Mit einem einstimmigen Beschluss aller 193 Mitgliedsstaaten hat die UN-Vollversammlung die Jahre von 2014 bis 2024 zur "Dekade der nachhaltigen Energie für Alle" erklärt. Damit soll die Notwendigkeit des verlässlichen und bezahlbaren Zugangs zu Energiequellen für alle Menschen in den Fokus gerückt werden. Gleichzeitig ist dafür Sorge zu tragen, dass diese Energieerzeugung nachhaltig und umweltschonend ist. Sie wurde 2011 vom UN-Generalsekretär ins Leben gerufen und verfolgt drei miteinander verknüpfte Ziele, die bis zum Jahr 2030 verwirklicht werden sollen: Zugang zu Strom und moderne Energieformen für alle Menschen weltweit; Verdopplung der weltweiten Rate im Bereich Energieeffizienz und Verdopplung des Anteils erneuerbarer Energien am globalen Energiemix.
zunächst wünschen wir Ihnen ein tolles und erfolgreiches Jahr 2025! Wir schaffen auch in diesem Jahr wieder viele Gelegenheiten zum Austausch mit Ihnen. An dieser Stelle nochmals herzlichen Dank für Ihren Input im letzten Jahr! Vor allem die Anregungen und Wünsche aus unserem Projekt zur Zielgruppenanalyse für das HKNR können wir künftig in unsere weitere Arbeit einfließen lassen. Wir freuen uns, künftig gezielter und effektiver mit Ihnen kommunizieren zu können! Veränderungen überall – so sieht unser Ausblick für 2025 aus: Weiteres Wachstum der Teams, schon sehr konkret verbunden mit einer Reihe neuer Kolleginnen und Kollegen, die in diesem Jahr zu uns kommen. Mit der Gas-Wärme-Kälte-Herkunftsnachweisregister-Verordnung (GWKHV) haben wir seit April letzten Jahres eine neue Aufgabe, an der wir intensiv arbeiten. Unsere Ausschreibung für die Software für die neuen Herkunftsnachweisregister für Gas, Wasserstoff und Wärme/Kälte ist in diesem Jahr geplant. Wir bereiten außerdem Anpassungen für die HkRNDV vor, die zunächst in die Ressortabstimmung und danach in die Verbändeanhörung gehen werden. Wir stehen gemeinsam vor den Wahlen für ein neues Parlament und eine neue Regierung. Das bringt für uns aktuell Einschränkungen wegen der vorläufigen Haushaltführung mit sich. Ob es unter einer neuen Regierung wieder Umstrukturierungen in den Ministerien geben wird, wird sich zeigen. Unsere Facharbeit setzen wir jedoch weitgehend unabhängig davon fort. Vielleicht wichtig für Sie: Die Umsetzung der 37. BImSchV für erneuerbare Kraftstoffe nicht biogenen Ursprungs (RFNBO) wird ebenfalls in der UBA-Abteilung Klimaschutz und Energie angesiedelt, sozusagen als Nachbarfachgebiet. Es zeichnen sich bereits jetzt enge Verknüpfungen zwischen den Registern ab. Aktuell stecken wir schon intensiv in den Vorbereitungen für unseren Stand bei der E-world im Februar und auch für unsere siebte HKNR-Fachtagung im April . Informationen dazu und auch zu Fragen der Anerkennung, zum neuen Termin für die Stromkennzeichnung und zu unseren neuen Internetseiten finden Sie in diesem Newsletter. Viel Spaß beim Lesen! Ihr Team des Herkunftsnachweisregisters Einladung zur 7. HKNR-Fachtagung Nun ist es soweit – wir möchten Sie ganz offiziell zur 7. Fachtagung des Herkunftsnachweisregisters am 2./3. April 2025 nach Dessau-Roßlau einladen. Wir freuen uns auf ein Wiedersehen und möchten mit Ihnen in den Austausch gehen zu den neuesten Entwicklungen in Sachen Herkunftsnachweise. Es erwartet Sie – wie in den letzten Jahren – ein informatives und interaktives Programm mit Vorträgen und interessanten Workshops. Neu wird die zeitliche Gestaltung mit verschiedenen Themenblöcken sein, bei denen jeweils eine separate Anmeldung notwendig sein wird (hellblaue Markierung im Text). Wir möchten mit Ihnen über den Aufbau der neuen Vollzüge für Herkunftsnachweise für Wärme/Kälte und Gase (inkl. Wasserstoff) sprechen. Zudem zieht die Vernetzung der verschiedenen Herkunftsnachweissysteme durch Konversion