API src

Found 3095 results.

Related terms

Ship Emission Inspection with Calibration-free Optical Remote sensing, Vorhaben: Entwicklung eines UV/vis Fernerkundungssystem zur Messung von SO2 und NO2 in Schiffsabgasfahnen

Das Projekt "Ship Emission Inspection with Calibration-free Optical Remote sensing, Vorhaben: Entwicklung eines UV/vis Fernerkundungssystem zur Messung von SO2 und NO2 in Schiffsabgasfahnen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Airyx GmbH.

Emissionswerte NOx, PM10, PM2.5, SO2 1989 bis 2009 (Umweltatlas)

Entwicklung der Luftqualität 1989 bis 2009: NOx-, SO2-, Feinstaub-Emissionen auf Grundlage eines 1x1km Rasters

Publikationsserie 'Abgas aktuell' im Touring Nr. 34/81, 35/81, 36/81, 37/81, 39/81, 43/81

Das Projekt "Publikationsserie 'Abgas aktuell' im Touring Nr. 34/81, 35/81, 36/81, 37/81, 39/81, 43/81" wird/wurde ausgeführt durch: Touringclub der Schweiz, Technischer Informationsdienst.Die Artikelserie umfasst folgende Titel: 1. Entwicklung der Abgasvorschriften in der Schweiz 2. Aenderung der Schweizer Abgasvorschriften fuer Motorfahrzeuge 3. Stellungnahme und Vorschlaege des TCS zu den Abgasvorschriften 4. Abgaswert - Theorie und Praxis 5. Nachkontrolle der im Verkehr stehenden Fahrzeuge 6. Katalysatoren

Luftreinhaltung Kraftwerke und Industrie. Regionale Umweltberichterstattung und Modellrechnungen

Das Projekt "Luftreinhaltung Kraftwerke und Industrie. Regionale Umweltberichterstattung und Modellrechnungen" wird/wurde ausgeführt durch: Bundesforschungsanstalt für Landeskunde und Raumordnung.Vorbeugende Konzepte gegen schaedliche Umwelteinwirkungen, wie sie die grundlegende Novellierung des Luftreinhalteplan-Instrumentariums im BImSchG vom 14 Mai 1990 verstanden wissen will, benoetigen nicht nur bundesweit geltende Grenz- und Leitwerte, sondern regional differenzierte Ansaetze. Der rationellen Energienutzung, dh der Vermeidung von Emissionen ist vor einer Emissionsminderung an der Quelle bzw den Massnahmen zum Passivschutz die hoechste Prioritaet einzuraeumen. Relativ gesicherte Aussagen zur lokalen Belastungssituation und den Entwicklungstrends sind hierzu erforderlich. Forschungsfragen sind: - Wie stellt sich die raeumliche Verteilung der Emissionen im Kraftwerkssektor in der BRD im Jahre 1989 dar? - Welche Veraenderungen ergeben sich im Vergleich zum Jahr 1986, und welche Massnahmen verursachten diese Veraenderungen? - Wie entwickeln sich die Kraftwerksstruktur und Kraftwerkstechnik, die aus der Bruttostromerzeugung und Bruttoengpassleistung resultierenden Vollastbenutzungsstunden und das Einsatzspektrum der verschiedenen Energietraeger bis zum Jahr 2005? - Welche regionalen Schadstoffemissionen sind in diesem Zeitraum zu erwarten? - Welche regionalen Auswirkungen hat ein verstaerkter Ausbau der Kraft-Waerme-Kopplung als energiesparende Technik und die Abkopplung der Stromerzeugung vom Gas und Oel auf die Reduktion der Emissionen? - Welche regionalen Entwicklungen erzeugt eine verstaerkte energetische Nutzung von Abfaellen, die statistisch zu den regenerativen Energien gezaehlt wird, bei den Kraftwerksemissionen, und erfolgen evtl Rueckwirkungen auf das Abfallaufkommen?

