Blockheizkraftwerke (BHKW) eignen sich besonders für dezentrale Strom- und Wärmekonzepte und bilden eine effiziente Regelenergiequelle für virtuelle Kraftwerke. Es ist daher notwendig, die Erzeugung von Strom und Wärme durch geeignete Speichersysteme im Tageslastgang weitestgehend zu entkoppeln. Latentwärmespeicher (LWS) ermöglichen im Vergleich zu Wasserspeicher höhere Speicherdichten, kommen aber aufgrund hoher Kosten bislang kaum zum Einsatz. Für kompakte Systemlösungen aus Klein-BHKW und Speicher wären jedoch höhere Speicherdichten jedoch wünschenswert. Zielstellung des Projektes ist daher die Untersuchung von Makroverkapselungen für Latentspeichermedien (PCM) auf der Basis von Beutelverpackungen, mit denen die Speicherkosten reduziert werden können. Durch eine modulare Bauweise des Speichers wird zudem eine Anpassung an verschiedene Anwendungsfälle ermöglicht.
Die Hybridisierung von im öffentlichen Nahverkehr eingesetzten Fahrzeugen bietet die Möglichkeit signifikanter Treibstoff- und Emissionsreduktionen, da die Fahrzyklen gut vorhersehbar sind und häufige Brems- und Beschleunigungsvorgänge enthalten (Start-Stopp Betrieb). Der Einsatz verfügbarer elektrochemischer Speicher (Batterien, Ultracaps) zur Zwischenspeicherung der Bremsenergie ist zwar möglich, jedoch können die geforderten Leistungen bzw. die gewünschte Lebensdauer nur mit großem finanziellen Aufwand bzw. starker Überdimensionierung des Energiespeichers erreicht werden. Im Gegensatz zu den elektrochemischen Speichern bieten Flywheel-Speicher das Potenzial, eine hohe Leistungsdichte mit einer hohen Energiedichte zu verbinden. Durch den Einsatz moderner (Verbund-)Materialien sowohl im Schwungrad selbst wie auch in den Lagern können Flywheel-Speicher sehr kompakt und leicht gebaut werden. Außerdem erreichen sie bereits mit heute verfügbarer Lager-Technologie eine im Vergleich zu modernen Batteriesystemen deutlich erhöhte Lebensdauer. In dem Projekt E3ON soll die Realisierbarkeit von kompakten Flywheel-Speichern unter den in öffentlichen Nahverkehrsfahrzeugen gegebenen Rahmenbedingungen untersucht werden: Gemeinsam mit potenziellen Kunden (siehe beiliegende LOI) werden für Schienenfahrzeuge und Hybridbusse typische Lastprofile sowie extern auftretende mechanische Belastungen (Vibrationen, Fliehkräfte, ...) spezifiziert. Auf deren Basis werden die Hauptkomponenten des Systems (Schwungmasse und Lagerung, Motor/Generator, Umrichter) theoretisch und experimentell in Bezug auf Lebensdauer und Sicherheitsaspekte untersucht. Das Ergebnis der Forschungsarbeiten sind Realisierungsvorschläge für die einzelnen Komponenten sowie eine erste Abschätzung der unter den gegebenen Randbedingungen erreichbaren Lebensdauer und der Kosten. Daraus können die wichtigsten Parameter eines im Rahmen eines Folgeprojekts zu realisierenden Prototyps bzw. Vorseriengeräts abgeleitet werden, wobei speziell der erreichbare Wirkungsgrad (round-trip efficiency), der speicherbare Energieinhalt, die aufnehmbare bzw. abgebbare elektrische Leistung, die erreichbare Lebensdauer und der zu erwartende Preis von Interesse sind. Zusätzlich können die Projektergebnisse zur Beurteilung der Realisierbarkeit von noch weiter miniaturisierten Flywheel-Speichern herangezogen werden. Derartige Speicher eignen sich zum Einsatz in Hybrid- und Elektrofahrzeugen des zukünftigen Individualverkehrs.
