API src

Found 4751 results.

Similar terms

s/enegiegewinnung/Energiegewinnung/gi

HKNR-Newsletter - Nr.: 1/2025

zunächst wünschen wir Ihnen ein tolles und erfolgreiches Jahr 2025! Wir schaffen auch in diesem Jahr wieder viele Gelegenheiten zum Austausch mit Ihnen. An dieser Stelle nochmals herzlichen Dank für Ihren Input im letzten Jahr! Vor allem die Anregungen und Wünsche aus unserem Projekt zur Zielgruppenanalyse für das HKNR können wir künftig in unsere weitere Arbeit einfließen lassen. Wir freuen uns, künftig gezielter und effektiver mit Ihnen kommunizieren zu können! Veränderungen überall – so sieht unser Ausblick für 2025 aus: Weiteres Wachstum der Teams, schon sehr konkret verbunden mit einer Reihe neuer Kolleginnen und Kollegen, die in diesem Jahr zu uns kommen. Mit der Gas-Wärme-Kälte-Herkunftsnachweisregister-Verordnung (GWKHV) haben wir seit April letzten Jahres eine neue Aufgabe, an der wir intensiv arbeiten. Unsere Ausschreibung für die Software für die neuen Herkunftsnachweisregister für Gas, Wasserstoff und Wärme/Kälte ist in diesem Jahr geplant. Wir bereiten außerdem Anpassungen für die HkRNDV vor, die zunächst in die Ressortabstimmung und danach in die Verbändeanhörung gehen werden. Wir stehen gemeinsam vor den Wahlen für ein neues Parlament und eine neue Regierung. Das bringt für uns aktuell Einschränkungen wegen der vorläufigen Haushaltführung mit sich. Ob es unter einer neuen Regierung wieder Umstrukturierungen in den Ministerien geben wird, wird sich zeigen. Unsere Facharbeit setzen wir jedoch weitgehend unabhängig davon fort. Vielleicht wichtig für Sie: Die Umsetzung der 37. BImSchV für erneuerbare Kraftstoffe nicht biogenen Ursprungs (RFNBO) wird ebenfalls in der UBA-Abteilung Klimaschutz und Energie angesiedelt, sozusagen als Nachbarfachgebiet. Es zeichnen sich bereits jetzt enge Verknüpfungen zwischen den Registern ab. Aktuell stecken wir schon intensiv in den Vorbereitungen für unseren Stand bei der E-world im Februar und auch für unsere siebte HKNR-Fachtagung im April . Informationen dazu und auch zu Fragen der Anerkennung, zum neuen Termin für die Stromkennzeichnung und zu unseren neuen Internetseiten finden Sie in diesem Newsletter. Viel Spaß beim Lesen! Ihr Team des Herkunftsnachweisregisters Einladung zur 7. HKNR-Fachtagung Nun ist es soweit – wir möchten Sie ganz offiziell zur 7. Fachtagung des Herkunftsnachweisregisters am 2./3. April 2025 nach Dessau-Roßlau einladen. Wir freuen uns auf ein Wiedersehen und möchten mit Ihnen in den Austausch gehen zu den neuesten Entwicklungen in Sachen Herkunftsnachweise. Es erwartet Sie – wie in den letzten Jahren – ein informatives und interaktives Programm mit Vorträgen und interessanten Workshops. Neu wird die zeitliche Gestaltung mit verschiedenen Themenblöcken sein, bei denen jeweils eine separate Anmeldung notwendig sein wird (hellblaue Markierung im Text). Wir möchten mit Ihnen über den Aufbau der neuen Vollzüge für Herkunftsnachweise für Wärme/Kälte und Gase (inkl. Wasserstoff) sprechen. Zudem zieht die Vernetzung der verschiedenen Herkunftsnachweissysteme durch Konversion die Notwendigkeit nach sich, auch viele Fragen zu Herkunftsnachweisen für Strom im gegebenen Kontext neu zu beleuchten. Neben den Herkunftsnachweisen wird auch der Umsetzungsstand der 37. BImSchV im Umweltbundesamt ein weiteres Thema sein, worüber wir Sie informieren werden. Das vorläufige Programm können Sie hier aufrufen: https://www.umweltbundesamt.de/dokument/tagesordnung-7-hknr-fachtagung . Unter folgendem Link können Sie sich bis zum 28. Februar 2025 verbindlich anmelden: https://www.umweltbundesamt.de/7-hknr-fachtagung-anmeldung . Geben Sie die Termininformation gerne an Ihre Kollegen*Kolleginnen weiter. Wir möchten Sie jedoch darum bitten, pro Unternehmen mit maximal zwei Personen teilzunehmen, damit auch angesichts des erweiterten Themenfelds unsere Kapazitäten ausreichen. HKNR bei der E-world 2025 Vom 11. bis 13. Februar 2025 findet in Essen Europas Leitmesse der Energiewirtschaft statt. Gemeinsam mit der Deutschen Emissionshandelsstelle werden wir, das Team des Herkunfts- und Regionalnachweisregisters, einen UBA-Stand betreuen. Mit eigenem Fachpersonal und vielen Informationen stehen wir Ihnen in Essen wieder zur Verfügung. Wenn Sie vor Ort mit uns ins Gespräch kommen möchten, melden Sie sich bitte bis 5. Februar 2025 zur Terminvereinbarung (unter HKNR-Tagung@uba.de ) oder Sie schauen einfach am Stand vorbei. Wir freuen uns auf ein Kennenlernen oder Wiedersehen in Essen und viele interessante Gespräche! Weiterführender Link: https://www.e-world-essen.com Anerkennung serbischer, griechischer & zypriotischer HKN Im Rahmen zweier Forschungsprojekte prüften die Auftragnehmenden BBH und Öko-Institut die Anerkennbarkeit von Herkunftsnachweisen aus Serbien, Griechenland und Zypern . Das Umweltbundesamt ist als zuständige Behörde verpflichtet, ein Nachweissystem zu etablieren, mit dem gegenüber den Endkunden der Anteil erneuerbarer Energien im Energiemix von Energieversorgern ausgewiesen wird. Die Herkunft von aus erneuerbaren Energiequellen erzeugter Elektrizität muss mit objektiven, transparenten und nichtdiskriminierenden Kriterien garantiert werden. Diese Pflicht besteht nach Artikel 19 Absatz 1 der Richtlinie 2018/2001/EU (Renewable Energy Directive II – RED II). Gemäß