API src

Found 8878 results.

Related terms

CO₂-Emissionen pro Kilowattstunde Strom 2024 gesunken

<p>CO₂-Emissionen pro Kilowattstunde Strom 2024 gesunken</p><p>Berechnungen des Umweltbundesamtes (UBA) zeigen, dass die spezifischen Treibhausgas-Emissionsfaktoren im deutschen Strommix im Jahr 2024 weiter gesunken sind. Hauptursachen sind der gestiegene Anteil erneuerbarer Energien, der gesunkene Stromverbrauch infolge der wirtschaftlichen Stagnation und dass mehr Strom importiert als exportiert wurde.</p><p>Pro Kilowattstunde des in Deutschland verbrauchten Stroms wurden im Jahr 2024 bei der Erzeugung durchschnittlich 363 Gramm CO2ausgestoßen. 2023 lag dieser Wert bei 386 und 2022 bei 433 Gramm pro Kilowattstunde. Vor 2021 wirkte sich der verstärkte Einsatz erneuerbarer Energien positiv auf die Emissionsentwicklung der Stromerzeugung aus und trug wesentlich zur Senkung der spezifischen Emissionsfaktoren im Strommix bei. Die wirtschaftliche Erholung nach dem Pandemiejahr 2020 und die witterungsbedingte geringere Windenergieerzeugung führten zu einer vermehrten Nutzung emissionsintensiver Kohle zur Verstromung, wodurch sich die spezifischen Emissionsfaktoren im Jahr 2021 erhöhten. Dieser Effekt beschleunigte sich noch einmal im Jahr 2022 durch den verminderten Einsatz emissionsärmerer Brennstoffe für die Stromproduktion und den dadurch bedingten höheren Anteil von Kohle.</p><p>2023 und fortgesetzt 2024 führte der höhere Anteil erneuerbarer Energien, eine Verminderung des Stromverbrauchs infolge der wirtschaftlichen Stagnation sowie ein Stromimportüberschuss zur Senkung der spezifischen Emissionsfaktoren: Der Stromhandelssaldo wechselte 2023 erstmals seit 2002 vom Exportüberschuss zum Importüberschuss. Es wurden 9,2 Terawattstunden (⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠) mehr Strom importiert als exportiert. Dieser Trend setzt sich im Jahr 2024 fort. Der Stromimportüberschuss stieg auf 24,4 TWh. Die durch diesen Stromimportüberschuss erzeugten Emissionen werden nicht der deutschen Stromerzeugung zugerechnet, da sie in anderen berichtspflichtigen Ländern entstehen. Die starke Absenkung des spezifischen Emissionsfaktors im deutschen Strommix ab dem Jahr 2023 ist deshalb nur bedingt ein ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ für die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=Nachhaltigkeit#alphabar">Nachhaltigkeit</a>⁠ der Maßnahmen zur Reduzierung der Emissionen des Stromsektors.</p><p>Die Entwicklung des Stromverbrauchs in Deutschland</p><p>Der Stromverbrauch stieg seit dem Jahr 1990 von 479 Terawattstunden (TWh) auf 583 TWh im Jahr 2017. Seit 2018 ist erstmalig eine Verringerung des Stromverbrauchs auf 573 TWh zu verzeichnen. Mit 513 TWh wurde 2020 ein Tiefstand erreicht. Im Jahr 2021 ist ein Anstieg des Stromverbrauchs infolge der wirtschaftlichen Erholung nach dem ersten Pandemiejahr auf 529 TWh zu verzeichnen, um 2022 wiederum auf 516 TWh und 2023 auf 454 TWh zu sinken. Dieser Trend setzt sich 2024 mit einem Stromverbrauch von 439 TWh fort. Der Stromverbrauch bleibt trotz konjunktureller Schwankungen und Einsparungen infolge der Auswirkungen der Pandemie und des russischen Angriffskrieges in der Ukraine auf hohem Niveau.</p><p>Datenquellen</p><p>Die vorliegenden Ergebnisse der Emissionen in Deutschland leiten sich aus der Emissionsberichterstattung des Umweltbundesamtes für Deutschland, Daten der Arbeitsgruppe Erneuerbare Energien-Statistik, Daten der Arbeitsgemeinschaft für Energiebilanzen e.V. auf der Grundlage amtlicher Statistiken und eigenen Berechnungen für die Jahre 1990 bis 2022 ab. Für das Jahr 2023 liegen vorläufige Daten vor. 2024 wurde geschätzt.</p>

