Das Projekt "Windkraftnutzung im Standortbereich Windecke (Voerde-Nord), Windgarten (Koenigsfeld) in Ennepetal: Gutachten. Energieversorgungskonzept Ennepetal" wird/wurde gefördert durch: Gesellschaft für Versorgungs-Unternehmen. Es wird/wurde ausgeführt durch: Beratungsbüro für Windenergie Düsseldorf, Dipl.-Ing. Werner Napp.Im vorliegenden Gutachten soll untersucht werden, mit welcher mittleren jährlichen Windenergieausbeute an den repräsentativen windgünstigen Standorten in Windgarten und Windecke in Ennepetal zu rechnen ist. Diese .jährliche Ausbeute ist Grundlage zur Berechnung der Kosten für die produzierte elektrische Kwh verschiedener WKA unterschiedlicher Nabenhöhe. Die Ausarbeitung ist in folgende Abschnitt gegliedert: - der meteorologische Großraum Ennepetal in Bezug auf die Windkraftnutzung, - die Auswertung und graphische Darstellung der temporären Datenkollektive von den Standorten Windgarten (WG), Windecke (WE) und Feuerwache Doenberg (F-Doe), - Errechnung und graphische Darstellung der mittleren jährlichen Wind-GV und der Verteilung des spezifischen Windeneregieangebotes, - Standortvergleiche, - Ermittlung und graphische Darstellung der Leistungs- und Energieausbeute zweier WKA mit 17 m Durchmesser/80 kw (E-17) und 27 m Durchmesser/150 kw (W-27), - Betriebskostenrechnung/kwh für obige WKA.
Das Projekt "Energieeffiziente Behandlung von häuslichem Grauwasser durch die Kopplung von Photovoltaikmodulen mit photokatalytisch aktiv beschichteten, dreidimensionalen Strukturen als Lichtfalle" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Lynatox GmbH.Zielsetzung: Im Rahmen des beantragten Projektes soll eine verfahrenstechnische Lösung zur Reinigung von separiertem Grauwasser in Kombination mit der Energieerzeugung durch Photovoltaiksysteme als Kombinationsansatz entwickelt werden. Hierbei sollen Photovoltaikmodule mit photokatalytisch aktiven, dreidimensionalen Strukturen versehen werden. Diese Strukturen sollen aus Lichtfallen bestehen, welche durch eine photokatalytische Beschichtung von der Solarzelle nicht nutzbares UV-A Licht zur Reinigung von separiertem Grauwasser nutzt. Fazit: Das Fazit der vorliegenden Studie zeigt, dass das adaptiv entwickelte System zur Aufbereitung von Grauwasser mittels Photokatalyse und der gleichzeitigen Nutzung energetisch symbiotischer Effekte teilweise erfolgreiche Ergebnisse lieferte. Während unter Laborbedingungen der Abbau von Medikamentenspuren wie Diclofenac und Ibuprofen nachgewiesen werden konnte, war der Abbau im Feldversuch, insbesondere von Ibuprofen, weniger erfolgreich. Der eingesetzte TiO2-Katalysator zeigte jedoch eine signifikante Reduktion der Halbwertszeit von Diclofenac. Zudem führte die Aluminium-Waben-Lichtfalle zu einem erhöhten Energieertrag der Photovoltaik (PV)-Paneele, obwohl der erwartete kühlende Effekt durch das Grauwasser nicht eindeutig verifiziert werden konnte. Trotz der positiven Aspekte der Wabenstruktur in Bezug auf die Reaktionsoberfläche, beeinträchtigte die beobachtete Schleierbildung die Energieerzeugung. Insgesamt wurden zufriedenstellende Ergebnisse erzielt, doch weitere Untersuchungen unter realen Bedingungen sind notwendig, um die Effizienz des Systems zu verbessern.
