektion bzw. Elicitor-Behandlung und Toxinbehandlung untersucht werden. Wir beabsichtigen Zuchtmaterial daraufhin zu untersuchen, ob die Fähigkeit bekannte und neue Fusarium-Metaboliten zu inaktivieren in unterschiedlichem Ausmaß ausgeprägt ist. Die Validierung von Kandidatengenen soll durch Analyse von Defektmutanten (aus dem Screening einer TILLING-Population) und durch Überexpression der Kandidatengene in transgenem Weizen erfolgen. Der interdisziplinäre Ansatz, der Forscher aus Gebieten wie Bioinformatik, funktionelle Pilzgenomik, Genomanalyse von Modell- und Nutzpflanzen bis zur Pflanzenzüchtung an einem Strang ziehen lässt, ist ein Alleinstellungsmerkmal dieses Projektes.

SFB F37-Fusarium

Das Projekt "SFB F37-Fusarium" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur Wien, Interuniversitäres Department für Agrarbiotechnologie durchgeführt. Viele pflanzenpathogene Pilze können auf befallenen Wirtspflanzen toxische Sekundärmetaboliten bilden. Im Mittelpunkt bisheriger Forschungen standen jene Substanzen, die in Getreide und daraus hergestellten Lebens- und Futtermitteln in für Mensch und Tier gesundheitsgefährdenden Mengen vorkommen. Pilze der Gattung Fusarium sind in Europa die wichtigsten Mykotoxin-Produzenten. Sie verursachen Ährenbleiche bei Weizen und anderen Getreidearten und Kolbenfäule bei Mais. In den genetischen Ressourcen und im Zuchtmaterial sind nur polygen vererbte, quantitative Unterschiede vorhanden. Die molekulare Basis von Chromosomenabschnitten, die zu erhöhter Fusarium-Resistenz beitragen, ist weitgehend unbekannt. Das Ziel unseres Projektes ist es durch ein verbessertes Verständnis der Rolle von Pilzmetaboliten in der Ausbildung von Pflanzenkrankheiten zu einem verbesserten Verständnis von Resistenz-Komponenten in der Pflanze zu kommen. Mit Hilfe moderner Methoden der Genom- und Metabolom-Forschung soll Pflanzenzüchtung von einer rein empirischen zu einer auf dem Verständnis molekularer Vorgänge basierenden Wissenschaft werden. Dies sollte es erleichtern, Fusarium-resistente Getreidesorten mit niedrigem Mykotoxingehalt zu züchten. Das Projekt basiert auf der Arbeitshypothese, dass necrotrophe Pilze wie Fusarium eine Vielzahl von Metaboliten bilden können, die die Pathogenabwehr unterdrücken, womit der ungewöhnlich große Wirtsbereich erklärbar wäre. Die bioinformatische Analyse der vollständigen Genomsequenz von Fusarium graminearum ergab, dass dieser Organismus über eine Vielzahl an Genen für Enzyme zur Bildung von Sekundärmetaboliten verfügt (15 Polyketid-Synthasen, 20 nicht-ribosomale Peptid-Synthasen und 17 Terpenoid-Synthasen). Für die meisten dieser Gene ist kein zugehöriger Metabolit bekannt. Ein wesentliches Ziel des vorliegenden Projektes ist es durch funktionelle Genomik (mittels Gendisruption) und mittels hochentwickelter Metabolom-Analysemethoden solche neuen Suppressor-Metaboliten zu identifizieren. Wenn diese Substanzen verfügbar sind, soll ihr Wirkungsmechanismus in Modellpflanzen untersucht werden. Weites soll die Transkriptom-Veränderung nach Pathogen-Infektion bzw. Elicitor-Behandlung und Toxinbehandlung untersucht werden. Wir beabsichtigen Zuchtmaterial daraufhin zu untersuchen, ob die Fähigkeit bekannte und neue Fusarium-Metaboliten zu inaktivieren in unterschiedlichem Ausmaß ausgeprägt ist. Die Validierung von Kandidatengenen soll durch Analyse von Defektmutanten (aus dem Screening einer TILLING-Population) und durch Überexpression der Kandidatengene in transgenem Weizen erfolgen. Der interdisziplinäre Ansatz, der Forscher aus Gebieten wie Bioinformatik, funktionelle Pilzgenomik, Genomanalyse von Modell- und Nutzpflanzen bis zur Pflanzenzüchtung an einem Strang ziehen lässt, ist ein Alleinstellungsmerkmal dieses Projektes.