Artikel 19 Absatz 9 RED II erkennen die Mitgliedsstaaten die von anderen Mitgliedsstaaten gemäß diesen Richtlinien ausgestellte Herkunftsnachweise (HKN) als Nachweis der Herkunft aus erneuerbaren Energien an. Die Anerkennung kann nur verweigert werden, wenn begründete Zweifel an der Richtigkeit, Zuverlässigkeit oder Wahrhaftigkeit des HKN bestehen. Im Rahmen der Forschungsvorhaben wurden das serbische, das griechische und das zypriotische System zur Ausstellung, Übertragung und Entwertung von Herkunftsnachweisen geprüft. Die Stromkennzeichnungen in Serbien, Griechenland und Zypern wurden ebenfalls untersucht. Beides erfolgte mit dem Ziel, aus der Perspektive des Umweltbundesamts als deutscher registerführender Stelle bei einer Prüfung der Anerkennungsfähigkeit serbischer, griechischer und zypriotischer Herkunftsnachweise beurteilen zu können, ob generelle, begründete Zweifel an der Richtigkeit, Zuverlässigkeit oder Wahrhaftigkeit serbischer, griechischer oder zypriotischer Herkunftsnachweise bestehen. Das Prüfergebnisse lauten, dass solche Zweifel, die einer Anerkennung serbischer, griechischer und zypriotischer HKN entgegenstehen könnten, nach den Ergebnissen des Forschungsvorhabens verneint werden. Infolgedessen wird nun die Freischaltung für den Import serbischer, griechischer und zypriotischer Herkunftsnachweise erfolgen. Neue Internetseiten zu Gas- und Wärme/Kälte-HKN Das Umweltbundesamt ist mit Erlass der Gas-Wärme-Kälte-Herkunftsnachweisregister-Verordnung (GWKHV) seit dem 25.04.2024 für den Vollzug der Herkunftsnachweisregister für Gas sowie für Wärme und Kälte zuständig. Ein Gas-Herkunftsnachweisregister für erneuerbare Gase inkl. Wasserstoff und kohlenstoffarmes Gas nach § 2 Nummer 10 des Herkunftsnachweisregistergesetzes sowie ein Register für Wärme und Kälte aus erneuerbaren Quellen wie Solarthermie, Geothermie oder Umweltwärme sind somit vorgesehen, diese werden aber noch nicht vom Umweltbundesamt geführt. Bisher werden internationale Nachweise über Biogasmengen und -qualitäten über das Biogasregister Deutschland der Deutschen Energie-Agentur (dena) standardisiert dokumentiert: Biomethan aus dem grenzüberschreitenden Handel wird dafür in vergleichbaren Biogasregistern im Ausland eingebucht und in das Biogasregister Deutschland übertragen. Neben einer Verwendung im freiwilligen Markt sind diese internationalen Biogaszertifikate nach den Vorgaben des BEHG, ⁠ TEHG⁠ , GEG und EWärmeG anerkennungsfähig. Der bestehende internationale Handel mit Biogaszertifikaten wird von den Festlegungen des HKNR-Gesetzes und der GWKHV nicht erfasst. Der Aufbau und Betrieb des vorgesehenen deutschen Gas-Herkunftsnachweisregisters in der Zuständigkeit des Umweltbundesamtes wird für das Jahr 2026 erwartet. Dann muss durch Kooperation der zuständigen Stellen sichergestellt sein, dass es nicht zu Doppelzählungen durch verschiedene Nachweise kommt. Für Herkunftsnachweise nach der Erneuerbare-Energien-Richtlinie ist das Umweltbundesamt mit dem Erlass der GWKHV seit dem 25.04.2024 für den Vollzug der Herkunftsnachweisregister für Gas sowie für Wärme und Kälte zuständig. In diesem Zuge haben wir zum Ende des vergangenen Jahres neue Internetseiten dazu veröffentlicht. Auf den unten verlinkten Seiten finden Sie weitere Informationen zur Umsetzung: • Nachweissysteme für Energie und Klimaschutz (Hauptseite) • Gas-HKNR (Biomethan und Wasserstoff) und • Wärme- und Kälte-HKNR . Wir freuen uns über Ihren Besuch auf unseren Internetseiten. Erinnerung: 1. Juli neuer Termin zur Fertigstellung der Stromkennzeichnung! Spätestens zum 1. Juli 2025 muss die Stromkennzeichnung für das Lieferjahr 2024 erstellt und veröffentlicht sein, dies gibt § 42 Abs. 1 EnWG vor. In Artikel 2 Nummer 11 des Gesetzes zur Änderung des Erneuerbare-Energien-Gesetzes und weiterer energiewirtschaftsrechtlicher Vorschriften zur Steigerung des Ausbaus photovoltaischer Energieerzeugung vom 8. Mai 2024 wurde festgelegt, dass hierfür künftig der 1. Juli als Stichtag für die Ausweisung der Stromkennzeichnung des Vorjahres gilt. Mit der Vorverlegung der Frist (bis zum letzten Jahr galt der 1. November) folgt Deutschland einer gemeinsamen Empfehlung der europäischen Herkunftsnachweisregister. Zur weiteren Harmonisierung der europäischen Stromkennzeichnungen ist dies ein wichtiger Schritt. Die Verschiebung begünstigt außerdem, dass Unternehmen künftig die Stromkennzeichnung für ihre Emissionsbilanzen in der nichtfinanziellen Berichterstattung verwenden können. Die Änderung des Stichtages zog eine Folgeänderung in § 31 Abs. 1 Punkt 1 der HkRNDV mit sich. Demnach dürfen Regionalnachweise künftig vom 1. April bis zum 31. Juli entwertet werden, statt wie bisher vom 1. August bis zum 15. Dezember. Darüber informiert Artikel 8 des Gesetzes zur Änderung des Erneuerbare-Energien-Gesetzes und weiterer energiewirtschaftsrechtlicher Vorschriften zur Steigerung des Ausbaus photovoltaischer Energieerzeugung vom 8. Mai 2024 . Artikel 14 Abs. 2 Nr. 1 desselbigen Gesetzes legt das Inkrafttreten für beide Artikel am 01.01.2025 fest. Somit sind die Änderungen verpflichtend für die Stromkennzeichnung anzuwenden, die sich auf das Lieferjahr 2024 bezieht. Letztverbraucher*innen können sich folglich ab 01.07.2025 über ihre Stromkennzeichnung 2024 auf den Websites ihrer Stromlieferanten informieren.