Das Vorhaben untersuchte, inwiefern die Mehrfachnutzung von Planflächen auf See zusammen mit Offshore-Windenergie zu zusätzlichen Potentialen für die Offshore-Windenergie führen könnten. Flächenfestlegungen zum Meeresschutz wurde nicht betrachtet. Drei Mehrfachnutzungsoptionen wurden einer vertieften Analyse unterzogen: Im Falle der Landes- und Bündnisverteidigung konnte derzeit kein Potential für eine Mehrfachnutzung mit der OWE identifiziert werden. Im Falle der Fischereiforschung ist die Mehrfachnutzung im ROP bereits angelegt und ein geringes Potential vorhanden. Die hybride Energieerzeugung auf OWE-Flächen führt naturgemäß nicht zu zusätzlichen Potentialen für die Offshore-Windenergie und somit nicht zu einer Annäherung in Richtung Zielerreichung gemäß WindSeeG . Gleichwohl können die auf See erzielbaren Energieerträge gesteigert und die Netzauslastung erhöht werden. Veröffentlicht in Climate Change | 22/2025.
Das Projekt "FP4-NNE-THERMIE C, Variable speed technology for low heat hydropower systems" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Universität Kassel, Fachbereich 16 - Elektrotechnik,Informatik, Institut für Elektrische Energietechnik, Rationelle Energiewandlung.Objective: Aim is to modify two small hydropower plants to variable speed operation in order to increase annual energy output by improved part load efficiency and design flow. A 100 kW vertical axis Francis turbine (Kaltenburg, DE) and a new 18 kW waterwheel (Bettborn, LU) will be modified to variable speed operation by use of a AC-AC converter. There will be installed a movable free-overfall weir at the waterwheel. By an expected increase of the electricity production in the range of 10 to 20 per cent , the aim is to proof viability of improving existing low head hydro sites with this technology. Especially low head sites have high variation of head and flow. Variable speed technology allows the system to operate at maximum efficiency for a wide range of hydraulic conditions. Modern power electronics replaces complex mechanical control systems with a high need for maintenance. In wind energy, variable speed technology has already proven its advantages compared to other mechanical technologies. General Information: Unlike earlier approaches with a combination of double regulated turbines and variable speed in a new installation, in this project the combination of a Francis turbine (respectively a water wheel) in existing plants together with a frequency converter will be used to increase part load efficiency and design flow of the system. Only the new IGBT controlled converters which are now used in wind energy as well as in motive power industry appliances can guarantee a reliable variable speed operation of a normal asynchronous generator. The combination of the movable weir and variable speed operation of the water wheel will allow to optimise the power output of the plant under all conditions. The use of an IGBT converter makes it possible to compensate reactive power to improve the mains performance. Due to detailed theoretical analysis and according to the positive experience with variable speed operation in wind energy and motive power technology, the expected increase of the annual power output of the two plants is in the range of 10 to 20 per cent of the actual value. This will reduce the specific cost of the electricity by the same range. For the actual payback tariffs of many European countries, this will increase the number of feasible low head sites. The top water level control by variation of turbine speed (and so flow) will be demonstrated to show a simple, reliable and energy saving alternative to the old hydraulic systems, which are still installed in many sites. The success of the variable speed system in this plants will open a big European SME market for cheap technological improvement of small hydropower plants and low head sites. The monitored performance of the plants data will be stored in a data logger with a modem, to allow automatic down-loading from a server-PC via modem. ... Prime Contractor: Universität Kassel, Fachbereich Elektrotechnik/Informatik, Institut für Elektrische Energietechnik - IEE; Kassel; Germany.