Weiterentwicklung und Optimierung beim Betrieb einer emissionsarmen stationaeren atmosphaerischen Demonstrations-WSF fuer den Waermemarkt

Vorgesehen sind Bau, Optimierung und Demonstrationsbetrieb einer 2 MW-Wirbelschichtfeuerung. Kernstueck ist ein neugestalteter Kessel mit der WSF der 2. Generation. Die neue Technik kombiniert die Entschwefelung durch Additivzugabe mit der NOx-Minderung durch Stufung der Luftzufuhr und entsprechend gestaltete Brennstoffaufgabe sowie durch interne Feststoffrezirkulation. Sie fuehrt daher zu geringen Emissionen bei gleichzeitig hohem Ausbrand und kompakter Bauweise.

Plattform zur Nachweisführung und Reduktion von CO2 Emissionen entlang der gesamten Wertschöpfungskette der stahlproduzierenden und -verarbeitenden Industrie, Teilvorhaben: Integration und Reduktion energieverbrauchsbasierter CO2 Emissionen entlang der de:karb Wertschöpfungskette

Entwicklung und Erprobung eines neuen emissionsarmen Verfahrens zur Kunstharzimpraegnierung von Bauteilen mit direkter Rueckgewinnung des Impraegnierharzes zwecks Wiedereinsatz

Entwicklung eines Partikelfilters mit additivgestuetzter Regeneration fuer die dieselmotorische Anwendung

3D Land Planning - Underground Resources and Sustainable Development in Urban Areas

The horizontal expansion and increase in population that have characterised urban growth and development patterns of the last few decades have produced cities that are inconsistent with the principles of sustainable development. Due to the high rate of global urbanisation, the consequences of problems such as greater traffic congestion, higher levels of air pollution, lack of green space, and insufficient water supplies not only affect the cities in which they occur, but extend around the world. Cities that maximise the use of the third dimension are seen as a possible path to sustainable urban form.The urban underground possesses a large untapped potential that, if properly managed and exploited, would contribute significantly to the sustainable development of cities. The use of its four principle resources (space, water, geothermal energy and geomaterials) can be optimised to help create environmentally, socially and economically desirable urban settings. For instance: space can be used for concentrating urban infrastructure and facilities, as well as housing parking facilities and transportation tunnels, energy from geothermal sources and thermal energy stored in the underground can be used for heating and cooling buildings, thereby reducing CO2 emissions,groundwater can be used for drinking water supply, and geomaterials from urban excavation can be used within the city to minimise long-distance conveyance.Traditionally, planning of underground works is done on a single-project basis with little consideration of other potential uses of the same space. This approach often produces interference between uses (e.g. road tunnels interfering with geothermal structures), causes negative environmental impacts (e.g. groundwater contamination), and restricts innovative opportunities for sustainable development (e.g. using waste heat from metro lines for heating buildings).The present research will create a methodology that will help planners consider and integrate the full potential of the urban underground within the larger context of city planning. Since the way in which the use of the urban underground varies in accordance with a cityies specific natural, social and economic circumstances, this research will be trans-disciplinary, incorporating both the physical and social sciences. The development of the methodology will be based on the results of key research activities. Constraints and opportunities for underground use will be identified by establishing the complex linkages between existing underground development and the variables that shape it in cities worldwide. Space, water, energy and geomaterials resources will be studied in terms of their interaction and combined use, to optimise their benefits under various geological, legal, economic, environmental and social conditions. This methodology will be tested on and refined during a case study on the city of Geneva. usw.

Verkehrsmaßnahmen bei Grenzwertüberschreitungen

Hintergrund des Projektes stellen die Überschreitungen der Immissionsgrenzwerte nach Immissionsschutzgesetz-Luft (IG-L) für PM10 und NO2 in allen Bundesländern Österreichs dar. Gemäß IG-L sind bei Vorliegen von Grenzwertüberschreitungen Maßnahmen zur Verbesserung der Luftgüte per Verordnung durch den Landeshauptmann vorzuschreiben. In der Studie werden über 70 potentielle Maßnahmen zur Verbesserung der Luftgüte untersucht. u.s..w.

Rahmenbedingungen und Kriterien fuer langfristige Untersuchungen zur Bewertung von Reduktionspotentialen und Strategien zur Verminderung und Vermeidung energiebedingter klimarelevanter Spurengase

Identifizierung und Definition von vertiefenden Studien zu einzelnen Reduktionsoptionen und Folgeproblemen. Erstellung eines Kriterienkatalogs zur Bewertung von moeglichen Arbeiten und Strategien zur Vermeidung und Verringerung energiebedingter Spurengase.