Luftreinhaltung im Kanton Zuerich

Das Projekt "Luftreinhaltung im Kanton Zuerich" wird/wurde ausgeführt durch: Kanton Zürich, Baudirektion, Koordinationsstelle für Umweltschutz.Broschuere: Luftreinhaltung im Kanton Zuerich. Diese Broschuere informiert in Wort und Bild ueber die Quellen der Luftverschmutzung, die Ausbreitung der Luftschadstoffe, ihre gesundheitliche Auswirkung, ihre Wirkung auf Pflanzen u. Materialien. Die Immissionssituation im Kanton Zuerich wird anhand von Zahlen belegt, die auf Messungen und Berechnungen beruhen. Der Laie kann sich einen fundierten Ueberblick der Luftbelastung im allgem. u. spez. Machen und seinen eigenen Beitrag zur Luftbelastung erkennen.

Energieverbrauch und Kraftstoffe

Das Verkehrswachstum auf der Straße sorgt für einen nahezu konstant hohen Energieverbrauch seit 1995. Die Energieverbräuche auf der Schiene sinken kontinuierlich. Verkehr braucht Energie 2023 betrug der gesamte ⁠ Primärenergieverbrauch ⁠ des Verkehrssektors ca. 3.498 Petajoule (PJ) (siehe Abb. „Entwicklung des gesamten Primärenergieverbrauchs im Verkehrssektor“). Das war ein Drittel des gesamten Primärenergieverbrauchs in Deutschland (vgl. dazu BMDV: Verkehr in Zahlen , S. 302). Im Verkehrssektor stieg der Primärenergieverbrauch seit 1995 kontinuierlich an, pandemiebedingt lagen die Werte 2020 und 2021 unter denen der Vorjahre, aber auch 2023 war der Verbrauch noch geringer als 2019. Der Personenverkehr benötigt rund 65 % des gesamten Primärenergieverbrauchs im Verkehrssektor. Der Energieverbrauch im Straßenverkehr ist seit 1999 mit leichten Schwankungen nahezu konstant, seit 2020 zeigt er nach dem pandemiebedingten Rückgang eine stark steigende Tendenz. Im Schienenverkehr ist der Energieverbrauch dagegen seit 1995 kontinuierlich gesunken (siehe Abb. „Entwicklung des Primärenergieverbrauchs im Personenverkehr“). Der Güterverkehr benötigte dementsprechend ca. 35 % des gesamten verkehrsbedingten Primärenergieverbrauchs in 2023. Zwischen 1995 und 2023 stieg der Verbrauch um rund 42 % an, im Wesentlichen durch die Zunahme des Straßengüterverkehrs. Besonders stark war auch die Zunahme im Luftverkehr, während die Energieverbräuche im Schienengüterverkehr und in der Binnenschifffahrt abnahmen (siehe Abb. „Entwicklung des Primärenergieverbrauchs im Güterverkehr“). Ein wichtiger Baustein nachhaltigen Verkehrs ist die effiziente Nutzung der eingesetzten Energie in Form der Endenergieträger Diesel, Benzin, Flüssig- oder Erdgas, Kerosin und Strom sowie die Nutzung alternativer Antriebe und klimaverträglicher alternativer Kraftstoffe. Informationen hierzu finden Sie im Artikel „Endenergieverbrauch und Energieeffizienz des Verkehrs“ . Darüber hinaus sind nicht-technische Maßnahmen und entsprechende Rahmenbedingungen erforderlich, um Verkehr erstens zu vermeiden und um zweitens vor allem im Personenverkehr die Nutzung umweltfreundlicherer Verkehrsmittel oder Mobilität mit weniger Verkehr zu fördern (siehe Artikel „Mobilität privater Haushalte“ ). Endenergieverbrauch steigt seit 2010 wieder an Grund für den Anstieg bis 2019 war die starke Zunahme der Verkehrsleistungen im Personen- als auch im Gütertransport auf der Straße, welche die technischen