die Notwendigkeit nach sich, auch viele Fragen zu Herkunftsnachweisen für Strom im gegebenen Kontext neu zu beleuchten. Neben den Herkunftsnachweisen wird auch der Umsetzungsstand der 37. BImSchV im Umweltbundesamt ein weiteres Thema sein, worüber wir Sie informieren werden. Das vorläufige Programm können Sie hier aufrufen: https://www.umweltbundesamt.de/dokument/tagesordnung-7-hknr-fachtagung . Unter folgendem Link können Sie sich bis zum 28. Februar 2025 verbindlich anmelden: https://www.umweltbundesamt.de/7-hknr-fachtagung-anmeldung . Geben Sie die Termininformation gerne an Ihre Kollegen*Kolleginnen weiter. Wir möchten Sie jedoch darum bitten, pro Unternehmen mit maximal zwei Personen teilzunehmen, damit auch angesichts des erweiterten Themenfelds unsere Kapazitäten ausreichen. HKNR bei der E-world 2025 Vom 11. bis 13. Februar 2025 findet in Essen Europas Leitmesse der Energiewirtschaft statt. Gemeinsam mit der Deutschen Emissionshandelsstelle werden wir, das Team des Herkunfts- und Regionalnachweisregisters, einen UBA-Stand betreuen. Mit eigenem Fachpersonal und vielen Informationen stehen wir Ihnen in Essen wieder zur Verfügung. Wenn Sie vor Ort mit uns ins Gespräch kommen möchten, melden Sie sich bitte bis 5. Februar 2025 zur Terminvereinbarung (unter HKNR-Tagung@uba.de ) oder Sie schauen einfach am Stand vorbei. Wir freuen uns auf ein Kennenlernen oder Wiedersehen in Essen und viele interessante Gespräche! Weiterführender Link: https://www.e-world-essen.com Anerkennung serbischer, griechischer & zypriotischer HKN Im Rahmen zweier Forschungsprojekte prüften die Auftragnehmenden BBH und Öko-Institut die Anerkennbarkeit von Herkunftsnachweisen aus Serbien, Griechenland und Zypern . Das Umweltbundesamt ist als zuständige Behörde verpflichtet, ein Nachweissystem zu etablieren, mit dem gegenüber den Endkunden der Anteil erneuerbarer Energien im Energiemix von Energieversorgern ausgewiesen wird. Die Herkunft von aus erneuerbaren Energiequellen erzeugter Elektrizität muss mit objektiven, transparenten und nichtdiskriminierenden Kriterien garantiert werden. Diese Pflicht besteht nach Artikel 19 Absatz 1 der Richtlinie 2018/2001/EU (Renewable Energy Directive II – RED II). Gemäß Artikel 19 Absatz 9 RED II erkennen die Mitgliedsstaaten die von anderen Mitgliedsstaaten gemäß diesen Richtlinien ausgestellte Herkunftsnachweise (HKN) als Nachweis der Herkunft aus erneuerbaren Energien an. Die Anerkennung kann nur verweigert werden, wenn begründete Zweifel an der Richtigkeit, Zuverlässigkeit oder Wahrhaftigkeit des HKN bestehen. Im Rahmen der Forschungsvorhaben wurden das serbische, das griechische und das zypriotische System zur Ausstellung, Übertragung und Entwertung von Herkunftsnachweisen geprüft. Die Stromkennzeichnungen in Serbien, Griechenland und Zypern wurden ebenfalls untersucht. Beides erfolgte mit dem Ziel, aus der Perspektive des Umweltbundesamts als deutscher registerführender Stelle bei einer Prüfung der Anerkennungsfähigkeit serbischer, griechischer und zypriotischer Herkunftsnachweise beurteilen zu können, ob generelle, begründete Zweifel an der Richtigkeit, Zuverlässigkeit oder Wahrhaftigkeit serbischer, griechischer oder zypriotischer Herkunftsnachweise bestehen. Das Prüfergebnisse lauten, dass solche Zweifel, die einer Anerkennung serbischer, griechischer und zypriotischer HKN entgegenstehen könnten, nach den Ergebnissen des Forschungsvorhabens verneint werden. Infolgedessen wird nun die Freischaltung für den Import serbischer, griechischer und zypriotischer Herkunftsnachweise erfolgen. Neue Internetseiten zu Gas- und Wärme/Kälte-HKN Das Umweltbundesamt ist mit Erlass der Gas-Wärme-Kälte-Herkunftsnachweisregister-Verordnung (GWKHV) seit dem 25.04.2024 für den Vollzug der