API src

Found 4769 results.

Related terms

Finale Daten für 2023: klimaschädliche Emissionen sanken um zehn Prozent

Die deutschen Treibhausgasemissionen sanken im Vergleich zum Vorjahr um 77 Millionen Tonnen – stärkster Rückgang seit 1990 Im Jahr 2023 emittierte Deutschland 10,3 Prozent weniger Treibhausgase als 2022. Dies zeigen die Ergebnisse der Berechnungen, die das Umweltbundesamt (UBA) am 15. Januar 2025 an die Europäische Kommission übermittelt hat. Insgesamt wurden 2023 in Deutschland rund 672 Millionen Tonnen Treibhausgase freigesetzt – insgesamt 77 Millionen Tonnen weniger als 2022. Das ist der stärkste Rückgang der Treibhausgasemissionen seit 1990. Gründe hierfür sind unter anderem die deutlich gesunkene Kohleverstromung, der konsequente Ausbau der erneuerbaren Energien und ein Stromimportüberschuss bei gleichzeitig gesunkener Energienachfrage. Neue Erkenntnisse aus der aktuellen Bundeswaldinventur zeigen zudem für die vergangenen Jahre erheblich höhere Emissionen im Landnutzungssektor. Die offizielle Schätzung der Emissionen für das Jahr 2024 wird das UBA gemäß Klimaschutzgesetz Mitte März 2025 vorstellen. ⁠ UBA ⁠-Präsident Dirk Messner sagt: „Die Emissionsdaten für 2023 belegen, dass sich unsere Klimaschutzanstrengungen, insbesondere im Energiesektor, auszahlen. Leider geht ein Teil der eingesparten Emissionen auf die jüngste Krise unserer Wirtschaft zurück. Was wir jetzt brauchen, ist eine Modernisierung der deutschen Wirtschaft zu mehr Effizienz und mehr ⁠ Klimaschutz ⁠. Dass der Wald von einer Kohlenstoffsenke zu einer Emissionsquelle geworden ist, ist besorgniserregend. Hier müssen wir dringend umsteuern.“ Den stärksten Rückgang verzeichnet der Sektor Energiewirtschaft . Hier sind die Treibhausgasemissionen 2023 aufgrund eines verminderten Einsatzes fossiler Brennstoffe zur Erzeugung von Strom und Wärme um rund 54,1 Millionen Tonnen CO 2 -Äquivalente bzw. 21,1 Prozent gegenüber dem Vorjahr gesunken. Besonders stark war dieser Rückgang beim Einsatz von Braun- und Steinkohlen sowie Erdgas. Gründe hierfür sind unter anderem die deutlich gesunkene Kohleverstromung, der konsequente Ausbau der erneuerbaren Energien und der Wechsel von einem Stromexport- zu einem Stromimportüberschuss bei gleichzeitig gesunkener Energienachfrage. Weitere Treiber waren Energieeinsparungen in Folge höherer Verbraucherpreise sowie die milden Witterungsverhältnisse in den Wintermonaten. In der Industrie sanken die Emissionen im zweiten Jahr in Folge, auf nunmehr rund 153 Millionen Tonnen CO 2 -Äquivalente. Dies entspricht einem Rückgang von mehr als elf Millionen Tonnen oder sieben Prozent im Vergleich zum Vorjahr. Auch hier wird der Rückgang durch den gesunkenen Einsatz fossiler Brennstoffe, insbesondere von Erdgas und Steinkohle, bestimmt. Wichtige Treiber dieses Trends waren die negative konjunkturelle Entwicklung sowie gestiegene Herstellungskosten, die zu Produktionsrückgängen führten. Im Gebäudesektor gingen die Emissionen um 7,6 Millionen Tonnen CO 2 -Äquivalente auf rund 103 Millionen Tonnen (minus 6,9 Prozent) zurück. Wesentliche Treiber waren hier wiederum Energieeinsparungen aufgrund der milden Witterungsbedingungen in den Wintermonaten 2023 