Nutzung der Wasserkraft

Die Kraft des Wassers zu nutzen hat eine lange Tradition und ist bis heute als erneuerbare Energiequelle von Bedeutung. Gleichzeitig hat die Energiegewinnung aus Flüssen vielfältige sozioökonomische und ökologische Wirkungen, die es zu beachten gilt. Vom Wasser zum Strom Das physikalische Grundprinzip der Wasserkraftnutzung ist, die Bewegungsenergie und die potenzielle Energie des Wassers in nutzbare Energie umzuwandeln. Der Energiegewinn aus Wasserkraft ist umso höher, je mehr Wasser aus möglichst großer Fallhöhe auf die Schaufeln einer Turbine oder eines Wasserrads trifft. Bergige Landschaften mit viel Wasser aus Niederschlägen sind daher besonders für die Wasserkraftnutzung geeignet. Bei der Erzeugung von Wasserkraft wird zwischen Laufwasserkraftwerken und Speicherkraftwerken unterschieden. Ein Laufwasserkraftwerk nutzt die augenblicklich verfügbare Wassermenge eines Flusses oder Bachs. Speicherkraftwerke halten das Wasser zurück. Es wird dann zu Zeiten höheren Strombedarfes durch die Turbinen geleitet. Pumpspeicherkraftwerke sind eine Sonderform der Speicherkraftwerke. Hierbei wird Wasser in ein höher gelegenes Speicherbecken gepumpt, um es bei Strombedarf nutzen zu können. Auswirkungen der Wasserkraftnutzung auf die Gewässerökologie Die Wasserkraftnutzung greift erheblich in Natur und Landschaft ein. Aus der Berichterstattung zur EU-⁠ Wasserrahmenrichtlinie ⁠ ist bekannt, dass in 37 Prozent aller berichteten ⁠ Wasserkörper ⁠ – das sind über 51.000 Flusskilometer – die Wasserkraftnutzung Gewässer signifikant belastet. Dadurch werden die Gewässerschutzziele – der gute ökologische Zustand – nahezu vollständig verfehlt. Zu den gravierendsten Auswirkungen der Wasserkraft auf die Gewässer und Auen zählen: Die Unterbrechung der biologischen und morphodynamischen Durchgängigkeit der Fließgewässer. So können Wanderfischarten nicht mehr zu ihren Laich- oder Aufwuchslebensräumen gelangen. Die direkte Schädigung von Organismen in den Wasserkraftturbinen. Mehr als 22 Prozent der Fische, die eine Turbine passieren müssen, werden tödlich verletzt. Mehrere aufeinander folgende Wasserkraftwerke an einem Flusslauf können Populationen gefährden. Die Veränderung des Lebensraumes in der ⁠ Aue ⁠ und im Gewässer durch den Gewässeraufstau und unterhalb von Stauwerken durch einen zu geringen Wasserabfluss im verbleibenden Gewässerbett. Wasserkraftanlagen neu zu bauen oder zu betreiben, ist deshalb kritisch zu bewerten. Die Mehrzahl der existierenden Anlagen in Deutschland ist aus ökologischer Sicht dringend modernisierungsbedürftig. In den kommenden Jahren müssen Durchgängigkeit, Mindestwasserführung, hydrologische Situation und Fischschutz verbessert werden – auch um die gesetzlichen Ziele der Wasserrahmenrichtlinie zu erreichen. Leitplanken für die Stromerzeugung aus Wasserkraft und Erneuerbare Energien Gesetz Das Umweltbundesamt empfiehlt folgende Leitplanken für die Stromerzeugung aus Wasserkraft: Strategische Konzepte zur Nutzung der Wasserkraft können Zielkonflikte auflösen. Sie sollen sowohl erschließungswürdige Wasserkraftpotentiale als auch sensible Naturräume berücksichtigen. Nennenswerte Potenziale, um die Klimaschutzziele zu erreichen, liegen in der Modernisierung oder dem Ersatzneubau großer Wasserkraftanlagen (s.u.). In wertvollen und sensiblen Fluss- und Auenlandschaften können die negativen Folgen der Wasserkraftnutzung ihren positiven Beitrag für den ⁠ Klimaschutz ⁠ überwiegen. Bei der Festlegung von Maßnahmen an Wasserkraftstandorten sollte das gesamte betroffene Flussgebiet berücksichtigt werden, insbesondere wenn mehrere Wasserkraftwerke am Flusslauf aufeinander folgen. Es sollten alle