Metall-Luft-Batterien (MLB) basieren auf der Umwandlung/ Auflösung einer Metallelektrode, was zu einer Volumenänderung der Elektroden und damit einer Änderungen der Dreiphasengrenze aufgrund des verdrängten Elektrolytvolumens und der Produktabscheidung führt. Hohe Energiedichten verursachen daher starke Änderungen der Elektroden-Struktur und Elektrolytlevel und können zu Limitierungen des Stofftransports führen. In diesem Projekt soll am Beispiel der Li/O2-Batterie der Effekt dieser Änderungen auf die Leistungsfähigkeit der Kathode modellbasiert analysiert und quantifiziert werden. Weiterhin wird der Effekt von Redoxmediatoren auf die Leistungsfähigkeit untersucht. Physikochemische Simulationen werden begleitet von gezielten Experimenten; zusammen bieten diese einen tiefen Einblick in den Zustand der Zelle und die limitierenden Prozesse. Schließlich werden die Ergebnisse auf weitere MLB extrapoliert. Ziel ist es, Grenzen der Leistungsfähigkeit der betrachteten Zellen systematisch zu erfassen und Wege zum Erreichen der Idealwerte aufzuzeigen
Ziel dieses Forschungsvorhabens ist die Entwicklung einer neuartigen dreidimensionalen, schaumbasierten Elektrodenstruktur für die Verwendung in Lithium-Ionen-Batterien mit flüssigen und festen Elektrolyten. Durch das spezielle Design dieser Elektroden können die Energie- und Leistungsdichte sowie die intrinsische Sicherheit im Vergleich zu konventionellen Batteriezellen spürbar verbessert werden. Konventionelle Lithium-Ionen-Batteriekonzepte basieren auf zweidimensionalen Elektrodenstrukturen. Im Regelfall sind dies Aktivmaterialschichten auf einer Metall-Trägerfolie, die zusammen mit einem Polymer-Separator gestapelt werden. Das hier vorgeschlagene Konzept sieht im Gegensatz dazu die Verwendung dreidimensionaler, schaumbasierter Strukturen als Träger für die Aktivmaterialien vor. Durch die große innere Oberfläche der Schäume wird die für den Ionenaustausch zur Verfügung stehende Fläche drastisch gesteigert. Dadurch kann die abrufbare Leistung in gleichem Maße erhöht werden. Da die Schäume gleichzeitig eine hohe Porosität von 95% und mehr aufweisen, ist die volumetrische Energiedichte gleichzeitig ebenfalls sehr hoch. Zum Erreichen der vorgesehen Projektziele werden zunächst speziell angepasste Schaumsubstrate entwickelt. Dazu werden die Anforderungen eng mit den ebenfalls am Projekt beteiligten Anwendern abgestimmt. Im Anschluss erfolgt die Beschichtung der Schäume mit Aktivmaterial. Im Fall des Flüssigsystems werden die Elektroden anschließend direkt in Batteriezellen getestet. Für Festkörperelektrolytbasierte Systeme wird zusätzlich eine Festkörperelektrolytschicht appliziert und die Gegenelektrode direkt aufgebracht. Für beide Varianten ist der Aufbau eines Demonstrators und begleitende Untersuchungen durch erfahrene Batterieanwender vorgesehen.
Die Erhöhung der Energiedichte von Lithium-Batterien bei gleichen Kosten stellt einen der wichtigsten Punkte dar, die Reichweite von Elektrofahrzeugen zu vergrößern und somit der Elektromobilität zum Durchbruch zu verhelfen. Derzeit sind Fahrzeuge mit Zelltechnologien der Generationen 1 und 2 im Einsatz, die Kathoden basierend auf LFP, LMO, NCA) oder NCM verwenden. HE-NCM (ein Kathodenmaterial der 3. Generation) stellt ein lithium- und manganreiches Kathodenmaterial dar, dass sich aufgrund seiner hohen Kapazität von über 200 mAh/g sehr gut für Hochenergie-Lithium-Ionen-Zellen eignet. Zudem besitzt es einen Kostenvorteil, da Mangan ein gegenüber Kobalt gut verfügbarer Rohstoff ist. Jedoch befindet es sich noch nicht in einem marktreifen Entwicklungsstadium. In GO 3 wird die BASF HE-NCM unter verschiedenen Gesichtspunkten verbessern. Dies beinhaltet: - Weiterentwicklung des Kathodenmaterials durch Methoden der chemischen Modifizierung und eine Verbesserung der klassischen Materialbeschichtung. - Neuartige Beschichtungsmethoden, die auf der Wechselwirkung von organischen Komponenten mit der Oberfläche von Übergangsmetalloxiden beruhen. - Entwicklung von hochvoltstabilen Elektrolyten und Elektrolytadditiven. Sämtliche Arbeitspakete beinhalten sowohl die synthetischen, analytischen Aspekte, sowie umfassende elektrochemische Testung der Materialien in Labor-Zellformaten: - Zyklenstabilität und Impedanzaufbau (durch Bestimmung des flächenspezifischen Widerstands), Gasentwicklung und Kapazitätserhalt bei Ladezustand von 100% und Lagerung bei erhöhter Temperatur (z.B. 60°C) und Auflösungsverhalten von Übergangsmetallionen während Zyklisierung und Lagerung.