Das Projekt "Steigerung von Qualität und Effizienz bei der Ertragsabschätzung für Windparks" wird/wurde ausgeführt durch: Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik.Zur Erreichung der von der neuen Bundesregierung gesteckten Ausbauziele in der Windenergie ist die Erschließung einer Vielzahl neuer Flächen für Windparks in kurzer Zeit erforderlich. Grundlage für die Windparkplanung an einem neuen Standort ist die Abschätzung der zu erwartenden Energieerträge sowie die Auswahl geeigneter Windenergieanlagen. Derzeit ist die Ertragsabschätzung mit hohen Unsicherheiten behaftet. Zudem ist sie insbesondere aufgrund der aktuell erforderlichen, einjährigen Windmessung zeit- und kostenintensiv. Ziel des Projektes ist es deshalb, durch Verbesserungen entlang der gesamten Prozesskette qualitativ bessere Ertragsabschätzungen in kürzerer Zeit und zu deutlich geringeren Kosten zu ermöglichen. Für die Zielerreichung werden Verfahren entwickelt, die eine bessere Datengrundlage (z.B.Reanalysen, Rauhigkeitsdaten) für die Windbranche liefern. Darüber hinaus werden an verschiedenen Stellen innovative Verfahren aus dem Bereich der Data Science wie maschinelles Lernen oder Modellensembles verwendet, um eine genaue Abschätzung der Energieerträge in kürzerer Zeit zu ermöglichen. Das Zusammenführen der verschiedenen Verfahren und Daten zu einem Gesamtprozess ermöglicht neben der Qualitätssteigerung einen hohen Grad an Automatisierung von Ertragsgutachten. Letztendlich schafft das Projekt damit die Grundlage für eine Senkung der Projektrisiken für Planer und Projektierer. Darüber hinaus können die entwickelten Verfahren auch für genauere regionale Potenzialabschätzungen verwendet werden und so einen Beitrag zur besseren Planung des Windenergieausbaus leisten. Das Fraunhofer IEE koordiniert das Verbundprojekt. Wissenschaftlich fokussiert sich das Fraunhofer IEE im Rahmen ihrer Forschungsarbeiten auf die Entwicklung von Verfahren zur Detektion von Rauhigkeitsänderungen auf Basis von Erdbeobachtungsdaten und entwickelt zeitreihenabhängige Verlustmodelle für verbesserte Ertragsabschätzungen.
Das Projekt "Steigerung von Qualität und Effizienz bei der Ertragsabschätzung für Windparks, Teilvorhaben: Entwicklung und Test von KI-basierten Methoden zur Verkürzung der Messdauer und Abschätzung der Designwindbedingungen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Kassel, Institut für Elektrische Energietechnik.Zur Erreichung der von der neuen Bundesregierung gesteckten Ausbauziele in der Windenergie ist die Erschließung einer Vielzahl neuer Flächen für Windparks in kurzer Zeit erforderlich. Grundlage für die Windparkplanung an einem neuen Standort ist die Abschätzung der zu erwartenden Energieerträge sowie die Auswahl geeigneter Windenergieanlagen. Derzeit ist die Ertragsabschätzung mit hohen Unsicherheiten behaftet. Zudem ist sie insbesondere aufgrund der aktuell erforderlichen, einjährigen Windmessung zeit- und kostenintensiv. Ziel des Projektes ist es deshalb, durch Verbesserungen entlang der gesamten Prozesskette qualitativ bessere Ertragsabschätzungen in kürzerer Zeit und zu deutlich geringeren Kosten zu ermöglichen. Für die Zielerreichung werden Verfahren entwickelt, die eine bessere Datengrundlage (z.B.Reanalysen, Rauhigkeitsdaten) für die Windbranche liefern. Darüber hinaus werden an verschiedenen Stellen innovative Verfahren aus dem Bereich der Data Science wie maschinelles Lernen oder Modellensembles verwendet, um eine genaue Abschätzung der Energieerträge in kürzerer Zeit zu ermöglichen. Das Zusammenführen der verschiedenen Verfahren und Daten zu einem Gesamtprozess ermöglicht neben der Qualitätssteigerung einen hohen Grad an Automatisierung von Ertragsgutachten. Letztendlich schafft das Projekt damit die Grundlage für eine Senkung der Projektrisiken für Planer und Projektierer. Darüber hinaus können die entwickelten Verfahren auch für genauere regionale Potenzialabschätzungen verwendet werden und so einen Beitrag zur besseren Planung des Windenergieausbaus leisten. Die Universität Kassel fokussiert sich im Rahmen ihrer Forschungsarbeiten auf die Entwicklung von Verfahren zur Langzeitkorrektur von Kurzzeitwindmessungen mittels Methoden von künstlicher Intelligenz und die verbesserte Abschätzung der Designwindbedingungen.