geeigneten Maßnahmen umgesetzt werden, die Umweltauswirkungen mindern: Anlagen zum Fischauf- und -abstieg, zum Fischschutz , morphologische Verbesserungsmaßnahmen und die Sicherstellung eines ökologisch wirksamen Mindestwasserabflusses. Die Bund-Länderarbeitsgemeinschaft Wasser hat dazu eine „ Empfehlung zur Ermittlung einer ökologisch begründeten Mindestwasserführung in Ausleitungsstrecken von Wasserkraftanlagen “ veröffentlicht. Mit dem „Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor“ wurde dem Ausbau der erneuerbaren Energien ein überragendes öffentliches Interesse eingeräumt. Im Rahmen der Abwägung verschiedener Interessen und Schutzgüter erhalten die erneuerbaren Energien damit ein besonders hohes Gewicht. Insgesamt verfolgt das EEG dennoch einen einheitlichen Ansatz, um ⁠ Klima ⁠-, Umwelt- und Naturschutz miteinander zu verbinden. Wichtige Belange sollen nicht gegeneinander ausgespielt werden. Zur Frage wie weit das überragende Interesse reicht hat das Umweltbundesamt ein Factsheet erstellt. Wasserkraftnutzung in Deutschland Die Wasserkraft ist mit einem Anteil von etwa 15 Prozent an der weltweiten Stromversorgung eine bedeutende erneuerbare Energiequelle. Im globalen Vergleich zählen China, Kanada, Brasilien, USA, Russland und Indien zu den größten Erzeugern von Strom aus Wasserkraft. In Europa sind Norwegen, Frankreich, Schweden, Türkei und Italien die größten Produzenten. In Deutschland wird Wasserkraft vorwiegend in den abfluss- und gefällereichen Regionen der Mittelgebirge, der Voralpen und Alpen sowie an allen größeren Flüssen genutzt. Daher werden über 80 Prozent des Wasserkraftstroms in Bayern und Baden-Württemberg erzeugt. Etwa 86 Prozent des gesamten Leistungsvermögens der großen Wasserkraftanlagen liegt an neun großen Flüssen vor: Inn, Rhein, Donau, Isar, Lech, Mosel, Main, Neckar und Iller. Wasserkraftanlagen in Deutschland Gegenwärtig werden in Deutschland etwa 8.300 Wasserkraftanlagen betrieben. Vor allem kleine Anlagen mit einer installierten Leistung von höchstens einem Megawatt dominieren den Anlagenbestand mit 95 Prozent; ihr Anteil an der Stromerzeugung ist jedoch gering (s.u.). Den verbleibenden Anteil teilen sich große Wasserkraftanlagen mit einer installierten Leistung über einem Megawatt (436 Anlagen) und Pumpspeicherkraftwerke (31 Anlagen). Die Nutzung der Wasserkraft erfolgt in Deutschland vor allem über Laufwasserkraftwerke. Speicherkraftwerke haben demgegenüber einen viel geringeren Anteil von etwa 2,5 Prozent. Stromproduktion aus Wasserkraft in Deutschland In das öffentliche Stromnetz speisen etwa 7.300 Wasserkraftanlagen ein. Sie decken über die Jahre je nach Wasserführung 2,9 bis 3,8 Prozent des jährlichen Bruttostromverbrauchs bei. Über 90 Prozent des Wasserkraftstromes stammt aus großen Wasserkraftanlagen. Der Anteil der Wasserkraft an der Stromerzeugung aus erneuerbaren Energien ist über die Jahre gesunken und liegt gegenwärtig noch bei ca. 8 Prozent. Dieser Anteil wird in Zukunft weiter sinken, da die Potenziale der Wasserkraftnutzung in Deutschland weitgehend erschlossen sind, während andere erneuerbare Energieträger größere Potenziale aufweisen und weiter ausgebaut werden. Darüber hinaus kann sich die durch den ⁠ Klimawandel ⁠ bedingte Zunahme von Trockenperioden negativ auf den Energieertrag von Wasserkraftanlagen auswirken. Aktuelle Zahlen zur Wasserkraftnutzung werden regelmäßig von der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) veröffentlicht. Über die Umsetzung des Erneuerbare-Energien-Gesetzes (EEG) im Bereich Wasserkraft unterrichten die EEG-Erfahrungsberichte . Anlagendaten sind über das Marktstammdatenregister der Bundesnetzagentur