Metabolomics der Pflanze - Fusarium Interaktion

Das Projekt "Metabolomics der Pflanze - Fusarium Interaktion" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur Wien, Interuniversitäres Department für Agrarbiotechnologie durchgeführt. Viele pflanzenpathogene Pilze können auf befallenen Wirtspflanzen toxische Sekundärmetaboliten bilden. Im Mittelpunkt bisheriger Forschungen standen jene Substanzen, die in Getreide und daraus hergestellten Lebens- und Futtermitteln in für Mensch und Tier gesundheitsgefährdenden Mengen vorkommen. Pilze der Gattung Fusarium sind in Europa die wichtigsten Mykotoxin-Produzenten. Sie verursachen Ährenbleiche bei Weizen und anderen Getreidearten und Kolbenfäule bei Mais. In den genetischen Ressourcen und im Zuchtmaterial sind nur polygen vererbte, quantitative Unterschiede vorhanden. Die molekulare Basis von Chromosomenabschnitten, die zu erhöhter Fusarium-Resistenz beitragen, ist weitgehend unbekannt. Das Ziel unseres Projektes ist es durch ein verbessertes Verständnis der Rolle von Pilzmetaboliten in der Ausbildung von Pflanzenkrankheiten zu einem verbesserten Verständnis von Resistenz-Komponenten in der Pflanze zu kommen. Mit Hilfe moderner Methoden der Genom- und Metabolom-Forschung soll Pflanzenzüchtung von einer rein empirischen zu einer auf dem Verständnis molekularer Vorgänge basierenden Wissenschaft werden. Dies sollte es erleichtern, Fusarium-resistente Getreidesorten mit niedrigem Mykotoxingehalt zu züchten. Das Projekt basiert auf der Arbeitshypothese, dass necrotrophe Pilze wie Fusarium eine Vielzahl von Metaboliten bilden können, die die Pathogenabwehr unterdrücken, womit der ungewöhnlich große Wirtsbereich erklärbar wäre. Die bioinformatische Analyse der vollständigen Genomsequenz von Fusarium graminearum ergab, dass dieser Organismus über eine Vielzahl an Genen für Enzyme zur Bildung von Sekundärmetaboliten verfügt (15 Polyketid-Synthasen, 20 nicht-ribosomale Peptid-Synthasen und 17 Terpenoid-Synthasen). Für die meisten dieser Gene ist kein zugehöriger Metabolit bekannt. Ein wesentliches Ziel des vorliegenden Projektes ist es durch funktionelle Genomik (mittels Gendisruption) und mittels hochentwickelter Metabolom-Analysemethoden solche neuen Suppressor-Metaboliten zu identifizieren. Wenn diese Substanzen verfügbar sind, soll ihr Wirkungsmechanismus in Modellpflanzen untersucht werden. Weites soll die Transkriptom-Veränderung nach Pathogen-Infektion bzw. Elicitor-Behandlung und Toxinbehandlung untersucht werden. Wir beabsichtigen Zuchtmaterial daraufhin zu untersuchen, ob die Fähigkeit bekannte und neue Fusarium-Metaboliten zu inaktivieren in unterschiedlichem Ausmaß ausgeprägt ist. Die Validierung von Kandidatengenen soll durch Analyse von Defektmutanten (aus dem Screening einer TILLING-Population) und durch Überexpression der Kandidatengene in transgenem Weizen erfolgen. Der interdisziplinäre Ansatz, der Forscher aus Gebieten wie Bioinformatik, funktionelle Pilzgenomik, Genomanalyse von Modell- und Nutzpflanzen bis zur Pflanzenzüchtung an einem Strang ziehen lässt, ist ein Alleinstellungsmerkmal dieses Projektes.

1