Herkunftsnachweisregister für Gas sowie für Wärme und Kälte zuständig. Ein Gas-Herkunftsnachweisregister für erneuerbare Gase inkl. Wasserstoff und kohlenstoffarmes Gas nach § 2 Nummer 10 des Herkunftsnachweisregistergesetzes sowie ein Register für Wärme und Kälte aus erneuerbaren Quellen wie Solarthermie, Geothermie oder Umweltwärme sind somit vorgesehen, diese werden aber noch nicht vom Umweltbundesamt geführt. Bisher werden internationale Nachweise über Biogasmengen und -qualitäten über das Biogasregister Deutschland der Deutschen Energie-Agentur (dena) standardisiert dokumentiert: Biomethan aus dem grenzüberschreitenden Handel wird dafür in vergleichbaren Biogasregistern im Ausland eingebucht und in das Biogasregister Deutschland übertragen. Neben einer Verwendung im freiwilligen Markt sind diese internationalen Biogaszertifikate nach den Vorgaben des BEHG, TEHG , GEG und EWärmeG anerkennungsfähig. Der bestehende internationale Handel mit Biogaszertifikaten wird von den Festlegungen des HKNR-Gesetzes und der GWKHV nicht erfasst. Der Aufbau und Betrieb des vorgesehenen deutschen Gas-Herkunftsnachweisregisters in der Zuständigkeit des Umweltbundesamtes wird für das Jahr 2026 erwartet. Dann muss durch Kooperation der zuständigen Stellen sichergestellt sein, dass es nicht zu Doppelzählungen durch verschiedene Nachweise kommt. Für Herkunftsnachweise nach der Erneuerbare-Energien-Richtlinie ist das Umweltbundesamt mit dem Erlass der GWKHV seit dem 25.04.2024 für den Vollzug der Herkunftsnachweisregister für Gas sowie für Wärme und Kälte zuständig. In diesem Zuge haben wir zum Ende des vergangenen Jahres neue Internetseiten dazu veröffentlicht. Auf den unten verlinkten Seiten finden Sie weitere Informationen zur Umsetzung: • Nachweissysteme für Energie und Klimaschutz (Hauptseite) • Gas-HKNR (Biomethan und Wasserstoff) und • Wärme- und Kälte-HKNR . Wir freuen uns über Ihren Besuch auf unseren Internetseiten. Erinnerung: 1. Juli neuer Termin zur Fertigstellung der Stromkennzeichnung! Spätestens zum 1. Juli 2025 muss die Stromkennzeichnung für das Lieferjahr 2024 erstellt und veröffentlicht sein, dies gibt § 42 Abs. 1 EnWG vor. In Artikel 2 Nummer 11 des Gesetzes zur Änderung des Erneuerbare-Energien-Gesetzes und weiterer energiewirtschaftsrechtlicher Vorschriften zur Steigerung des Ausbaus photovoltaischer Energieerzeugung vom 8. Mai 2024 wurde festgelegt, dass hierfür künftig der 1. Juli als Stichtag für die Ausweisung der Stromkennzeichnung des Vorjahres gilt. Mit der Vorverlegung der Frist (bis zum letzten Jahr galt der 1. November) folgt Deutschland einer gemeinsamen Empfehlung der europäischen Herkunftsnachweisregister. Zur weiteren Harmonisierung der europäischen Stromkennzeichnungen ist dies ein wichtiger Schritt. Die Verschiebung begünstigt außerdem, dass Unternehmen künftig die Stromkennzeichnung für ihre Emissionsbilanzen in der nichtfinanziellen Berichterstattung verwenden können. Die Änderung des Stichtages zog eine Folgeänderung in § 31 Abs. 1 Punkt 1 der HkRNDV mit sich. Demnach dürfen Regionalnachweise künftig vom 1. April bis zum 31. Juli entwertet werden, statt wie bisher vom 1. August bis zum 15. Dezember. Darüber informiert Artikel 8 des Gesetzes zur Änderung des Erneuerbare-Energien-Gesetzes und weiterer energiewirtschaftsrechtlicher Vorschriften zur Steigerung des Ausbaus photovoltaischer Energieerzeugung vom 8. Mai 2024 . Artikel 14 Abs. 2 Nr. 1 desselbigen Gesetzes legt das Inkrafttreten für beide Artikel am 01.01.2025 fest. Somit sind die Änderungen verpflichtend für die Stromkennzeichnung anzuwenden, die sich auf das Lieferjahr 2024 bezieht. Letztverbraucher*innen können sich folglich ab 01.07.2025 über ihre Stromkennzeichnung 2024 auf den Websites ihrer Stromlieferanten informieren.
