API src

Found 4850 results.

Related terms

Trocknung und Kuehlung von Koernerfruechten

Optimierung der Trocknung und Kuehlung von Koernerfruechten hinsichtlich Verfahrensleistung, Energiebedarf, Umweltbelastung und Qualitaet der Koerner.

Bedarfsgerechte Automatisierung der Freiflächen- und Tröpfchenbewässerungstechnik mittels on-site IOT-Sensorik, unterstützt durch Satellitentechnik, Teilprojekt B

Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.

Assistenzsysteme für energieoptimiertes, automatisiertes Fahren in der Binnenschifffahrt, Vorhaben: Optimierung von Treibstoffbedarf durch Anpassung von Schiffsgeschwindigkeiten und -positionen - EcoBin-OPTim

TransHyDE_FP4: Transport und Anwendung von flüssigem Wasserstoff

Kraftwerke: konventionelle und erneuerbare Energieträger

<p>Kraftwerke: konventionelle und erneuerbare Energieträger</p><p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand Januar 2025.<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand Januar 2025<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Karte Kraftwerke und Windleistung in Deutschland, Stand Dezember 2024<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Dezember 2024<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p></p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>⁠-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 20 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 188,8 GW. (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“)</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau derPhotovoltaik(PV). Seit Anfang 2020 wurden mehr als 50 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren verdoppelt. Mit einem Zubau von über 16,7 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo beiWindenergiezuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,4 GW neue Windenergie-Leistung zugebaut (2023: 3,3 GW; 2021: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,8 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der<a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a>⁠ ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig.</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.</p>

CO 2 Klimabilanz 1990 bis 2021

Energie- und CO2-Bilanzierung 2021 Die Stadt Aachen erstellt seit 2010 jährlich eine Energie- und CO2-Bilanz (Daten und Berechnungen von 1990 bis 2021 liegen vor). Als Basisjahr wurde das Jahr 1990 (gemäß Kyoto-Protokoll 1997) ausgewählt. Die Bilanz wird mit dem vom Klimabündnis (Climate Alliance) empfohlenen Berechnungstool ECORegion auf Basis tatsächlicher Verbräuche sowie zusätzlicher statistischer Daten ermittelt. Die Endenergiebilanz umfasst zunächst den Energiebedarf der Verbraucher innerhalb der Stadtgrenzen. Die Primärenergiebilanz (Methode LCA: Life Cycle Assessment) umfasst darüber hinaus den Energiebedarf zur Produktion, Umwandlung und Transport der Energieträger (Vorkettenanteile) und erstreckt sich somit über den Bilanzierungsraum der Stadt hinaus.

Energy Savings 2020: How to triple the impact of energy saving policies in Europe?

Europe needs to triple the impact of its energy efficiency policies to achieve its 2020 targets set last year, according to a new study written by Ecofys and the Fraunhofer ISI. The study reveals that the potential exists to reach the 20 percent energy saving by 2020 goal cost-efficiently, cutting energy bills by € 78 billion for European consumers and businesses annually by 2020. However, current EU policy is delivering only one-third of the potential cost-effective savings measures. Increased energy savings will also warrant easier and less expensive achievement of a 20 percent share of renewables in the EU energy mix in 2020. The study was commissioned jointly by the European Climate Foundation (ECF) and the Regulatory Assistance Project (RAP).

Support for development of CDM projects in Thailand

The objective of the project is to support the client for successful development of CDM projects in the agro-industry sector in Thailand. Sector for CDM project development is agro-industry with focus on starch factories. Starch industry is highly energy intensive and produces significant amounts of wastewater. Furthermore, as part of the Cassava processing, pulp is separated as organic waste. The projects aim to introduce biogas generation from organic waste in starch production and decrease the factories dependence on fossil fuels. The supported CDM projects consist of two components: methane avoidance and fuel switch of electricity from the grid and fossil fuels to renewable energy. The technical solutions included the treatment of wastewater and pulp from starch industry for biogas production. The generated biogas will be used for electricity and heat generation. The development of the projects as CDM projects enables co-financing of the investment via the carbon sales. Services provided: The support consisted of 3 packages: Revision of the PDD for biogas from wastewater project: Technical revision of the Project Design Document as a '3rd party'; Assessment and revision of the 'additionality of the project and emission reduction calculations; Development of the PDD for the pulp to energy biogas projects: Development of a project design document (PDD) according to the regulations of the Kyoto protocol; Assessment and demonstration of the 'additionality of CDM projects which use pulp from starch factories for biogas generation; Preparation of the study about the pulp in the starch factories in Thailand: Development of the concept for the study; Determination of methodology, approach and stakeholders for the study development.

Energy balance for locally-grown versus imported apple fruit

This commentary compares the primary energy requirement for apples (cultivar 'Braeburn'), which wem either imported or locally-grown in Meckenheim, Germany. Imported appies of the same cultivar wem grown in a Southern hemisphere winter in Nelson, Southland, New Zealand, and were picked at the end of March with subsequent 28 d transport by sea for sale in April in Germany. Locally-grown apples (cultivar 'Braeburn') were picked in mid-October and required a primary energy of nearly 6 MJ/kg of fruit including 0.8 MJoule/kg for five months CA storage at 1 degree C during a Northern hemisphere winter until mid-March. This compared favourably with 7,5 MJoule/kg for overseas shipment from New Zealand, i.e. a ca. 27 percent greater energy requirement for these imported fruits. Overall, the primary energy requirement of regional produce, stored several months an-site, partially compensated for the larger energy required to Import fresh fruit from overseas. This result is in marked contrast to reported overestimares of a reported up to 8-fold energy requirement for domestic versus imported apple juice concentrate. Our own findings of km primary energy required for domestic apple fruit is discussed with respect to providing local employment, fruit orchards preserving the countryside, quality assurance systems for local fruit such as QS and EUREP-GAP, networking and other factors favouring regional production.

ReFlex: Replicability Concept for Flexible Smart Grids, Wüstenrot Germany

Introduction: By 2020, the community Wuestenrot wants to cover its energy needs through the utilization of renewable energy sources, such as biomass, solar energy, wind power and geothermal energy, within the town area of 3000 hectares. In order to elaborate a practicable scheme for realizing this idea in a 'real' community and to develop a roadmap for implementation, the project 'EnVisaGe' under the leadership of the Stuttgart University of Applied Sciences (HFT Stuttgart) was initiated. Accompanying particular demonstration projects are a) the implementation of a plus-energy district with 16 houses connected to a low exergy grid for heating and cooling, b) a biomass district heating grid with integrated solar thermal plants. Project goal: The aim of the project is to develop a durable roadmap for the energy self-sufficient and energy-plus community of Wüstenrot. The roadmap shall be incorporated in an energy usage plan for the community, that shall be implemented by 2020 and brings Wüstenrot in an energy-plus status on the ecobalance sheet. A main feature within the EnVisaGe project is the implementation of a 14,703-m2 energy-plus model district called 'Vordere Viehweide'. It consists of 16 residential houses, supplied by a cold local heating network connected to a large geothermal ('agrothermal') collector. Here PV systems for generating electricity are combined with decentralised heat pumps and thermal storage systems for providing domestic hot water as well as with batteries for storing electricity. Another demonstration project is a district heating grid fed by biomass and solar thermal energy in the neighbourhood 'Weihenbronn'. It's based on a formerly oil-fired grid for the town hall and was extended to an adjacent residential area.

1 2 3 4 5483 484 485