Medizinischer Gerätebau

Der Standort unterliegt seit ca. 100 Jahren einer intensiven industriellen Nutzung. In den Jahren 1910 bis 1945 produzierten die Albatroswerke auf dem Standort Flugzeugteile. Nach dem zweiten Weltkrieg wurde bis zum Jahr 1990 die Fläche als Entwicklungs- und Produktionsstandort von medizinischen Geräten genutzt. Hierbei wurden erhebliche Mengen an leichtflüchtigen chlorierten Kohlenwasserstoffen (LCKW) – insbesondere Perchloretylen (PCE) – als Entfettungsmittel eingesetzt. Besonders durch Handhabungsverluste sind die LCKW-Verbindungen in den Untergrund gelangt. Diese führten dann zur Verunreinigung von Boden, Bodenluft und Grundwasser. Seit 1990 hatten sich auf dem Grundstück diverse Kleingewerbe angesiedelt. Im Jahr 2010 übernahm der Entwicklungsträger, die Adlershof Projekt GmbH als Treuhänder des Landes Berlin, einen Großteil des ehemaligen Grundstückes. Die in den Jahren 1992 bis 1994 durchgeführten Erkundungen belegten für die zwei nachweislichen Eintragsbereiche auf dem Standort (ehemalige PER-Anlage und Lösemittellager) massive Belastungen der Bodenluft mit Maximalgehalten von 8.400 mg/m³ sowie des Grundwassers, dessen maximale LCKW-Gehalte im Jahr 1995 etwa 81.000 µg/l betrugen. Dies führte zur Ausbildung einer Schadstofffahne, die das Grundstück in nordwestlicher Strömungsrichtung verließ und auf die ca. 900 m entfernte Fassung des Wasserwerks Johannisthal gerichtet war. Die LCKW-Schadstofffahne weist zusätzlich eine Breite von 100 m und eine vertikale Ausdehnung bis 35 m unter Geländeoberkante (uGOK) auf. 1994 wurde für den Standort zur Abwehr der hieraus resultierenden Gefahren ein Sanierungskonzept erstellt, das als erste Gefahrenabwehrmaßnahmen die Sanierung der Bodenluft und die Verhinderung der Schadstoffausbreitung im Grundwasserleiter vorsah. Die Bodenluftsanierung erfolgte mittels 4 Absauganlagen von Januar 1995 bis Mai 1997. Mit der Grundwassersicherung und -sanierung wurde ebenfalls 1995 begonnen. Über einen Sicherungsbrunnen im Bereich der nordwestlichen Grundstücksgrenze wurde das weitere Abströmen von belastetem Grundwasser in Richtung Wasserwerk Johannisthal wirksam verhindert. Der Hauptbelastungs-bereich im Abstrom der ehemaligen PER-Anlage konnte über einen Sanierungsbrunnen saniert werden. Die Reinigung des gehobenen mit LCKW kontaminierten Wassers erfolgt über eine doppelstufige Desorptionsanlage (Luftstrippung) mit nachgeschaltetem Aktivkohlefilter zur Reinigung der Prozessluft. Die Maßnahme wurde durch ein halbjährliches Grundwassermonitoring kontinuierlich überwacht. Im Ergebnis hierbei festgestellter Veränderungen des Schadensbildes (insbesondere in seiner vertikalen Ausbreitung) wurde die Grundwassersanierungsmaßnahme mehrfach optimiert und dabei immer dem aktuellen Belastungsprofil angepasst. Trotzdem war im Jahr 2003 als Fazit der achtjährigen Grundwassersanierung festzustellen, dass trotz deutlich gesunkener Schadstoffgehalte im Sanierungsbrunnen (diese lagen zum damaligen Zeitpunkt bei LCKW-Gehalten von 500-700 µg/l) in den umliegenden Messstellen nach anfänglich rapidem Rückgang der LCKW-Konzentrationen diese jedoch seit geraumer Zeit auf deutlich höherem Niveau (bei LCKW-Gehalten von 2.000-4.000 µg/l) stagnierten. Aus diesem Grund wurden im Jahr 2004 die Lage und der Ausbau der Entnahmebrunnen erneut modifiziert und weitere Erkundungen sowie eine Verdichtung des Messnetzes vorgenommen. Im Ergebnis dieser Untersuchungen zeichnete sich jedoch ab, dass im Untergrund lokal hochbelastete Bereiche vorhanden sind, die aufgrund ihres Feinkornanteils sowie ihres Anteils an organischen Beimengung (Kohlepartikel) hydraulisch nicht effektiv sanierbar sind. Aus diesem Grund wurden im Zeitraum 2005/2006 weitere Untersuchungen zur Ausgrenzung der schadstoffakkumulierten Feinsandbereiche mittels Lineruntersuchungen durchgeführt. Nach Vorlage der Ergebnisse wurde mit dem Bund abgestimmt, die Schadstoffquelle mittels eines innovativen Air-Sparging-Verfahrens zu sanieren. Das Projekt wurde über einen Zeitraum von 12 Monaten als Pilotversuch beauftragt. Bei Nachhaltigkeit sollte der Einsatz des Verfahrens verlängert werden. Das gesteuerte Air-Sparging-Verfahren konnte jedoch nicht den gewünschten Sanierungserfolg in den Jahren 2007/2008 erreichen. Grundsätzlich muss man einschätzen, dass stark am Bodengefüge akkumulierte Schadstoffanteile in der Quelle sich weniger effektiv mit in-situ Methoden sanieren lassen. Noch im Jahr 2011 wurden im Quellbereich im oberen Teil des Hauptgrundwasserleiters LCKW-Konzentrationen von knapp 20.000 µg/l gemessen. Nach 16 Jahren aktiver hydraulischer Grundwassersanierung, gekoppelt mit Bodenluftabsaugungsmaßnahmen in der ungesättigten Bodenzone und einem innovativen Air-Sparging-Verfahren zur Dekontamination der grundwassergesättigten Bodenzone musste bilanziert werden, dass einzig eine aktive Herausnahme der LCKW-Bodenkontamination durch ein off-site-Verfahren mittels Bodenaushub und der Entsorgung der Bodenkontaminanten in einer dafür zugelassenen Bodenreinigungsanlage das Sanierungsziel einer nachhaltigen Schadstoffbeseitigung gewährleisten kann. Im Rahmen der Flächenentwicklung des neuen Eigentümers, der Adlershof Projekt GmbH, wurden in den Jahren 2011 und 2012 neue Randbedingungen für die Quellensanierung geschaffen. Nach dem geplanten Abriss der gesamten Gebäudesubstanz, einschließlich einer flächenhaften Tiefenenttrümmerung, bot sich nunmehr die Chance einer gezielten Quellensanierung mittels Bodenaushub. Zur konkreten Quellenausweisung und Festlegung des Sanierungszieles wurden im 2. Halbjahr 2010 abschließende sanierungsvorbereitende Bodenuntersuchungen durch Linerbohrungen durchgeführt. Im Rahmen der dann anschließenden Vorplanung durch ein Gutachterbüro im Auftrag der Senatsverwaltung und der Bundesanstalt für vereinigungsbedingte Sonderaufgaben (BvS) wurden die Grundlagen für die Bodensanierung geschaffen. Nach Abstimmung mit allen Beteiligten über den Sanierungsumfang (Grundstückseigentümer, BvS und Senat) konnte im 1. Halbjahr 2011 die Anordnung zur Bodensanierung durch die zuständige Bodenschutzbehörde erlassen werden. Die dann im 2. Halbjahr 2011 realisierte Sanierungsplanung durch ein externes Ingenieurbüro sieht den Aushub der LCKW-Bodenkontamination in der grundwassergesättigten Bodenzone bis max. 7 m u.GOK mittels einer kleinräumigen Aushubtechnologie (Hexagonalrohraustauschverfahren bzw. Wabe) mit paralleler Grundwassersanierung vor. Aufgrund der stark flüchtigen toxischen Schadstoffe wurden während des Aushubprozesses emissionsmindernde Maßnahmen durch die zuständige Immissionsschutzbehörde der Senatsverwaltung gefordert (u.a. Direktabsaugung an der Wabe, am Container, zusätzliche Verwendung eines Paravents, temporäre Folienabdeckung beim Befüllprozess). Die Bodensanierung umfasst in der ungesättigten Bodenzone ein Aushubvolumen von ca. 3.300 m³ und in der gesättigten Bodenzone von ca. 4.000 m³. Die Durchführung der Sanierungsarbeiten, auf einer Fläche von ca. 1.100 m², erfolgte im Zeitraum März bis Juli 2012. Es wurden bei dieser Maßnahme ca. 7.3000 m³ (ca. 11.000 t) verunreinigter Boden/Bauschutt ausgehoben und entsorgt. Die nachfolgenden Abbildungen und Fotos dokumentieren den Wabenaushubplan mit