Energieverbrauch privater Haushalte Die privaten Haushalte benötigten im Jahr 2023 etwa gleich viel Energie wie im Jahr 1990 und damit gut ein Viertel des gesamten Endenergieverbrauchs in Deutschland. Sie verwendeten mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen. Endenergieverbrauch der privaten Haushalte Private Haushalte verbrauchten im Jahr 2023 632 Terawattstunden ( TWh ) Energie, das sind 632 Milliarden Kilowattstunden (Mrd. kWh). Dies entsprach einem Anteil von gut einem Viertel am gesamten Endenergieverbrauch . Im Zeitraum von 1990 bis 2023 fiel der Endenergieverbrauch in den Haushalten – ohne Kraftstoffverbrauch, da dieser dem Sektor Verkehr zugeordnet ist – um 3,5 % (siehe Abb. „Entwicklung des Endenergieverbrauchs der privaten Haushalte“). Dabei herrschten in den Jahren 1996, 2001 und 2010 sehr kalte Winter, die zu einem erhöhten Brennstoffverbrauch für Raumwärme führten. So lag der Energieverbrauch im sehr kalten Jahr 2010 etwa 12 % über dem Wert des eher warmen Jahres 1990. Höchster Anteil am Energieverbrauch zum Heizen Die privaten Haushalte benötigen mehr als zwei Drittel ihres Endenergieverbrauchs, um Räume zu heizen (siehe Abb. „Anteile der Anwendungsbereiche am Endenergieverbrauch der privaten Haushalte 2008 und 2023“). Sie nutzen zurzeit dafür hauptsächlich Erdgas und Mineralöl. An dritter Stelle folgt die Gruppe der erneuerbaren Energien, an vierter die Fernwärme. Zu geringen Anteilen werden auch Strom und Kohle eingesetzt. Mit großem Abstand zur Raumwärme folgen die Energieverbräuche für die Anwendungsbereiche Warmwasser sowie sonstige Prozesswärme (Kochen, Waschen etc.) bzw. Prozesskälte (Kühlen, Gefrieren etc.). Mehr Haushalte, größere Wohnflächen – Energieverbrauch pro Wohnfläche sinkt Der Trend zu mehr Haushalten, größeren Wohnflächen und weniger Mitgliedern pro Haushalt (siehe „ Bevölkerungsentwicklung und Struktur privater Haushalte “) führt tendenziell zu einem höheren Verbrauch. Diesem Trend wirken jedoch der immer bessere energetische Standard bei Neubauten und die Sanierung der Altbauten teilweise entgegen. So sank der spezifische Endenergieverbrauch (Energieverbrauch pro Wohnfläche) für Raumwärme seit 2008 um 20 % (siehe Abb. „Endenergieverbrauch und -intensität für Raumwärme – Private Haushalte (witterungsbereinigt“)). Stromverbrauch mit einem Anteil von rund einem Fünftel Der Energieträger Strom hat einen Anteil von rund einem Fünftel am Endenergieverbrauch der privaten Haushalte. Hauptanwendungsbereiche sind die Prozesswärme (Waschen, Kochen etc.) und die Prozesskälte (Kühlen, Gefrieren etc.), die zusammen rund die Hälfte des Stromverbrauchs ausmachen. Mit jeweiligem Abstand folgen die Anwendungsbereiche Informations- und Kommunikationstechnik, Warmwasser und Beleuchtung (siehe Abb. „Anteile der Anwendungsbereiche am Netto-Stromverbrauch der privaten Haushalte 2008 und 2023“). Direkte Treibhausgas-Emissionen privater Haushalte sinken Der Energieträgermix verschob sich seit 1990 bis heute zugunsten von Brennstoffen mit geringeren Kohlendioxid-Emissionen und erneuerbaren Energien. Das verringerte auch die durch die privaten Haushalte verursachten direkten Kohlendioxid-Emissionen (d.h. ohne Strom und Fernwärme) (siehe Abb. „Direkte Kohlendioxid-Emissionen von Feuerungsanlagen der privaten Haushalte“).