sowie noch vergleichsweise hohe Verbraucherpreise. Auch der 2023 noch hohe Zubau an Wärmepumpen wirkte sich hier positiv aus, da beispielsweise weniger Erdgas und Heizöl eingesetzt wurden. Mit einem Rückgang um 2,5 Millionen Tonnen wurden 2023 im Verkehr rund 145 Millionen Tonnen CO 2 -Äquivalente – und damit rund 1,7 Prozent weniger als im Vorjahr – ausgestoßen. Der Rückgang ist maßgeblich durch einen geringeren Dieselverbrauch durch schwere Nutzfahrzeuge im Straßenverkehr begründet. In der Landwirtschaft wiederum sanken die Treibhausgasemissionen um etwa 0,9 Millionen Tonnen auf 63 Millionen Tonnen CO 2 -Äquivalente. Die Abnahme resultiert in erster Linie aus Reduktionen der Emissionen aus landwirtschaftlichen Böden und der Düngeranwendung. In die Berechnung der Emissionen aus ⁠ Landnutzung ⁠, ⁠ Landnutzungsänderung ⁠ und Forstwirtschaft (⁠ LULUCF ⁠) gingen erstmalig die Ergebnisse der vierten Bundeswaldinventur ein. Die im Inventurzeitraum 2018 bis 2022 gelegenen Dürrejahre ab 2018 haben zu einem großflächigen Absterben von produktiven, aber gegen den ⁠ Klimawandel ⁠ nicht widerstandsfähigen Fichtenmonokulturen geführt. Deshalb konnte der Wald in diesem Zeitraum die Emissionen aus anderen Quellen, wie trockengelegten Moorböden, anders als vor der ⁠ Dürre ⁠, nicht mehr überwiegend kompensieren und war sogar selbst eine CO 2 -Quelle. Mit 88,4 Prozent dominiert auch 2023 Kohlendioxid (CO 2 ) die Treibhausgasemissionen – größtenteils aus der Verbrennung fossiler Energieträger. Die übrigen Emissionen verteilen sich auf Methan (CH 4 ) mit 6,7 Prozent und Lachgas (N 2 O) mit knapp 3,6 Prozent, dominiert durch den Bereich der Landwirtschaft. Gegenüber 1990 sanken die Emissionen von Kohlendioxid um 43,7 Prozent, Methan um 66,3 Prozent und Lachgas um 53,9 Prozent. Fluorierte Treibhausgase (F-Gase) verursachen insgesamt nur etwa 1,4 Prozent der Treibhausgasemissionen, haben aber zum Teil sehr hohes Treibhauspotenzial. Seit 1995 sind die fluorierten Treibhausgasemissionen um 41,4 Prozent gesunken. Die in diesem Text aufgeführten Kategorien entsprechen der Systematik des Klimaschutzgesetzes und nicht der Systematik für die internationale Klimaberichterstattung. Die Gesamtemissionen sind identisch. Gemäß den internationalen Berichterstattungsregeln für Treibhausgasemissionen wird immer die gesamte Zeitreihe seit 1990 neu berechnet. Dadurch kommt es zu Abweichungen bei den Angaben gegenüber der Berichterstattung vorhergehender Jahre. Eine detailliertere Analyse zu ausgewählten kurz- und langfristigen Treibern der verbrennungsbedingten Emissionen findet sich hier . Die Änderungen von minus 1,9 Millionen Tonnen CO 2 -Äquivalenten gegenüber den gemäß Klimaschutzgesetz für 2023 prognostizierten Emissionsdaten (siehe Pressemitteilung 11/2024 vom 15. März 2024) gehen auf Aktualisierungen der damals nur vorläufigen statistischen Informationen zurück. Die Änderungen von plus 64,7 Millionen Tonnen CO 2 -Äquivalenten gegenüber der letzten Berichterstattung nach Klimaschutzgesetz im LULUCF-Sektor sind Folge neuer Daten der Bundeswaldinventur, aber auch der Bodenzustandserhebung Landwirtschaft und des Moorbodenmonitorings. Näheres erläuterte das Thünen-Institut .