Verbesserungen an den Fahrzeugen überkompensierten. Im Jahr 2023 lag der ⁠ Endenergieverbrauch ⁠ im Verkehr über dem Verbrauch der pandemiegeprägten Vorjahre, jedoch noch unter dem Verbrauch von 2019 (siehe Fahrleistungen, Verkehrsleistung und Modal Split und Indikator: Endenergieverbrauch des Verkehrs ). Kraftstoffe dominieren Im Verkehrssektor entfielen 2023 etwa 97,8 % des Verbrauchs an ⁠ Endenergie ⁠ auf Kraftstoffe und rund 2,2 % auf Strom. Der Verbrauch an Kraftstoffen verteilte sich im Jahr 2023 – bezogen auf den Energiegehalt (ohne Strom) – rund 28 % auf Benzin, 48 % auf Diesel, 16 % auf Flugkraftstoffe und 0,3 % auf Flüssig- und Erdgas. Biokraftstoffe haben einen Anteil von 5,2 % (siehe Abb. „Entwicklung des Endenergieverbrauchs nach Kraftstoffarten“). Seit 1995 hat der Verbrauch von Diesel kontinuierlich zugenommen und lag auch 2023 etwa 19 % höher als im Jahr 1995. Analog hat sich der Verbrauch der Vergaserkraftstoffe verringert. Der Verbrauch von Kerosin ist vor allem durch die Zunahme internationaler Flüge gestiegen. Bezogen auf den ⁠ Endenergieverbrauch ⁠ in Megajoule hatte der elektrische Strom im Schienenverkehr einen Anteil von 75,5 % im Jahr 2023. Diesel als Energieträger im Schienenverkehr sinkt, absolut betrachtet, seit Jahren kontinuierlich. Biokraftstoffe Seit 1991 werden im Straßenverkehr biogene Kraftstoffe eingesetzt. Es sind derzeit vor allem Biodiesel und Bioethanol, die fossilen Kraftstoffen beigemischt werden. Die EU Richtlinie 2009/28/EG zielt vor allem auf Biokraftstoffe, schließt aber etwa die Möglichkeit ein, aus erneuerbarem Strom hergestellten Wasserstoff oder Methan in Fahrzeugen oder Strom in Elektrofahrzeugen zu nutzen (siehe auch: Kraftstoffe und Antriebe sowie Bioenergie ). Elektrofahrzeuge Fahrzeuge mit Elektroantrieb bieten eine weitere Möglichkeit, Strom im Straßenverkehr direkt und damit am effizientesten unter den alternativen Energieversorgungsoptionen für Fahrzeuge zu nutzen. So kann die Batterie dieser Fahrzeuge unter anderem mit Strom aus Sonnenenergie, Wind- oder Wasserkraft aufgeladen werden. Der Anteil der erneuerbaren Energien im deutschen Strom-Mix betrug im Jahr 2024 54,4 % ( https://www.bmwk.de/Redaktion/DE/Dossier/erneuerbare-energien#entwicklung-in-zahlen ). Bereits bei diesem Strom-Mix sind Elektrofahrzeuge in der Regel klimafreundlicher als vergleichbare konventionelle Fahrzeuge ( ifeu 2020 ). Das Angebot an reinen Elektrofahrzeugen ist in den letzten Jahren deutlich größer geworden und die Nutzbarkeit der E-Fahrzeuge ist durch inzwischen wesentlich größere Reichweiten der aktuellen Modelle deutlich gestiegen. Im Jahr 2023 war etwa jeder siebte neu zugelassene Pkw ein reines Elektrofahrzeug. Spezifischer Energieverbrauch sinkt Der durchschnittliche Energieverbrauch (inkl. ⁠ Vorkette ⁠) pro ⁠ Verkehrsleistung ⁠ sank von 1995 bis 2023 in fast allen Bereichen des Güter- und des Personenverkehrs (siehe Abb. „Entwicklung des spezifischen Energieverbrauchs im Güterverkehr" und Abb. „Entwicklung des spezifischen Energieverbrauchs im Personenverkehr“). Die Rückgänge im Energieverbrauch pro Verkehrsleistung sind vor allem auf technische Verbesserungen an den Fahrzeugen zurückzuführen. Auch