recherchierbar. Wasserkraftpotenzial in Deutschland Das technisch-ökologische Potenzial der Wasserkraftnutzung in Deutschland wird auf etwa 25 Terawattstunden (⁠ TWh ⁠) Strom pro Jahr beziffert. In den vergangenen zehn Jahren wurden bereits bis zu 23 TWh Strom pro Jahr aus Wasserkraft gewonnen. Damit ist das Wasserkraftpotenzial zu großen Teilen erschlossen. Zwischenzeitlich haben viele Bundesländer die Potenziale der Energiegewinnung aus Wasserkraft weiter konkretisiert. Dafür wurden fast 40.000 Standorte bestehender Querbauwerke und Wasserkraftanlagen sowie auch frei fließende Gewässerstrecken in Hinblick auf noch zu erschließende Wasserkraftpotenziale analysiert. Auf dieser Basis gehen die Länder derzeit von einem grundsätzlich noch erschließbaren Wasserkraftpotenzial von 1,3 bis 1,4 TWh aus. Etwa 70 Prozent dieses Potenzials entfallen auf die Modernisierung bestehender Wasserkraftanlagen. Die Rolle der Wasserkraft bei der Energiewende In den letzten Jahren wurden die Rahmenbedingungen einer vollständig auf erneuerbaren Energien basierenden Stromversorgung in Deutschland in verschiedenen Studien analysiert, so auch in der Studie " RESCUE – Wege in eine ressourcenschonende Treibhausgasneutralität " des Umweltbundesamtes. Sowohl die progressiven als auch die konservativen Szenarien unterscheiden sich hinsichtlich der künftigen Entwicklung der Wasserkraft nur geringfügig. Demnach wird die Wasserkraft keinen großen Beitrag zur deutschen ⁠Bruttostromerzeugung⁠ leisten. Alle Szenarien zeigen einheitlich, dass die Wasserkraft ihr technisch-ökologisches Potenzial im Großen und Ganzen bereits ausschöpft. Wasserkraft und Klimawandel Bei der Abschätzung der zukünftigen Stromerzeugung aus Wasserkraft ist der ⁠Klimawandel⁠ mit zu betrachten, denn die Höhe des Stromertrags hängt u.a. von der Wassermenge ab. Das Umweltbundesamt hat die möglichen Effekte des Klimawandels auf die Ertragssituation der Wasserkraft untersuchen lassen . Demnach kann bis zur Hälfte des 21. Jahrhunderts mit einer Mindererzeugung aus Wasserkraft um ein bis vier Prozent und für den Zeitraum danach um bis zu 15 Prozent gerechnet werden. So zeigen Berechnungen an ausgewählten Wasserkraftanlagen an Hochrhein, Lech und Main Schwankungen in der Stromerzeugung von plus/minus neun Prozent in Abhängigkeit des Wasserdargebots. Um mögliche Mindererzeugungen der Wasserkraft zu kompensieren, empfiehlt es sich, die Anlagen zu optimieren und die Vorhersagemodelle für den Oberflächenabfluss weiter zu verbessern. Kraftwerk Griesheim 1 Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert. Quelle: Stephan Naumann / UBA Wasserkraftwerk bei Griesheim im Main von oberstrom fotografiert. Kraftwerk Griesheim 2 Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert. Quelle: Stephan Naumann / UBA Wasserkraftwerk bei Griesheim im Main von unterstrom fotografiert. Kraftwerk Unkelmühle Wasserkraftanlage in der Sieg (Unkelmühle). Quelle: Stephan Naumann / UBA Wasserkraftanlage in der Sieg (Unkelmühle). Wasserkraft Demo Demonstration der Nutzung von Wasserkraft. Quelle: Stephan Naumann / UBA Demonstration der Nutzung von Wasserkraft. Wasserkraftanlage Öblitz Wasserkraftanlage in der Saale bei Öblitz. Quelle: Stephan Naumann / UBA Wasserkraftanlage in der Saale bei Öblitz. Wasserkraftanlage Saale Wasserkraftanlage in der Saale unterhalb von Jena. Quelle: Stephan Naumann Wasserkraftanlage in der Saale unterhalb von Jena. Wasserkraftwerk Bayerischer Wald Wasserkraftnutzung im Bayerischen Wald. Quelle: Stephan Naumann Wasserkraftnutzung im Bayerischen Wald. Wehranlage Tuebingen Ausleitungswehr für die Wasserkraftnutzung bei Tübingen. Quelle: Stephan Naumann Ausleitungswehr für die Wasserkraftnutzung bei Tübingen. Kraftwerk Griesheim 1 Kraftwerk Griesheim 2 Kraftwerk Unkelmühle Wasserkraft Demo Wasserkraftanlage Öblitz Wasserkraftanlage Saale Wasserkraftwerk Bayerischer Wald Wehranlage Tuebingen Literatur Anderer Pia, Dumont Ulrich, Linnenweber Christof, Schneider Bernd (2009): Das Wasserkraftpotenzial in Rheinland-Pfalz. In: KW Korrespondenz Wasserwirtschaft 2009 (2) Nr. 4. 