Identifying and supporting vulnerable households in light of rising fossil energy costs

Rising energy prices, poor energy performance of buildings and low incomes can leave households unable to meet their energy needs, adequately heat their homes or pay their energy bills. These households are referred to as energy poor or vulnerable households. However, a standardised definition and robust indicators of energy poverty are currently lacking in Germany. This study therefore addresses the concepts of energy poverty and vulnerability, presents definitions and indicators, and looks at policies and measures to support affected groups. The study emphasises that energy poverty should not be seen as part of general poverty, but as a distinct structural problem. Due to budget constraints or lack of decision-making power, affected households are unable to respond adequately to an increase in fossil fuel prices, for example as a result of ⁠ CO2 ⁠ pricing, by investing in energy-efficient refurbishment or renewable heat. To prevent a worsening of social inequalities as a result of the European carbon pricing scheme for buildings and transport (ETS2), the Social Climate Fund will be established at EU level to complement the ETS2. The National Social Climate Plans, due in mid-2025, require EU member states to define energy poverty and vulnerability, develop indicators to identify these groups, and design policies and measures to help these groups transition to climate-friendly technologies. Using a range of indicators, the study concludes that around 3 million households in Germany are vulnerable to rising fossil fuel prices. This represents around 10% of the 30 million households that use fossil fuels for heating. More than 80% of these vulnerable households live in multi-family dwellings and almost all of them are tenants. The study examines different instruments to support vulnerable households and also looks at good practice examples from other countries. Socially differentiated financing of efficiency and decarbonisation measures, similar to the French MaPrimeRénov' programme, could also help those households to invest that have so far hardly benefited from state funding programmes in Germany. Veröffentlicht in Texte | 01/2025.

Nachwachsende Rohstoffe

Der Aufgabenschwerpunkt "Nachwachsende Rohstoffe" umfasst die Erarbeitung von Empfehlungen zur Rohstoffbereitstellung für die Energiegewinnung und technische Produktherstellung (z.B. Dämmstoffe, Biokraftstoff, Biogas) sowie die Umsetzung und Begleitung der Forschungsförderung. Zu den nachwachsenden Rohstoffe gehören z.B. schnellwachsende Hölzer, Chinaschilf, Getreide, Roggen, Hanf, Faserpflanzen, Energiepflanzen, Winterraps, halm- und holzartige Biomasse. Unter dem Begriff nachwachsende Rohstoffe werden Produkte pflanzlicher und tierischer Herkunft zusammengefasst, die im Nicht-Nahrungs- und Nicht-Futtermittelsektor verwertet werden. Nachwachsende Rohstoffe umfassen - Nebenprodukte der Land- und Forstwirtschaft (z. B. Stroh, Holz aus Waldpflege, Biomasse aus der Landschaftspflege), - Pflanzen aus dem landwirtschaftlichen Anbau (z. B. öl- und stärkehaltige Pflanzen, ein- und mehrjährige Gräser, Faserpflanzen, Heil-, Gewürz- und Aromapflanzen) sowie - unbehandelte Abfallstoffe der Biomasseverarbeitung (Bau- und Industrierestholz, Hobel- und Sägespäne etc.). Zunehmende Bedeutung erlangen sie vor allem vor dem Hintergrund des steigenden Energiebedarfs, der Endlichkeit fossiler Rohstoffe und der CO2-Anreicherung der Atmosphäre.

Energieverwendung des Verarbeitenden Gewerbes sowie im Bergbau und bei der Gewinnung von Steinen und Erden 2023

Die Erhebung über die Energieverwendung der Betriebe des Verarbeitenden Gewerbes sowie des Bergbaus und der Gewinnung von Steinen und Erden dient der Beurteilung des Energiebedarfs der Industrie.