Das Projekt "Redox processes along gradients" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bayreuth, Lehrstuhl für Hydrologie, Limnologische Forschungsstation.The relevance of biogeochemical gradients for turnover of organic matter and contaminants is yet poorly understood. This study aims at the identification and quantification of the interaction of different redox processes along gradients. The interaction of iron-, and sulfate reduction and methanogenesis will be studied in controlled batch and column experiments. Factors constraining the accessibility and the energy yield from the use of these electron acceptors will be evaluated, such as passivation of iron oxides, re-oxidation of hydrogen sulfide on iron oxides. The impact of these constraints on the competitiveness of the particular process will then be described. Special focus will be put on the evolution of methanogenic conditions in systems formerly characterized by iron and sulfate reducing condition. As methanogenic conditions mostly evolve from micro-niches, methods to study the existence, evolution and stability of such micro-niches will be established. To this end, a combination of Gibbs free energy calculations, isotope fractionation and tracer measurements, and mass balances of metabolic intermediates (small pool sizes) and end products (large pool sizes) will be used. Measurements of these parameters on different scales using microelectrodes (mm scale), micro sampling devices for solutes and gases (cm scale) and mass flow balancing (column/reactor scale) will be compared to characterize unit volumes for organic matter degradation pathways and electron flow. Of particular interest will be the impact of redox active humic substances on the competitiveness of involved terminal electron accepting processes, either acting as electron shuttles or directly providing electron accepting capacity. This will be studied using fluorescence spectroscopy and parallel factor analysis (PARAFAC) of the gained spectra. We expect that the results will provide a basis for improving reactive transport models of anaerobic processes in aquifers and sediments.
Das Projekt "Predictive Spatial Analytics for Solar Energy Grid Integration: Enhancing Reliability and Efficiency" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Technische Hochschule Rosenheim, Zentrum für Forschung, Entwicklung und Transfer.
Das Projekt "Perowskit auf Q.antum (NEO) Tandemzellen 2, Teilvorhaben: Abschwächung ionischer Leistungsverluste für stabile Perowskit/Q.antum Tandemzellen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Potsdam, Institut für Physik und Astronomie, Professur für angewandte Physik kondensierter Materie (Experimentelle Physik Kondensierter Materie).Metall-Halogenid Perowskite werden als eine herausragende Materialklasse in der Photovoltaik für zukünftige Hocheffizienz-Solarzellen angesehen, weil diese kostengünstig und skalierbar mit der bewährten Silizium Technologie in Tandemsolarzellen kombiniert werden können. Seit 2015 werden solche Tandemsolarzellen intensiv erforscht und gerade in den letzten Jahren gab es immensen Wissenszuwachs und Entwicklungserfolge. So können im Labormaßstab heutzutage weit über 30 % Energieausbeute erzielt werden. Allerdings werden diese Ergebnisse noch vorwiegend mit Silizium Heterokontakt Bottomzellen erzielt, die nur einen kleinen Marktanteil besitzen. Einige Teams aus Wissenschaft und Industrie, darunter auch die Antragsteller im vorherigen Projekt PeroQ, konnten aber auch erstaunliche Wirkungsgradsteigerungen für Perowskit/Silizium Tandemsolarzellen auf Basis von PERx/TopCon Bottomzellen zeigen. Zum Beispiel wurde eine Tandemzelle auf einer Q.ANTUM Bottomzelle mit einem Wirkungsgrad von 28,7 % demonstriert, was das hohe Potential dieser massenmarkttauglichen Technologie demonstriert. Ziel in diesem Folgeprojekt PeroQ-2 ist es nun, den in PeroQ gelegten Grundstein für die Perowskit/Silizium Tandemtechnologie auf Q.ANTUM (NEO) Bottomzellen weiter auszubauen und auf ein höheres Technology readiness level (TRL) zu heben. Dies wird durch den Einsatz von massenfertigungstauglichen Prozessen und Materialien (Ko-Verdampfen des Perowskit-Absorbers), der Skalierung der Zellfläche auf eine volle Waferfläche (M6 und M10), hinreichende Langzeitstabilitäten und der Erforschung von Verlustmechanismen realisiert. Um die Grundlage für weitere Leistungs- und Stabilitätsverbesserungen zu legen, unterstützt die Uni Potsdam das Projekt durch den Einsatz und die Entwicklung von innovativen Charakterisierungsmethoden die eine globale Analyse der Verlustmechanismen ermöglichen. Als Ziel strebt das Konsortium Qcells, HZB und Uni Potsdam eine Tandemeffizienz von 28 % auf voller Waferfläche an.