223-227. Anderer, Pia; Heimerl, Stephan; Raffalski, Niklas; Wolf-Schumann, Ulrich (2018): Potenzialstudie Wasserkraft in Nordrhein-Westfalen. WasserWirtschaft 5 – 2018. 33-39. ⁠ BMU ⁠ (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2010): Potentialermittlung für den Ausbau der Wasserkraftnutzung in Deutschland als Grundlage für die Entwicklung einer geeigneten Ausbaustrategie. Aachen. 2010. Helbig, Ulf; Stiller, Felix (2020): Potentialstudie WKA Brandenburg. Institut für Wasserbau und technische Hydromechanik TU Dresden. Vortrag. (Unveröffentlicht). International Hydropower Association (IHA) 2022: Hydropower Status Report. Sector trends and insights. Kraus Ulrich, Kind Olaf, Spänhoff Bernd (2011): Wasserkraftnutzung in Sachsen – aktueller Stand und Perspektiven. 34. Dresdner Wasserbaukolloquium 2011: Wasserkraft – mehr Wirkungsgrad + mehr Ökologie = mehr Zukunft. Dresdner Wasserbauliche Mitteilungen. 11-18. LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen) [Hrsg.] (2017): Potenzialstudie Erneuerbare Energien NRW Teil 5 – Wasserkraft. LANUV-Fachbericht 40. Pia Anderer, Edith Massmann (Ingenieurbüro Floecksmühle GmbH), Dr. Stephan Heimerl, Dr. Beate Kohler (Fichtner Water & Transportation GmbH), Ulrich Wolf-Schumann, Birgit Schumann (Hydrotec Ingenieurgesellschaft für Wasser und Umwelt mbH). Recklinghausen 2017. LfU - Bayerisches Landesamt für Umwelt (2020). Energieatlas Bayern. https://www.energieatlas.bayern.de/thema_wasser/daten.html . Zugriff am 04.05.2021. MWAG - Ministerium für Wirtschaft, Arbeit und Tourismus Mecklenburg-Vorpommern [Hrsg.] (2011): Landesatlas Erneuerbare Energien Mecklenburg-Vorpommern 2011. Projektbearbeitung: Energie-Umwelt-Beratung e.V./Institut Rostock. Schwerin – Neubrandenburg. Naumann, S. (2022): Aktueller Gewässerzustand und Wasserkraftnutzung. In Korrespondenz Wasserwirtschaft 2022 (15) Nr. 12. 743-748. Radinger, J., van Treeck R., Wolter C. (2021). Evident but context-dependent mortality of fish passing hydroelectric turbines. conservation biology. Volume36, Issue3. DOI: 10.1111/cobi.13870. Reiss, J.; Becker, A.; Heimerl S. (2017): Ergebnisse der Wasserkraftpotenzialermittlung in Baden-Württemberg. In: WasserWirtschaft 10/2017. 18-23. Theobald, Stephan (2011): Analyse der hessischen Wasserkraftnutzung und Entwicklung eines Planungswerkzeuges „WKA-Aspekte“. Universität Kassel. Fachgebiet Wasserbau und Wasserwirtschaft. Erläuterungsbericht i.A. Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz, Wiesbaden. August 2011. TMWAT - Thüringer Ministerium für Wirtschaft, Arbeit und Technologie [Hrsg.] (2011): Neue Energie für Thüringen Ergebnisse der Potenzialanalyse. Thüringer Bestands- und Potenzialatlas für erneuerbare Energien. Studie im Auftrag des Thüringer Ministeriums für Wirtschaft, Arbeit und Technologie 2010–2011. ⁠ UBA ⁠ - Umweltbundesamt [Hrsg.] (1998): Umweltverträglichkeit kleiner Wasserkraftwerke – Zielkonflikte zwischen ⁠ Klima ⁠- und Gewässerschutz. Meyerhoff J., Petschow U.. Institut für ökologische Wirtschaftsforschung GmbH, Berlin, UFOPLAN 202 05 321, UBA-FB 97-093, In: UBA Texte 13/98, 1-150. UBA -Umweltbundesamt [Hrsg.] (2001): Wasserkraftanlagen als erneuerbare Energiequelle –rechtliche und ökologische Aspekte. BUNGE T. et. al.. In: UBA Texte 01/01, 1-88.