Nereda®-Verfahren auf der Kläranlage Altena

Der Ruhrverband betreibt für seine Mitglieder über 60 Kläranlagen in Nordrhein-Westfalen und reinigt dort die Abwässer von mehr als zwei Millionen Menschen und zahlreichen Gewerbebetrieben. Die Kläranlage im sauerländischen Altena wurde 1984 mit einer Ausbaugröße von 52.000 Einwohnerwerten (EW) in Betrieb genommen. Die biologische Reinigung erfolgt derzeit nach dem Belebungsverfahren. Im Faulbehälter wird der Schlamm anaerob stabilisiert, dann maschinell entwässert und anschließend einer thermischen Verwertung zugeführt. Der Kläranlagenstandort soll umfassend saniert und an die seit den 1980er Jahren deutlich gesunkene Einwohnerzahl angepasst werden (zukünftige Ausbaugröße 20.000 EW). Ein Ziel der Umbaumaßnahmen ist es, die Anlage künftig ohne eigene Schlammbehandlung als so genannte Satellitenanlage, also von einer benachbarten Kläranlage aus, zu betreiben. Die geringe Flächenverfügbarkeit und die eingeschränkte Zugänglichkeit des Geländes für schweres Baugerät stellten wesentliche Herausforderungen für die Neuplanung dar. Auf Basis der Ergebnisse einer umfangreichen Machbarkeitsstudie wurde vom Ruhrverband die Umsetzung des Nereda ® -Verfahren als die vorteilhafteste Lösung für die Erneuerung der biologischen Reinigungsstufe ausgewählt. Das Nereda ® -Verfahren ist ein neuartiges biologisches Abwasserreinigungsverfahren, in dem die Bakterien durch eine spezielle Reaktorgestaltung und gezielte Betriebsführung anstelle von Flocken kompakte „Granulen“ ausbilden. In diesen Granulen laufen die verschiedenen biologischen Prozesse der Abwasserbehandlung in den inneren anaeroben Bereichen und den äußeren aeroben Bereichen gleichzeitig ab. Das Verfahren basiert auf einem modifizierten Sequencing Batch Reactor (SBR)-Betrieb, bei dem Beschickungs- und Ablaufphase, Reaktionsphase und Sedimentationsphase zyklisch aufeinander folgen. Überschüssiger Schlamm wird regelmäßig abgezogen und zur Weiterbehandlung auf eine benachbarte Kläranlage verbracht. Im Vergleich zu konventionellen biologischen Reinigungsverfahren nach dem Stand der Technik ergeben sich beim Nereda ® -Verfahren deutliche betriebliche und wirtschaftliche Vorteile durch den geringeren Flächenbedarf, eine hohe Robustheit des Verfahrens sowie geringere Betriebskosten und verminderten Wartungsbedarf. Eine moderne Mess-, Steuer- und Regeltechnik mit Online-Überwachung und Fernzugriff ist Bestandteil des Verfahrens. Mit der neuen Anlage und dem neuen Verfahren soll eine weitestgehend biologische Phosphorelemination erfolgen. So kann im Vergleich zum Ist-Zustand eine Einsparung von Fällmitteln für die chemische Phosphatfällung um voraussichtlich etwa 75 Prozent realisiert werden. Insgesamt wird mit der neuen Technologie eine deutliche Verbesserung der Ablaufwerte erwartet. Zusätzlich wird im Vergleich zum Ist-Zustand für die Kläranlage in Altena mit dem Nereda®-Verfahren eine Verringerung des Energiebedarfs um mindestens 30 Prozent erwartet. Insgesamt ergeben sich Einsparungen von 130 Tonnen CO 2 pro Jahr bzw. 7,6 Kilogramm CO 2 pro EW und Jahr. Branche: Wasser, Abwasser- und Abfallentsorgung, Beseitigung von Umweltverschmutzungen Umweltbereich: Wasser / Abwasser Fördernehmer: Ruhrverband Bundesland: Nordrhein-Westfalen Laufzeit: seit 2019 Status: Laufend

Ultraschallgestützte Produktion der Betonfertigteile mit Vorzeigefunktion der Minderung von Umweltbelastungen und der CO2-Emission durch Verzicht auf Wärmebehandlung und Einsatz klinkerarmer Zemente