Indikator: Vermiedene THG-Emissionen durch erneuerbare Energien Die wichtigsten Fakten In den Bereichen Strom, Wärme und Verkehr werden fossile Energieträger zunehmend durch erneuerbare Energien ersetzt. Mehr als ¾ der vermiedenen Emissionen wurden 2023 durch erneuerbaren Strom vermieden. Die Bundesregierung will den Anteil erneuerbarer Energien deutlich ausbauen und die Treibhausgas -Emissionen damit weiter senken. Welche Bedeutung hat der Indikator? Jeder Wirtschaftsprozess ist mit dem Einsatz von Energie verbunden. Derzeit sind sowohl in Deutschland als auch weltweit fossile Energieträger wie Kohle, Erdöl oder Erdgas die wichtigsten Energiequellen. Bei der Verbrennung fossiler Brennstoffe werden Treibhausgase ausgestoßen. Dies ist der wichtigste Treiber des globalen Klimawandels. Ein wesentlicher Ansatz für den Klimaschutz ist deshalb, die Volkswirtschaft auf saubere Energieformen umzustellen, insbesondere auf erneuerbare Energien. Der Indikator zeigt den Beitrag der erneuerbaren Energien zur Vermeidung von Treibhausgas -Emissionen und damit zur Erreichung der Klimaschutzziele an. Auch der effizientere Einsatz von Energie (Energieeffizienz) spielt eine wichtige Rolle bei der Erreichung der Klimaziele. Jedoch kann Energieeffizienz nur schwer direkt gemessen werden. Mit dem Indikator "Energieproduktivität" liegt ein allgemeines Maß für die Energieeffizienz einer Volkswirtschaft vor. Wie ist die Entwicklung zu bewerten? In den letzten Jahrzehnten wurden die erneuerbaren Energien in Deutschland stark ausgebaut. Im Jahr 2023 konnten durch ihre Nutzung 249 Millionen Tonnen Kohlendioxid-Äquivalente vermieden werden, welche sonst zusätzlich durch die Nutzung fossiler Energieträger entstanden wären. Die Stromerzeugung aus erneuerbaren Energien trug im Jahr 2023 ungefähr 79 % zu der durch erneuerbare Energien insgesamt vermiedenen Menge an Treibhausgasen bei. Der Wärmebereich war für gut 16 % verantwortlich und die Nutzung von Biokraftstoffen im Verkehr für ca. 4 %. Die Bundesregierung strebt mit dem „ Klimaschutzprogramm 2030 “ von 2019 an, den Ausstoß von Treibhausgasen bis 2030 um 55 % unter den Wert von 1990 zu senken. Bis 2045 soll der Ausstoß laut dem Klimaschutzgesetz 2021 von 2021 auf Null sinken. Zur Erreichung dieser Ziele sollen insbesondere die erneuerbaren Energien einen wichtigen Beitrag leisten. Eine Bewertung des deutschen Erneuerbaren-Anteils und der Erneuerbaren-Ziele finden sich in den Indikatoren „ Anteil Erneuerbare am Bruttoendenergieverbrauch “ und „ Anteil Erneuerbare am Bruttostromverbrauch “. Mit dem Ausbau der Erneuerbaren werden auch die durch sie vermiedenen Treibhausgas -Emissionen weiter deutlich zunehmen. Wie wird der Indikator berechnet? Für die Berechnung des Indikators wird angenommen, dass Energie, die heute aus erneuerbaren Energiequellen gewonnen wird, nicht mehr durch einen fossilen Energiemix bereitgestellt werden muss. Die für diese Energiemenge eingesparten Emissionen werden im Indikator veranschaulicht. Dabei deckt der Indikator auch die Emissionen erneuerbarer Energieträger ab, welche während Produktion, Installation oder Wartung anfallen (sogenannte Vorketten). Die detaillierte Methodik zur Berechnung des Indikators wird in der Publikation „ Emissionsbilanz erneuerbarer Energieträger 2023" beschrieben . Ausführliche Informationen zum Thema finden Sie im Daten-Artikel: "Erneuerbare Energien - Vermiedene Treibhausgase" .