Bioenergieanlagen (Landkreis Göttingen)

Standorte der vorhandenen Bioenergieanlagen im Landkreis Göttingen. Es handelt sich um Anlagen zur Erzeugung regenerativer Energien (Biogas) aus Biomasse durch Vergärung. Biogas stellt eine wichtige und vielseitige Form der Bioenergie aus der Landwirtschaft dar. Die neuen Anlagen setzen fast ausnahmslos nachwachsende Rohstoffe (NaWaRo) wie Mais, Getreide, Hirse, Zuckerrüben, Sonnenblumen und teilweise Aufwuchs von Grünland mit oder ohne Gülle ein. Biogas wird derzeit überwiegend dezentral produziert und als Strom- und Wärmelieferant genutzt. Aufgrund dieser Dezentralität der Anlagen, die dadurch begründet ist, dass das primäre Ausgangsmaterial für die Biogaserzeugung wie Gülle oder Energiepflanzen aufgrund der niedrigen Energiedichte aus ökonomischen Gründen in der Regel nicht über längere Distanzen transportiert werden kann, ist die Integration guter Wärmenutzungskonzepte nicht immer möglich.

Energie - Energie

Der Kartendienst (WMS-Gruppe) stellt die digitalen Geodaten aus dem Bereich Erneuerbare Energien des Saarlandes dar.:Der Kartendienst (WMS-Gruppe) stellt die digitalen Geodaten aus dem Bereich Erneuerbare Energien des Saarlandes dar.

Windpotenziale - Konzentrationszonen für Windenergieanlagen im Saarland

Der Kartendienst stellt die Geodaten der Windpotenzialstudie und die Windkraftanlagen des Saarlandes dar.:Flächenhafte Darstellung der Konzentrationszonen für Windenergieanlagen, die als Sondergebiete „Windenergie“ im Rahmen der Teiländerungen von Flächennutzungsplänen der Gemeinden ausgewiesen wurden. Die Errichtung von Windkraftanlagen ist damit im restlichen Gemeindegebiet nach § 35 Absatz 3 Satz 3 BauGB ausgeschlossen.