Die MATTIG & LINDNER GmbH ist ein mittelständisches Bauunternehmen mit Sitz in Forst/Lausitz und in den Bereichen Hochbau, Hallenbau, Betonfertigteilherstellung, Transportbeton und Bewehrungsbau tätig. Die Betonherstellung ist für acht Prozent der weltweiten CO 2 -Emissionen verantwortlich. Gründe dafür sind der hohe Energiebedarf durch hohe Klinkerbrandtemperaturen sowie die dabei stattfindende Entsäuerung des eingesetzten Kalksteins. Beton besteht aus Zement, Wasser, Sand, Kies und chemischen Zusatzstoffen. Für die hohe CO 2 -Last der Betonherstellung ist der Zement verantwortlich. Bei der Zementherstellung wird Kalkstein und Ton sehr fein gemahlen und bei Temperaturen über 1.500 Grad Celsius zu Klinker, der reaktiven Komponente des Zements, gebrannt. Das im Kalkstein gebundene CO 2 wird dadurch freigesetzt. Mit der Herstellung von Portlandzement geht die Freisetzung von bis zu einer Tonne CO 2 pro Tonne Zement, je nach eingesetzten Brennstoffen, einher. Bei einem Jahresoutput von 3.000 – 5.000 Kubikmeter Beton und Einsatz von ca. 350 Kilogramm Zement pro Kubikmeter Beton werden bei ausschließlicher Nutzung von Portlandzement bis zu 1.050 und 1.750 Tonnen CO 2 pro Jahr emittiert. In der Betonfertigteilproduktion sind schnelle Taktzeiten erforderlich. Die Betonteile müssen eine hohe Frühfestigkeiten aufweisen, damit das Produkt früh entschalt werden kann. Um diese zu erreichen wird nach Stand der Technik ein hoher Zementgehalt eingesetzt. Die damit erreichte Endfestigkeit liegt in der Regel über dem konstruktiv notwendigen Maß. Dies führt zu einem Überverbrauch an Zement und somit zu vermeidbaren CO 2 -Emissionen. Technisch betrachtet kann dieses Problem durch die Zugabe von Chemikalien („Beschleunigern“) zumindest teilweise umgangen werden. Diese Zusatzstoffe sind jedoch aufwändig in der Herstellung und erdölbasiert, nur bei bestimmten Randbedingungen einsetzbar und erfordern eine energieaufwändige Wärmebehandlung in der kalten Jahreszeit, um ihre Wirkung entfalten zu können. Die MATTIG & LINDNER GmbH verfolgt in diesem Vorhaben eine physikalische Behandlungsmethode, die auf Chemikalien und Wärmebehandlung verzichtet und prozessstabil ist. Der Betonmischung wird eine Vormischanlage mit einer Hochleistungsultraschallanlage vorgeschaltet. Mit dem Hochleistungsultraschall als eine Art Katalysator soll die Zementhydratation angeregt werden, was zu einer besseren Dispergierung des Zementes in der Betonmischung führt, so dass mehr Zementkornoberfläche für die Abbindereaktion zur Verfügung steht. Darüber hinaus wird die Bildung der festigkeitsgebenden Calcium-Silikat-Hydrat-Phasen beschleunigt. Bei gleicher Abbindedauer und gleicher Frühfestigkeit des Betons kann zum einen der Zementanteil reduziert werden und zum anderen können Zemente mit geringerem Klinkeranteil, in denen der Klinker teilweise durch beispielsweise Kalksteinmehl ersetzt wird, eingesetzt werden. Zudem kann dadurch auch auf eine bisher durchgeführte Wärmebehandlung der Betonfertigteile verzichtet werden. Bei einer Jahresproduktion von 3.500 Kubikmeter Beton im Jahr 2022 und einem durchschnittlichen Zementgehalt von ca. 340 bis 380 Kilogramm Zement pro Kubikmeter Beton bedeutet dies einen Einsatz von ca. 1.200 Tonnen Zement. Der aktuelle Zementmix bei MATTIG & LINDNER ergibt damit einen Klinkereinsatz von 1.072 Tonnen. Mit dem neuen Verfahren soll der Klinkereinsatz auf etwa 785 Tonnen reduziert werden, sowohl durch die Reduktion der Gesamtmenge an Zement um 10 Prozent als auch über den Einsatz klinkerärmerer Zemente. Bei einer Emissionsannahme von 909 Tonnen CO 2 pro Jahr sollen durch die Hochleistungsultraschallbehandlung rund 250 Tonnen an CO 2 eingespart werden, dies entspricht einer Einsparung von rund 25 Prozent. Durch den Wegfall der Wärmebehandlung können zudem jährlich 35.000 Liter Erdgas und damit weitere 60 Tonnen CO 2 eingespart werden. In Summe werden prozess- und energiebedingt rund 310 Tonnen an CO 2 pro Jahr eingespart, dies entspricht rund 34 Prozent der CO 2 -Emissionen. Das Vorhaben reduziert modellhaft die Emission von CO 2 und erfüllt so als eine der wenigen technischen Einflussmöglichkeiten in der Betonherstellung die Anforderungen des Klimaschutzprogramms der Bundesregierung. Das Verfahren ist auf alle Fertigteilbauwerke übertragbar und besitzt damit einen hohen Modellcharakter. Branche: Baugewerbe/Bau Umweltbereich: Ressourcen Fördernehmer: MATTIG & LINDNER GmbH Bundesland: Brandenburg Laufzeit: seit 2023 Status: Laufend