Busse sind effizienter geworden, auch wenn der spezifische Energieverbrauch seit 2010 wieder steigt: der Grund sind sinkende Fahrgastzahlen und damit schlechtere Auslastungen der Fahrzeuge. Im Straßenverkehr wird ab 2019 der Methodenwechsel bei der Vorkettenberechnung sichtbar: die Werte gehen bei den Bussen und Pkw deutlich nach oben. Pandemiebedingte niedrige Fahrgastzahlen waren zudem 2020 und 2021 der Grund dafür, dass bei nahezu allen Verkehrsmitteln der spezifische Energieverbrauch höher lag. *inkl. der Emissionen aus Bereitstellung und Umwandlung der Energieträger in Strom, Benzin, Diesel, Flüssig- und Erdgas **schwere Nutzfahrzeuge (Lkw ab 3,5t, Sattelzüge, Lastzüge), ab 2019 Methodenwechsel in der Vorkettenmodellierung, Werte ab 2019 daher nur eingeschränkt mit den Vorjahren vergleichbar. *inkl. Emissionen aus Bereitstellung & Umwandlung der Energieträger in Strom, Benzin, Diesel, Flüssig- & Erdgas sowie Kerosin **ab 2019 Methodenwechsel in der Vorkettenmodellierung, Werte ab 2019 daher nur eingeschränkt mit den Vorjahren vergleichbar ***ausgewählte Flughäfen in Deutschland, nur Kerosin Kraftstoffverbrauch im Personen- und Güterstraßenverkehr Die Verbrauchsentwicklung im Personenverkehr und Güterverkehr zeigt unterschiedliche Tendenzen. In den Jahren 2020 und 2021 kam es aufgrund der pandemiebedingten Einschränkungen zu einer Verringerung des gesamten Kraftstoffverbrauchs, auch 2023 lag der Verbrauch noch unter dem von 2019. Der Kraftstoffverbrauch im Pkw-Verkehr verschob sich seit 1995 kontinuierlich von Benzin zu Diesel. Während der Anteil von Benzin 1995 noch 84 % betrug, sind es mittlerweile 59 %. Der Benzinverbrauch ist entsprechend seit 1995 gesunken, der Dieselverbrauch dagegen gestiegen, stagniert jedoch seit einigen Jahren (siehe Abb. „Kraftstoffverbrauch von Pkw und Kombi“). Der Kraftstoffverbrauch in Litern im Straßengüterverkehr lag 2023 etwas unter dem Niveau von 1995 (siehe Abb. „Kraftstoffverbrauch im Straßenverkehr“). Kraftstoffverbrauch von Pkw und Kombi Quelle: Bundesministerium für Verkehr und digitale Infrastruktur Diagramm als PDF Diagramm als Excel mit Daten Kraftstoffverbrauch im Straßenverkehr Quelle: Bundesministerium für Verkehr und digitale Infrastruktur Diagramm als PDF Diagramm als Excel mit Daten Durchschnittsverbrauch bei Pkw stagniert Im gesamten Zeitraum 1995 bis 2023 verringerte sich der durchschnittliche Kraftstoffverbrauch um 1,4 Liter pro 100 Kilometer (siehe Abb. „Durchschnittlicher Kraftstoffverbrauch von Pkw und Kombi“). Ein Grund dafür ist die verbesserte Gesamteffizienz der Fahrzeuge, die sowohl Motoren als auch Getriebe und Karosserie betrifft. Seit einigen Jahren liegt der Durchschnittsverbrauch jedoch unverändert bei 7,4 Liter pro 100 Kilometer. Einer Verringerung des Kraftstoffverbrauchs stehen der Trend zu leistungs-stärkeren und größeren Fahrzeugen sowie die zunehmende Ausstattung mit verbrauchserhöhenden Hilfs- und Komforteinrichtungen wie Klimaanlagen entgegen. Weiterführende Informationen BMDV: Verkehr in Zahlen Richtlinie 2009/28/EG (Erneuerbare Energien) Verkehrsrecht Durchschnittliche Emissionen verschiedener Verkehrsmittel Erneuerbare Energien im Verkehr Kraftstoffe und Antriebe