Windpotenziale - Konzentrationszonen - OGC WFS Interface

Der Kartendienst (WFS-Gruppe) stellt die Geodaten der Windpotenzialstudie des Saarlandes dar.:Flächenhafte Darstellung der Konzentrationszonen für Windenergieanlagen, die als Sondergebiete „Windenergie“ im Rahmen der Teiländerungen von Flächennutzungsplänen der Gemeinden ausgewiesen wurden. Die Errichtung von Windkraftanlagen ist damit im restlichen Gemeindegebiet nach § 35 Absatz 3 Satz 3 BauGB ausgeschlossen.

Wasserrechte für Grundwasser und Oberflächengewässer Hamburg

Achtung: Dieser Datensatz ist veraltet und wird seit #02.2025# nicht mehr aktualisiert. Gemäß Hamburger Transparenzgesetz wird er für 10 Jahre vorgehalten und im Anschluss gelöscht. Die Daten sind zukünftig unter dem Datensatznamen „#Wasserbuch Hamburg#“ zu finden. Die ca. 30.000 eingetragenen Wasserrechte beinhalten die über den Gemeingebrauch hinausgehenden, von den zuständigen Wasserbehörden durch Verwaltungsakte übertragenen Nutzungsrechte an oberirdischen Gewässern sowie am Grundwasser. Folgende Kategorien von Nutzungsrechten werden geführt: Grundwasser: - Absenken und sonstige Nutzung - Einleiten ins Grundwasser - Energiegewinnung - Entnahme aus Grundwasser Oberflächengewässer: - Anlage an/in/über Gewässern - Ausbau/Unterhaltung - Einleiten in Oberflächengewässer - Entnahme aus Oberflächengewässer - Hochwasserschutz - Stauen - Sonstige Nutzungen Die Eintragung der Wasserrechte erfolgt im Wasserbuch, das nach § 87 des Wasserhaushaltsgesetzes (WHG) in Verbindung mit § 98 ff. des Hamburgischen Wassergesetzes (HWaG) zu führen ist. Das Wasserbuch wird vom Amt für Umweltschutz geführt und beinhaltet die Art der Nutzung (z.B. Grundwasserförderung, Herstellen eines Steges) sowie Angaben zum Umfang der Nutzung (z.B. erlaubte Fördermengen, Größe des Steges). Ein kompletter Vorgang im Wasserbuch besteht aus einer digitalen, stichwortartigen Kurzbeschreibung des Nutzungsrechtes, die durch eine digitale Akte ergänzt wird, die eine Kopie des Bescheides oder der sonstigen Schriftstücke enthält, durch die das Nutzungsrecht begründet wird. Die Akten der Wasserrechte können im Amt für Umweltschutz eingesehen werden. Die Daten werden als WFS-Downloaddienst und als WMS-Darstellungsdienst bereitgestellt.

Energieerzeugung - Kraft-Wärme-Kopplung (KWK)

Flächenbezogene Informationen zu KWK-Anlagen in Bezug auf ihren Standort, Leistung und Stromeinspeisung.

Biomasse

Standort- und flächenbezogene Informationen zu stromeinspeisenden Energieerzeugungsanlagen, die (bilanziell oder physikalisch vor Ort) mit Biomasse betrieben werden, in Bezug auf Strom- und Wärme-Leistung sowie Stromeinspeisung.

Wärmekataster Wärmebedarf Hamburg

Der Datensatz „Wärmebedarf“ des Wärmekatasters stellt den Nutzwärmebedarf (Abk.: NWB - Wärmebedarf für Heizung und Warmwasser) des Hamburger Gebäudebestandes in aggregierter Form dar. Der (Nutz-) Wärmebedarf des Hamburger Gebäudebestands wird auf Baublock-Ebene und auf Cluster-Ebene angezeigt. Zudem kann man zwischen zwei Sanierungsstufen wählen: 1. „Unsaniert“ impliziert einen Gebäudezustand, der keine wärmetechnischen Modernisierungen aufweist (abgesehen von einem einfachen Fenstertausch) 2. „Saniert“ nimmt eine konventionelle Sanierung aller Gebäude (nach ENEV 2014) an. Die Darstellung und Kategorisierung kann wie folgt gewählt werden: 1. Gesamtbedarf aller Wohn- und Nichtwohngebäude der Einheit Cluster oder Baublock; in Megawattstunden pro Jahr [MWh/a] 2. Spezifischer Wärmebedarf der Wohngebäude (Cluster); in Kilowattstunden pro Quadratmeter Nutzfläche und Jahr [kWh/m² a] 3. „Wärmedichte im Baublock“; Gesamtbedarf aller Wohn- und Nichtwohngebäude (wie Nr.1) dividiert durch die Grundfläche des jeweiligen Baublocks; in Kilowattstunden pro Quadratmeter Baublockgrundfläche und Jahr [kWh/m² a] Detaillierte Informationen können Sie dem Wärmekataster Handbuch entnehmen.

1 2 3 4 5474 475 476