Tunnelgeothermieanlage Rosensteintunnel in Stuttgart

Die Landeshauptstadt Stuttgart (Baden-Württemberg) plant, in der Nähe des Stuttgarter Zoos "Wilhelma" eine Tunnelgeothermieanlage in den neu zu errichtenden Rosensteintunnel zu implementieren. Ziel des Vorhabens ist, die geothermische Wärme und die Abwärme des Straßenverkehrs zum Beheizen des benachbarten, neu zu errichtenden Gebäudes (z. B. Elefantenhaus), zur Wassertemperierung der Elefantenduschen und der Außenbecken im Zoo "Wilhelma" zu nutzen sowie gleichzeitig die Tunnelbetriebstechnik zu kühlen. Übertragen wird die Wärme durch neuartige fluiddurchflossene Absorberleitungen, die in dem Teil des Tunnels zwischen dessen Innen- und der Außenschale verlegt werden. Die Wärmetauscherflüssigkeit nimmt die in der Erde und die in der Tunnelluft enthaltene Wärme auf und gibt diese über eine Wärmepumpe reguliert ab. Der jährliche Wärmebedarf für das Elefantenhaus wird mit 1.382 Megawattstunden und der jährliche Strombedarf für die Kühlung der Tunnelbetriebstechnik mit 219 Megawattstunden prognostiziert. Die zu erwartende CO 2 -Minderung durch die Versorgung des Elefantenhauses und die Eigenversorgung des Tunnels beträgt jährlich insgesamt 201 Tonnen CO 2 bzw. 51 Prozent der Gesamtemissionen. Darüber hinaus werden weitere Luftschadstoffe, wie Staub, Kohlenmonoxid und flüchtige organische Kohlenwasserstoffe (VOC), vermieden. Branche: Öffentliche Verwaltung, Erziehung, Gesundheitswesen, Erholung Umweltbereich: Klimaschutz Fördernehmer: Landeshauptstadt Stuttgart Bundesland: Baden-Württemberg Laufzeit: seit 2017 Status: Laufend