Einzelmessungen

Einzelmessungen kommen zur Anwendung, wenn die erforderlichen Massenströme unterschritten werden oder für den zu überwachenden Schadstoff keine kontinuierlich arbeitende automatische Messeinrichtung an der Anlage zur Verfügung steht. Die Einzelmessungen dienen zur zeitlich begrenzten stichprobenartigen Feststellung des Emissionsverhaltens der Anlage und sollen im Betriebszustand der höchsten von der Anlage ausgehenden Schadstoffemission durchgeführt werden. Einzelmessungen müssen i. d. R. im Abstand von drei Jahren durchgeführt werden. Als Probenahmezeit sind in der Regel 30 min vorgesehen. Es werden drei bis sechs Proben gezogen. Ein wesentlicher Vorteil gegenüber der Emissionsüberwachung mit Hilfe von in der Abgasleitung der zu überwachenden Anlage fest eingebauten kontinuierlich arbeitenden automatischen Messeinrichtungen besteht im geringeren messtechnischen Aufwand. Nachteilig ist die geringere, weil nur stichprobenartige Überwachungsdichte. Prinzipiell wird bei Einzelmessungen dem Abgas ein repräsentativer Teil mit Hilfe einer Entnahmesonde entnommen. Das über die Entnahmesonde entnommene Gas wird bei den sogenannten manuellen Verfahren über ein Medium, das den zu bestimmenden Schadstoff quantitativ zurückhält, geleitet. Je nach Schadstoff kann dieses Medium z. B. ein Filter, ein flüssiges oder ein festes Adsorptionsmittel  sein. Das Medium muss nach der Probenahme aufgearbeitet und die Menge der enthaltenen, zu bestimmenden Stoffe im Labor analysiert werden. Ein Messwert für die Emissionskonzentration steht also nicht unmittelbar vor Ort zur Verfügung. Einige wenige Schadstoffkomponenten können vor Ort mit mobilen automatischen Messeinrichtungen direkt gemessen werden (sogenannte kontinuierliche Messverfahren). Bei den Einzelmessungen werden neben den eigentlichen Schadstoffkomponenten die Abgasrandbedingungen, wie Abgasgeschwindigkeit, Temperatur, Druck, Feuchtegehalt und ggf. Sauerstoffgehalt, des Abgases der Emissionsquelle mit bestimmt. Mit diesen Messparametern werden Abgasvolumenstrom und Emissionsmassenstrom berechnet und Umrechnungen auf Normbedingungen bzw. einen vorgegebenen Sauerstoffgehalt des Abgases vorgenommen. Damit repräsentative und untereinander vergleichbare Ergebnisse gewonnen werden, müssen wichtige Voraussetzungen erfüllt sein: Durchführung der Messung durch kompetente Messinstitute, eine Messstrecke und ein Messplatz, die die Entnahme einer repräsentativen Probe erlauben, sind an geeigneter Stelle in der Abgasleitung vorhanden, die Messaufgabe und ein Messplan sind vor Beginn der Messungen verfügbar, eine der Messaufgabe angemessene Probenahmestrategie wird angewandt, die Schadstoffkomponenten und Bezugsgrößen werden mit Messverfahren ermittelt, die dem Stand der Messtechnik entsprechen und es wird ein Bericht über die Ergebnisse der Messungen erstellt, der alle relevanten Informationen enthält. Grundlegende Anforderungen an Messstrecken und Messplätze, die Messaufgabe, den Messplan und den Messbericht bei Einzelmessungen sind in der DIN EN 15259 enthalten.