Um die Auswirkungen der Energieholznutzung auf die Kohlenstoffsenkenleistung des Waldes in Deutschland zu untersuchen, wurden mit dem Holzverwendungsmodell TRAW, dem Waldmodell FABio-Forest und der Treibhausgasbilanzierung für Energieholz mit dem Modell HoLCA ein Referenzszenario und drei Holzenergieszenarien berechnet. In einer Literaturstudie zur Kohlenstoffspeicherung im Wald in Abhängigkeit zur Holzentnahme wurden auch Auswirkungen auf Wälder in anderen Ländern betrachtet. Im Referenzszenario (Annahmen wurden Anfang des Jahres 2023 getroffen) steigt die Energieholzverwendung bis zum Jahr 2030 an und sinkt danach aufgrund von Effizienzmaßnahmen in Gebäuden. Durch die steigende stoffliche Holznutzung kann Mitte der 2030 Jahr die Nadelholznachfrage nicht mehr aus heimischem Nadelholz gedeckt werden, wenn mittlerer oder starker natürlicher Störungen angenommen werden. Die Laubholznachfrage kann über dem gesamten Modellierungszeitraum mit heimischem Laubholz erfüllt werden. Eine steigende Laubholzentnahme für z.B. Energieholz führt in den modellierten Szenarien zu einer Verringerung der Senkenleistung der Wälder und steht so im Konflikt zu Zielen des natürlichen Klimaschutzes. Eine verringert Laubholzentnahme erhöht hingegen die Senkenleistung. Natürliche Störungen verschlechtern zwar die Senkenleistung der Wälder, der Effekt der Intensität der Laubholzentnahme auf die Senkenleistung bleibt aber unabhängig vom Störungsniveau bestehen. Ein Vorratsaufbau in Beständen mit geringen Risiken erscheint daher als eine robuste Strategie, um im LULUCF -Sektor Senkenziele zu erreichen. In instabilen Nadelbaumbeständen sind waldbauliche Maßnahmen zur Stabilisierung notwendig. Auf Basis der Ergebnisse wird vorgeschlagen, in die Produkt-THG-Bilanz die direkten CO2 Verbrennungsemissionen aus der Energieholznutzung aufzunehmen, anstatt sie mit Null zu bewerten. So ist es möglich, Effekte auf LULUCF-Senken zu berücksichtigen. Unter dieser Annahme führt die Energieholznutzung in Deutschland im Vergleich zum Energiemix zu deutlichen THG-Emissionen. Veröffentlicht in Climate Change | 33/2024.