Ressourcenschonender SB-Waschpark

Die Firma FAWA Fahrzeugwaschanlagen GmbH ist seit über 30 Jahren in der Fahrzeugreinigungsbranche tätig. Aktuell betreibt das Unternehmen zwei maschinelle Fahrzeugwaschanlagen im Stadtgebiet der Universitätsstadt Gießen. Beim Betrieb von Autowaschanlagen werden dem Waschwasser verschiedene Stoffe zugefügt, beispielsweise Tenside, Säuren oder Laugen zur Erhöhung der Reinigungsleistung. Außerdem gelangen bedingt durch den Reinigungsprozess selbst organische und anorganische Substanzen in den Wasserkreislauf. In Deutschland wird die Behandlung von Abwässern aus Autowaschanlagen im Rahmen der Abwasserverordnung geregelt. Zudem wird darin zwar auch festgelegt, dass Waschwasser weitestgehend im Kreislauf zu führen ist, allerdings greift diese Regelung nicht für SB-Waschplätze, da es sich hierbei nicht um eine maschinelle, sondern um eine manuelle Fahrzeugreinigung handelt. Standard-SB-Waschplätze haben allgemein folgenden Aufbau: Die Bodenabläufe der SB-Waschplätze enthalten selbst separate Schlamm- und Sandfänge, oder werden über Rohrleitungen in einen zentralen Schlammfang geführt. Danach ist ein Leichtflüssigkeitsabscheider installiert. Das verbrauchte Waschwasser wird dann in die Kanalisation eingeleitet, da die Qualität des Abwassers für eine Kreislaufführung nicht ausreicht. Im Rahmen dieses UIP-Projekts ist ein Kfz-Waschpark mit SB-Waschplätzen geplant, der mit Regenwassernutzung und einer membranbasierten Wasseraufbereitung ausgestattet ist und so fast komplett ohne Frischwasser auskommt. Darüber hinaus wird ein neutraler CO 2 -Betrieb mit Energieversorgung durch PV-Anlage und Energiespeicher sowie eine innovative Wärmerückgewinnung aus dem Betrieb von speziellen SB-Staubsaugern angestrebt. Durch die Realisierung des Vorhabens werden regenerative Energien effizient genutzt, Regenwasser verwendet und der Einsatz von Chemikalien minimiert. Durch Kreisläufe wird Grauwasser wieder zu Nutzwasser. Anfallende Wärme wird in den energetischen Kreislauf eingebunden und minimiert damit den energetischen Aufwand. Die Nutzung von Regenwasser reduziert im Projekt die projizierte notwendige Menge von Frischwasser auf null, wenn Niederschläge, wie in den vergangenen Jahren fallen. Wenn kein Regenwasser zur Verfügung steht, kann die nötige Qualität auch mittels Umkehrosmose erzeugt werden. Das Wasser, welches normalerweise aufgrund seiner hohen Salzfracht ins Stadtnetz eingeleitet werden würde, kann hier einfach zurück in den Entnahmebehälter geleitet werden. Dort vermischt es sich im Betrieb wieder mit dem Osmosewasser und kann so ohne Weiteres erneut aufbereitet werden. Der Bedarf an Osmosewasser beträgt etwa 20 Prozent des Gesamtbedarfs. Die Bereitstellung des Wassers durch die Aufbereitungsanlage folgt einfachen Regeln, welche in der Steuerung über die Zeit in Abhängigkeit vom Nutzungsverhalten, Wetterdaten und damit u.a. dem PV-Strom Aufkommen optimiert werden. Im weiteren Betrieb optimiert sich die Anlage bezüglich genauerer Vorhersagen, was die täglichen Bedarfsmengen betrifft. Gegenüber einer herkömmlichen Anlage werden voraussichtlich mindestens 1.050 Kubikmeter, gegenüber einer effizienten Anlage immer noch ca. 350 Kubikmeter Frischwasser eingespart. Regenwasser hat eine geringere Härte, dadurch und durch eine Erhöhung der Prozesswassertemperatur um ca. 5 Grad Celsius kann eine Reduzierung von bis zu 35 Prozent der schaumbildenden Chemie erreicht werden. Es können ca. 440 Liter Chemikalien eingespart werden. Trotz der 100-prozentigen Einsparung von Frischwasser kann die innovative Anlage mit dem gleichen Energiebedarf wie eine herkömmliche Anlage betrieben werden. Der Gesamtenergiebedarf reduziert sich bei der Projektanlage um ca. 6.800 Kilowattstunden auf 11.503 Kilowattstunden pro Jahr, was einer Reduktion von etwa 40 Prozent gegenüber einer effizienten Anlage entspricht. Besonders an der Anlage ist vor allem die sehr gute Übertragbarkeit der einzelnen Technologien in der Branche. Die Komponenten können fast alle, teilweise in abgewandelter Form, einfach in bereits bestehende SB-Waschanlagen, Portalanlagen und Waschstraßen integriert und nachgerüstet werden. Branche: Grundstücks- und Wohnungswesen und Sonstige Dienstleistungen Umweltbereich: Ressourcen Fördernehmer: FAWA Fahrzeugwaschanlagen GmbH Bundesland: Hessen Laufzeit: seit 2023 Status: Laufend

15. Energiebericht Rheinland-Pfalz

Auf der Grundlage des Beschlusses des rheinland-pfälzischen Landtags (Drucksache 12/1154 vom 18. März 1992) ist in einem zweijährigen Turnus der Energiebericht des Landes Rheinland-Pfalz zu erstellen. Der nunmehr 15. Energiebericht basiert auf den Beiträgen des MKUEM, des Ministeriums für Wirtschaft, Verkehr, Landwirtschaft und Weinbau (MWVLW), des Ministeriums für Bildung (BM), des Ministeriums für Wissenschaft und Gesundheit (MWG), des Ministeriums der Finanzen (FM) sowie des Ministeriums des Innern und für Sport (MdI) sowie des Statistischen Landesamts Rheinland-Pfalz. Die Schwerpunkte des Berichts umfassen die Ziele und die Darstellung der wichtigsten Handlungsfelder der rheinland-pfälzischen Energiepolitik, landesspezifische energiestatistische Daten zur Entwicklung der Energieerzeugung, des Energieverbrauchs und der Energiepreise, die Kurzberichterstattung gemäß § 7 Abs. 2 Nr. 1 Landesklimaschutzgesetz zur Entwicklung der Treibhausgasemissionen im Zeitraum 1990 bis 2021 sowie die Darstellung und Bewertung der Entwicklung energiebedingter Emissionen von SO2 und NOx. Die im 15. Energiebericht Rheinland-Pfalz enthaltenen amtlichen Statistiken und die damit verbundenen statistischen Auswertungen beziehen sich insbesondere auf die Bilanzjahre 2020 und 2021. Der 15. Energiebericht zeigt sehr anschaulich, dass im Berichtszeitraum durch zahlreiche Maßnahmen der Landesregierung die Umsetzung der Energiewende im Land gemeinsam erfolgreich weiter vorangebracht werden konnte. So konnte in den zurückliegenden 10 Jahren der Anteil der erneuerbaren Energien an der Bruttostromerzeugung von circa 30 Prozent in 2011 auf circa 51 Prozent sowie an der Deckung des Bruttostrombedarfs von circa 17 Prozent in 2011 auf über 37 Prozent deutlich gesteigert werden. Gleichzeitig ist der Anteil der Stromimporte zur Deckung des rheinland-pfälzischen Strombedarfs von über 43 Prozent in 2011 auf unter 27 Prozent gesunken.