Kohlendioxid-Emissionen: Kommunale CO2 Bilanzen Stadt Konstanz

<p>Die Angaben über CO2-Emissionen nach Sektoren beruhen auf den Energiebilanzen für Baden-Württemberg, die zunächst nur auf Landesebene vorliegen. Bei der Berechnung der Emissionswerte auf Kreis- und Gemeindeebene wird notwendigerweise auf modellhafte und damit in den verschiedenen Sektoren zum Teil verallgemeinernde Annahmen zurückgegriffen. Insbesondere wird aufgrund fehlender primärstatistischer Angaben im Sektor Haushalte, Gewerbe, Handel, Dienstleistungen und übrige Verbraucher mit einem durchschnittlichen Energieverbrauch je Wohnung bzw. je sozialversicherungspflichtig Beschäftigtem gerechnet. Regionale Minderungsmaßnahmen in diesem Sektor werden deshalb in der Modellrechnung nicht vollständig berücksichtigt.</p> <p><strong>Jahr:</strong></p> <p>Die Jahreszahl 2011a bezieht sich auf Bevölkerungsstand zum 31.12., Fortschreibung des Zensus 1987 (VZ1987)</p> <p>Die Jahreszahl 2011b auf Bevölkerungsstand zum 31.12., Fortschreibung des Zensus 2011 (VZ2011)</p> <p><strong>Gemeindekennung: </strong>335043, Konstanz</p> <p><strong>Private Haushalte, GHD und übrige Verbraucher</strong>: damit sind Gewerbe, Handel, Dienstleistungen (GHD) und übrige Verbraucher wie öffentliche Einrichtungen, Landwirtschaft und militärische Einrichtungen gemeint.</p> <p><strong>Verkehr</strong>: bezeichnet den Straßenverkehr und sonstiger Verkehr wie Schienen-, nationaler Luftverkehr, Binnenschifffahrt und Off-Road-Verkehr (landwirtschaftl. Zugmaschinen, Baumaschinen, Militär, Industriegeräte,Garten/Hobby).</p> <p><strong>Wohnbevölkerung</strong>:</p> <p>-Bevölkerungsstand zum 31.12., Fortschreibung der Volkszählung 2011 (VZ2011).</p> <p>-Bevölkerungsstand zum 31.12., Fortschreibung der Volkszählung 1987 (VZ1987).</p> <p><strong>Tonnen</strong>: Menge an CO2 Emissionen in Tonnen nach Sektoren</p> <p><strong>EW</strong>: Einwohnerzahl im jeweiligen Jahr</p> <p><strong>Tonnen Je Einwohner</strong>: Menge der CO2 Emissionen in Tonnen je Einwohner nach Sektoren</p> <p><strong>Mengenanteile der Sektoren in %:</strong> CO2 Emissionen nach Sektoren in Prozenten.</p> <p><strong>Methodische Hinweise</strong>: Änderungen Allgemein/ Methodisch CO2-Berechnung regional/ Revision ab Herbst 2019:</p> <p>- Umstellung auf die endgültige Energiebilanz 2016</p> <p>- Die Emissionsfaktoren für feuerungsbedingte CO2-Emissionen ab dem Berichtsjahr 2016 wurden mit den Daten des Umweltbundesamtes gemäß NIR 2019 aktualisiert.</p> <p>- Die bundesweiten Anteile Nationalflug an Gesamtflug wurden seitens des Umweltbundesamtes in NIR 2019 ab 1990 um durchschnittlich 10 % gesenkt. Dadurch Ändern sich alle Emissionen des nationalen Luftverkehrs und somit die Emissionen des Sektors Verkehr.</p> <p>- Die Regionalisierungsdaten aus weiteren amtlichen und nichtamtlichen Quellen wurden hinsichtlich Datenverfügbarkeit zum jeweiligen Berichtsjahr überprüft und aktualisiert, sowie die Detailberechnungen methodisch vereinheitlicht.</p> <p>- Die den regionalen Straßenverkehrsemissionen zugrundeliegenden Jahresfahrleistungen wurden ab dem Jahr 2010 einer grundlegenden Revision unterzogen. Das Verkehrszählungsjahr 2010, das die Basis für die Fortschreibung der Jahre 2011 bis 2014 bildet, greift auf deutlich veränderte Zählergebnisse nach dem neuen Verkehrsmonitoring zurück. Die Verkehrszählung 2015 bildet bis zur nächsten Zählung die Basis für künftige Fortschreibungen ab 2016. Details hierzu finden Sie im Glossar des Internetauftritts des Statistischen Landesamtes unter dem Thema "Verkehr", Unterthema "KFZ und Verkehrsbelastung", Jahresfahrleistungen im Straßenverkehr (<a href="https://www.statistik-bw.de/Glossar/456">https://www.statistik-bw.de/Glossar/456</a>)</p> <p>- Aus methodischen Gründen werden die regionalen Straßenverkehrsemissionen aus Strom erst ab Berichtsjahr 2016 ausgewiesen.</p> <p>-Die Vergleichbarkeit der Ergebnisse mit früheren Berechnungsjahren sind eingeschränkt.</p> <p>[statistisches Landesamt Baden-Württemberg]: <a href="https://www.statistik-bw.de/">https://www.statistik-bw.de/</a></p> <p><strong>Quelle der Daten</strong>: <a href="https://www.statistik-bw.de/">Statistisches Landesamt Baden-Württemberg</a></p>