Das Projekt "Steigerung von Qualität und Effizienz bei der Ertragsabschätzung für Windparks, Teilvorhaben: Fernerkundung und Verlustmodellierung für bessere Ertragsabschätzungen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Energiewirtschaft und Energiesystemtechnik.Zur Erreichung der von der neuen Bundesregierung gesteckten Ausbauziele in der Windenergie ist die Erschließung einer Vielzahl neuer Flächen für Windparks in kurzer Zeit erforderlich. Grundlage für die Windparkplanung an einem neuen Standort ist die Abschätzung der zu erwartenden Energieerträge sowie die Auswahl geeigneter Windenergieanlagen. Derzeit ist die Ertragsabschätzung mit hohen Unsicherheiten behaftet. Zudem ist sie insbesondere aufgrund der aktuell erforderlichen, einjährigen Windmessung zeit- und kostenintensiv. Ziel des Projektes ist es deshalb, durch Verbesserungen entlang der gesamten Prozesskette qualitativ bessere Ertragsabschätzungen in kürzerer Zeit und zu deutlich geringeren Kosten zu ermöglichen. Für die Zielerreichung werden Verfahren entwickelt, die eine bessere Datengrundlage (z.B.Reanalysen, Rauhigkeitsdaten) für die Windbranche liefern. Darüber hinaus werden an verschiedenen Stellen innovative Verfahren aus dem Bereich der Data Science wie maschinelles Lernen oder Modellensembles verwendet, um eine genaue Abschätzung der Energieerträge in kürzerer Zeit zu ermöglichen. Das Zusammenführen der verschiedenen Verfahren und Daten zu einem Gesamtprozess ermöglicht neben der Qualitätssteigerung einen hohen Grad an Automatisierung von Ertragsgutachten. Letztendlich schafft das Projekt damit die Grundlage für eine Senkung der Projektrisiken für Planer und Projektierer. Darüber hinaus können die entwickelten Verfahren auch für genauere regionale Potenzialabschätzungen verwendet werden und so einen Beitrag zur besseren Planung des Windenergieausbaus leisten. Das Fraunhofer IEE koordiniert das Verbundprojekt. Wissenschaftlich fokussiert sich das Fraunhofer IEE im Rahmen ihrer Forschungsarbeiten auf die Entwicklung von Verfahren zur Detektion von Rauhigkeitsänderungen auf Basis von Erdbeobachtungsdaten und entwickelt zeitreihenabhängige Verlustmodelle für verbesserte Ertragsabschätzungen.
Origin | Count |
---|---|
Bund | 424 |
Land | 21 |
Wissenschaft | 1 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 406 |
Text | 23 |
Umweltprüfung | 1 |
unbekannt | 9 |
License | Count |
---|---|
geschlossen | 25 |
offen | 406 |
unbekannt | 8 |
Language | Count |
---|---|
Deutsch | 403 |
Englisch | 89 |
Resource type | Count |
---|---|
Archiv | 8 |
Bild | 1 |
Datei | 9 |
Dokument | 16 |
Keine | 203 |
Unbekannt | 1 |
Webseite | 223 |
Topic | Count |
---|---|
Boden | 275 |
Lebewesen & Lebensräume | 273 |
Luft | 250 |
Mensch & Umwelt | 439 |
Wasser | 195 |
Weitere | 427 |