Prozesstiefkühlung mittels Luft-Kältemaschine für Austenitumwandlung

Die Rudolf Rieker GmbH aus Leingarten (Baden-Württemberg) ist ein mittelständischer Fachbetrieb für die Induktionshärtung von Stahlwerkstücken mit über 100 Beschäftigten. Das im Jahr 1978 von Rudolf Rieker gegründete Unternehmen deckt als eine der größten Induktionshärtereien Europas mit seinem Maschinenpark nahezu jegliche Art der induktiven Wärmebehandlung ab. Das Härten von Stahlerzeugnissen und -werkstücken ist ein wichtiger Arbeitsschritt in der Stahlproduktion. Beim Induktionshärten werden im Werkstück Wirbelströme zwecks Erhitzung induziert, mit der ein Übergang in der Gitterstruktur des Stahls zu einem austenitischen Gefüge verbunden ist. Im Anschluss muss das Werkstück sehr schnell heruntergekühlt werden. Dies wandelt das austenitische Gefüge in ein martensitisches Gefüge um, wodurch die gewünschten Härten erzielt werden. Eine Sonderanwendung ist das Tiefkühlen um den Restaustenit umzuwandeln. Üblicherweise nutzt man hierfür flüssigen Stickstoff, der in einer Kältekammer versprüht wird. Jedoch ist die Bereitstellung von flüssigem Stickstoff mit nicht unerheblichem Energieaufwand in Herstellung, Transport und Lagerung sowie mit Risiken im Betrieb verbunden. Die Rudolf Rieker GmbH investiert mit Hilfe des Umweltinnovationsprogramms daher in eine innovative Kältekammer, welche zusammen mit der Refolution Industriekälte GmbH entwickelt wurde. Durch dieses Verfahren können erstmals Temperaturen von – 85 Grad Celsius durch eine Luftkältemaschine im Bereich der Restaustenitumwandlung erzielt werden. Den deutlich höheren Investitionskosten verglichen mit konventionellen Verfahren stehen dabei deutliche Einsparpotenziale bei Energie und Treibhausgasemissionen (THG) gegenüber. Während im konventionellen Verfahren auch Energiemengen für Herstellung, Transport und Lagerung der Fernkälte anfallen, ist für das neu entwickelte Verfahren nur noch der Energiebedarf zum Betrieb der Luft-Kältemaschinen vor Ort zu betrachten, welcher durch Wärmerückgewinnung innerhalb der Wechselkühlkammern um ca. 30 Prozent gesenkt werden kann. Insgesamt wird eine Energieeinsparung von ca. 410 Megawattstunden angestrebt, was ungefähr einer Einsparung von 60 - 68 Prozent im Vergleich zum herkömmlichen Verfahren entspricht. Durch die höhere Energieeffizienz nehmen außerdem auch die mit der Energiebereitstellung verbundenen CO 2 -Emissionen ab. Ein Drittel der in Deutschland tätigen Lohnhärtereien bieten die Tieftemperaturbehandlung an. Da diese losgelöst von der Art des Erhitzens stattfinden kann, ist davon auszugehen, dass die innovative Kältetechnologie für die gesamte Bandbreite als Tiefkühlbehandlung geeignet ist. Branche: Metallverarbeitung Umweltbereich: Klimaschutz Fördernehmer: Rudolf Rieker GmbH Bundesland: Baden-Württemberg Laufzeit: seit 2023 Status: Laufend

1 2 3 4 5475 476 477