maximaler Aushubtiefe uGOK, den Baugrubenquerschnitt mit den Phasen 1: geböschter Voraushub (ungesättigte Bodenzone) und 2: Einsatz der Hexagonalrohraushubtechnologie in der gesättigten Bodenzone sowie von den Sanierungsarbeiten am Standort. Nach Abschluss der Quellensanierung wurde ein neu errichtetes Grundwassermessnetz zur Dokumentation des Sanierungserfolges installiert. Durch eine 2 Jahre andauernde nachlaufende hydraulische Abstromsicherung konnten mobilisierte Restschadstoffmengen entfernt und am Verlassen des Grundstückes gehindert werden. Ein externes Ingenieurbüro erhielt den Auftrag, die Tolerierbarkeit der verbliebenen Restbelastungen auf dem Grundstück mit Hilfe eines bestehenden Schadstofftransportmodells hinsichtlich einer potentiellen Gefährdung des Wasserwerkes Johannisthal zu beurteilen. Nachdem durch Grundwassermessungen über einen längeren Zeitraum stagnierende Schadstoffgehalte auf dem Niveau der tolerierbaren Restbelastungen nachgewiesen werden konnten, wurde die hydraulische Maßnahme Mitte 2014 beendet. Die Grundwasserreinigungsanlage, die dazugehörigen technischen Leitungssysteme sowie die Sanierungs- und Sicherungsbrunnen wurden fachgerecht zurückgebaut. Ende 2014/Anfang 2015 wurden alle auf dem Grundstück noch vorhandenen Grundwassermessstellen ordnungsgemäß durch ein Fachunternehmen zurückgebaut. Anfang 2015 wurde außerhalb des Grundstücks in Richtung des Wasserwerkes Johannisthal eine Messstellengruppe zur Abstromüberwachung des Grundstückes errichtet und in das standortübergreifende Monitoring des Ökologischen Großprojektes integriert. Die ersten Grundwasseranalysen von Oktober 2015 mit Kontrolle der Grundwasserbeschaffenheitsverhältnisse bis in 15 m uGOK bestätigten die Nachhaltigkeit der kombinierten Boden- und Grundwassersanierung. Im Zeitraum 2016-2022 wurden 14 weitere Messkampagnen am Standort durchgeführt. Die Messungen bestätigen weiterhin den Sanierungserfolg. Dabei bewegte sich die Summe an LCKW im Grundwasserleiterabschnitt bis 10 m uGOK um 220 µg/l und im Abschnitt zwischen 10–15 m uGOK Ziel der WISTA.Plan GmbH (ehemals Adlershof Projekt GmbH) war es, die gewerbliche Weiternutzung des Standortes nach dem umfassenden Abbruch der Altgebäude, der Tiefenenttrümmerung und der erfolgten LCKW-Boden-, Bodenluft- und Grundwassersanierung für private Investoren zu organisieren und somit die Schaffung neuer Arbeitsplätze zu sichern. Die Neubebauung des Areals wurde im Zeitraum 2017 bis 2020 realisiert. Seither erfolgt eine gewerbliche Nutzung durch Firmen unterschiedlicher Branchen. Insgesamt wurden ca. 4.400 kg LCKW über die Boden-, Bodenluft- und Grundwassersanierung aus dem Untergrund entfernt. Dabei wurden ca. 4 Mio. m³ LCKW – belastetes Grundwasser gefördert und in einer Grundwasserreinigungsanlage gereinigt. Außerdem konnten etwa 300 kg LCKW über die Bodenluftsanierung der ungesättigten Bodenzone entzogen werden. Der Austragsanteil der In-situ Sanierung durch das Air-Sparging-Verfahren betrug ca. 100 kg LCKW. Mit der Bodensanierung konnte eine Schadstoffmenge von ca. 1.200 kg LCKW beseitigt werden. Die im Rahmen der Gefahrenabwehr aufgewendeten Kosten belaufen sich für den Zeitraum 1992 bis 2022 abschließend auf rd. 3,5 Mio. €. Dabei wurden für die die komplette Bodensanierung (Planung- und Bauüberwachung, Bau- und Entsorgungsleistung, Fremdüberwachung) Kosten von etwa 1,3 Mio. € in Ansatz gebracht.

Umweltzone

Als Umweltzone wird das Gebiet innerhalb des S-Bahn-Ringes bezeichnet, in dem nur Fahrzeuge fahren dürfen, die bestimmte Abgasstandards einhalten. Die Umweltzone gilt ab 1. Januar 2008.

1 2 3 4 5886 887 888