Das geplante Forschungsvorhaben adressiert die Hauptziele der Bekanntmachung 'Kopernikus-Projekte für die Energiewende' des Bundesministeriums für Bildung und Forschung. Aufgrund der gestiegenen Umwelt- und Klimaschutzanforderungen sollen eine langfristige Dekarbonisierung der Energiesysteme und eine Speicherung und Nutzung des 'Überschussstromes' aus erneuerbaren Quellen erfolgen. Das Vorhaben soll im Erfolgsfall als Teil des Kopernikus-Projektes 'P2X' einen signifikanten Beitrag zu den Zielen der deutschen Energiewende leisten. Ziel des Vorhabens ist es, Lösungen zu erarbeiten, zu demonstrieren und zu implementieren, mit denen unter Einsatz erneuerbar erzeugter elektrischer Energie stoffliche Energieträger und chemische Produkte für Anwendungen in den industriellen Leitmärkten Energie, Transport/Verkehr und Chemie wirtschaftlich, zeitlich flexibel und auf die gesellschaftlichen Bedürfnisse abgestimmt produziert werden. Das ifeu bearbeitet hierbei das Arbeitspaket AP 5 des Forschungsclusters FC-A2 und es betätigt sich in der Roadmap durch ökologische Bewertung und Diskussion. Forschungscluster FC-A2: CO2 direkt, einstufig, elektrochemisch wieder in Rohstoffe mit hoher Wertschöpfung oder auch Energieträger umwandeln zu können, stellt die Umkehrung von Verbrennungs- bzw. anderen Nutzungsprozessen dar. Das Ziel des Forschungsclusters ist die Evaluierung der Elektrolyse von CO2 zu CO bezüglich Selektivität, Energieeffizienz und erreichbaren Stromdichten in einer industriellen Wertschöpfungskette. Roadmap: Die Roadmap ist essenzieller Bestandteil des Entscheidungsprozesses in P2X. Sie wird im engen Austausch mit der Analyse der ökonomischen, ökologischen und sozialen Rahmenbedingungen der einzelnen Technologieentwicklungen innerhalb der Forschungscluster entwickelt. Eine intensive Vernetzung zu den Kopernikus-Projekten der anderen Themenbereiche ist essenzieller Bestandteil der Aktivitäten.
Für eine erfolgreiche Marktdurchdringung von Elektroantrieben stellt die Verbesserung von Energiedichte bei gleichzeitiger Reduktion der Kosten einen entscheidenden Erfolgsfaktor dar, um international wettbewerbsfähige Angebote für E-Fahrzeuge und Komponenten darzustellen. Im Rahmen von FELIZIA sollen Festelektrolyte als Enabler für zukünftige Technologien untersucht werden, die das Potential beinhalten die Energiedichte signifikant zu steigern. Gleichzeitig wird eine weitere Erhöhung der Sicherheit angestrebt. Da ein einfacher Austausch von flüssigem Elektrolyt durch festen Elektrolyt nicht zielführend ist, wird in FELIZIA ein ganzheitlicher Ansatz verfolgt um Hochenergie-Zellen zu realisieren. So wird in FELIZIA die Anode, Kathode und der Festelektrolyt aber auch die Interaktion der Materialien untereinander sowohl mit Simulation als auch experimentell untersucht. Des Weiteren werden mögliche Zelldesigns für Festkörperzellen untersucht und hinsichtlich ihrer Industrialisierbarkeit erforscht. BMW ist neben der Aufgabe als Gesamtprojektleitung zusammen mit VW sowohl für die Anforderungsableitung aus Fahrzeugsicht sowie die Bewertung hinsichtlich Kosten und Performance verantwortlich. Zudem übernimmt BMW die Verantwortung für das Arbeitspaket Elektroden- und Zelldesign und Zellbau und -test, hierbei werden zunächst die zu untersuchenden Materialsets definiert und im Projektverlauf verfeinert. Außerdem wird je nach Materialset auch das Elektroden- und Zelldesign in enger Abstimmung mit den anderen Partnern bestimmt. Neben diesen Aufgaben leitet BMW das Arbeitspaket Anodenentwicklung und unterstützt tatkräftig im Simulationsarbeitspaket. Zudem unterstützt BMW in den anderen Arbeitspakten je nach Bedarf, um einen reibungslosen Projektablauf zu gewährleisten.