Großfeuerungsanlagen nach 13. BImSchV

Informationen über Großfeuerungsanlagen der gemeldeten Standorte 2022. Die 13. BImSchV regelt Anforderungen an die sogenannten Großfeuerungsanlagen. Für diese Anlagen gelten Messverpflichtungen und Berichtspflichten gegenüber der Europäischen Union. Ausgenommen von diesen Berichtspflichten sind aufgrund des Geltungsbereiches der EU-Richtlinie 2001/80/EG z. B. große Feuerungsanlagen aus Zuckerfabriken und der chemischen Industrie. Große Feuerungsanlagen, in denen auch Abfälle mitverbrannt werden, unterliegen anderen Berichtspflichten, so dass diese hier nicht berücksichtigt sind. Eingestellt in dieser interaktiven Kartendarstellung sind die in Niedersachsen erfassten Großfeuerungsanlagen im Zuständigkeitsbereich der Gewerbeaufsicht und des Landesamtes für Bergbau, Energie und Geologie , die dem Geltungsbereich der 13. BImSchV unterliegen. Durch Anklicken der einzelnen Standorte erhalten Sie Detailinformationen zu den Anlagen. Dem Informationsblatt der jeweiligen Großfeuerungsanlage können Sie vom Betreiber angegebene Daten, wie beispielsweise den Betreiber der Anlage, den Energieeinsatz und die Emissionen an SOx, NOx und Staub, aber auch die zuständige Immissionsschutzbehörde entnehmen. Im Informationsblatt finden Sie des Weiteren ein Diagramm, welches die zu berichtenden Jahresemissionen und den Gesamtenergieeinsatz der letzten vier Jahre darstellt. Die Daten werden jährlich aktualisiert.

Entwicklung Luftqualität - Emissionswerte PM 2008/2009 (Umweltatlas)

Emissionswerte PM10 und PM2,5

1 2 3 4 5308 309 310