Ziel des Vorhabens ist die Entwicklung thermischer Energiespeicher auf der Basis von Latentspeichermaterialien (auch engl. Phase Change Material, PCM) für den Einsatz im Temperaturbereich von 100 °C bis etwa 220 °C. In diesem Temperaturbereich stehen derzeit nur sehr wenige PCMs zur Verfügung, so dass ihre Anwendung stark beschränkt ist. Als PCM sollen organische PCM in Form von Zuckeralkoholen, langkettigen Paraffinen und Alkoholen, Amiden sowie Polymeren mit Schmelztemperaturen zwischen 100 und 200 °C entwickelt und eingesetzt werden. Zur Wärmespeicherung mit diesen PCMs wird ein neues Wärmeüberträgerkonzept basierend auf durchströmbare Platten entwickelt. Das Projekt gliedert sich in 4 Arbeitspakete: I) Projektmanagement, II) Entwicklung Latentspeichermaterialien, II) Auslegung, Simulation, Zielkostenanalyse und IV) Wärmeüberträger, Konzepte, Konstruktion und Tests. In AP II werden neue PCM synthetisiert, modifiziert und/oder mittels Additiven ihre thermischen Eigenschaften verbessert um sie als Speichermaterial nutzbar zu machen. In AP III) werden Anlagen aus dem solaren und dem konventionellen Prozesswärmebereich auf ihre Eignung für die Nutzung von PCM analysiert. Simulationsmodelle des Wärmeübertägers und des Speichers werden erstellt und mit Messdaten aus AP IV validiert. Mittels Simulationen wird die Anordnung der Platten und die hydraulische Verschaltung thermisch optimiert. Systemsimulationen dienen zur Entwicklung eines geeigneten Betriebskonzeptes für den Einsatz des PCM-Speichers in ausgewählten Prozesswärmeanlagen. Im AP IV wird das neue Wärmeübertragerkonzept auf Basis der durchströmbaren Platten für die Be- und Entladung von PCM im Speichertank entwickelt. Hierzu werden Speicher und Wärmeübertrager im Labormaßstab aufgebaut und verschiedene Anordnungen der Platten und unterschiedliche hydraulische Verschaltungen experimentell untersucht. Im Anschluss wird ein Demonstrationsspeicher konstruiert, gebaut und an einem Speicherprüfstand charakterisiert.
Das Impulsprojekt LiMaProMet beschäftigt sich mit der Verbesserung von Interkalationsmaterial-basierten Akkumulator-Kathoden sowie dem Thermomanagement von Batteriezellen. Dabei wird parallel eine geeignete, produktionsbegleitende Qualitätssicherung ausgearbeitet, die auf die speziellen Aspekte des für das Projekt charakteristischen dreidimensionalen Elektrodenaufbaus fokussiert. Hierbei kommen auch Methoden der künstlichen Intelligenz (selbstlernende Algorithmen) zum Einsatz. Für die hochperformanten Elektroden werden zwei neue, innovative Wege verfolgt, um Elektroden mit Fokus auf einer hohen gravimetrischen bzw. volumetrischen Leistungs- bzw. Energiedichte zu entwickeln. Dabei werden außerdem die Aspekte Energieeffizienz, Zyklenfestigkeit und Sicherheit mit berücksichtigt. Zum einen kommt ein von der Hochschule Aalen entwickeltes, völlig neues galvanotechnisches Verfahren zum Einsatz, das es erlaubt, auf die sonst erforderlichen Leitfähigkeits- und Binderadditive zu verzichten. Dadurch sind konzeptbedingt erhöhte Energie- und Leistungsdichten möglich. Alternativ dazu wird der klassische Ansatz der Aufbringung eines Slurries aus Aktivmaterial, Leitfähigkeits- und Binderadditiv auf die Beschichtung/Infiltration zellularer Trägermaterialien erweitert. Dies ermöglicht die Realisierung erhöhter Flächenbeladungen, wodurch die Energiedichte der Elektroden gesteigert werden kann. Im Rahmen des Projekts sollen geeignete Infiltrationsverfahren in Kombination sowohl mit heute bereits eingesetzten als auch zukünftigen Hochenergiematerialien ermittelt werden. Als weiterer Ansatz zur Verbesserung der Zellperformance, vor allem unter hohen Stromraten (Hochleistungsanwendungen und Schnellladeszenarien) bzw. zur weiteren Verbesserung der Zellsicherheit wird die Eignung von Phase-Change-Materials für das Thermomanagement des gesamten Zellpacks untersucht. Dies erfolgt zunächst durch Modellierung und Simulation sowie nachfolgend durch Validierung und Erprobung.
| Origin | Count |
|---|---|
| Bund | 233 |
| Type | Count |
|---|---|
| Förderprogramm | 233 |
| License | Count |
|---|---|
| offen | 233 |
| Language | Count |
|---|---|
| Deutsch | 224 |
| Englisch | 22 |
| Resource type | Count |
|---|---|
| Keine | 63 |
| Webseite | 170 |
| Topic | Count |
|---|---|
| Boden | 98 |
| Lebewesen und Lebensräume | 95 |
| Luft | 158 |
| Mensch und Umwelt | 233 |
| Wasser | 59 |
| Weitere | 233 |