Willkommen zur neuen "UBA aktuell"-Ausgabe, 400 Einreichungen haben sich dieses Jahr um den Bundespreis Ecodesign beworben – ein neuer Rekord! Was es mit Ecodesign auf sich hat und welche innovativen Ideen es gibt, erfahren Sie in dieser Newsletter-Ausgabe. Außerdem stellen wir Ihnen unter anderem unser neues Informationsangebot zum Stand von Energieverbrauch und Energieeffizienz in Deutschland und unsere App „Chemie im Alltag“ vor und werfen einen Blick auf den Umsetzungsstand der Wasserrahmenrichtlinie in der Europäischen Union. Mit unseren Tipps für eine gesunde und nachhaltige Advents- und Weihnachtszeit wünschen wir Ihnen schöne Feiertage! Interessante Lektüre wünscht Ihre Pressestelle des Umweltbundesamtes Ecodesign: Gute Ideen, gute Produkte, gute Umwelt ONOX: ein innovatives Konzept aus dem Allgäu Quelle: IDZ | raumideen GmbH; PONG Design Produkte, die umweltfreundlich hergestellt werden, keine schädlichen Chemikalien enthalten, wenig Energie verbrauchen, lange halten, leicht zu reparieren sind und am Ende recycelt werden können – so muss die Zukunft aussehen, wenn wir auf unserer Erde mit endlichen Ressourcen und bereits fortschreitender Erwärmung und Verschmutzung weiterhin gut leben möchten. Die Voraussetzung: die Umweltauswirkungen eines Produkts während seines gesamten Lebenszyklus bereits beim Design berücksichtigen. Hierfür steht Ecodesign oder, auf Deutsch, Ökodesign. Ein wichtiger Schritt in diese Richtung: die im Sommer 2024 in Kraft getretene neue EU-Verordnung für das Ökodesign nachhaltiger Produkte (ESPR), die für viele Produkte gilt, die in der EU hergestellt oder vertrieben werden. Wie gelungenes Ecodesign aussehen kann, zeigen auch dieses Jahr wieder die Preisträger des vom Bundesumweltministerium, Umweltbundesamt und Internationalen Design Zentrum Berlin ausgelobten Bundespreis Ecodesign. Hier drei Beispiele: Das Konzept für den elektrischen Traktor „ONOX“: Statt mit Diesel fährt er klimaschonend und kostengünstig mit Strom aus der hofeigenen Photovoltaik- oder Biogasanlage – dank austauschbarer Batterie ohne Pause fürs Laden. „Kynd Hair: Statt wie sonst meist aus giftigen, krebserregenden Chemikalien wird das Kunsthaar aus pflanzlichem Zellstoff hergestellt – schadstofffrei und wiederverwendbar. „PIGMENTURA“: Das neuartige, pigmentbasierte Färbeverfahren färbt unterschiedliche Faserarten und -mischungen, ohne dass wie sonst Wasser zum Seifen und Spülen und Energie zum Aufheizen des Seif- und Spülwassers benötigt wird – Einsparpotenzial: bis zu 96 Prozent an Wasser und bis zu 60 Prozent an Energie. Übrigens: Am 20. Januar 2025 geht der Bundespreis Ecodesign in die nächste Runde. Bewerben können sich Unternehmen und Studierende in ganz Europa mit ihren Produkten, Konzepten und Serviceangeboten. Verbrennen und Lagerfeuer im Garten Gartenabfälle verbrennen – gute Idee oder nicht? Und wie sieht es mit Lagerfeuer, Grill und Feuerschale aus? Ob und was man verbrennen darf, hat der MDR in der Rubrik "Komm mit in den Garten" recherchiert. UBA-Luftexpertin Ute Dauert im Interview. Heizen von gestern? Wir geben Gas UBA-Experte Jens Schuberth im HR-Info-Podcast "Der Tag" über Wärmenetze, den Energiemix beim Heizen in Deutschland und anderen Ländern und das Heizen der Zukunft. Tempo-30-Zonen – Mehr Tempolimits in den Städten? Die neue Straßenverkehrsordung ermöglicht es Städten und Kommunen, vor Ort zu entscheiden, ob eine Tempo-30-Zone für den Umwelt- und Gesundheitsschutz eingeführt wird. Radiobeitrag im Deutschlandfunk Kultur, unter anderem mit UBA-Verkehrsexpertin Miriam Dross.
Primärenergieverbrauch Der Primärenergieverbrauch ist seit Beginn der 1990er Jahre rückläufig. Bis auf Erdgas ist der Einsatz aller konventionellen Primärenergieträger seither zurückgegangen. Dagegen hat die Nutzung erneuerbarer Energien zugenommen. Ihr Anteil ist kontinuierlich angestiegen, besonders seit dem Jahr 2000. Definition und Einflussfaktoren Der Primärenergieverbrauch (PEV) bezeichnet den Energiegehalt aller im Inland eingesetzten Energieträger. Der Begriff umfasst sogenannte Primärenergieträger, wie zum Beispiel Braun- und Steinkohle, Mineralöl oder Erdgas, die entweder direkt genutzt oder in sogenannte Sekundärenergieträger wie zum Beispiel Kohlebriketts, Benzin und Diesel, Strom oder Fernwärme umgewandelt werden. Berechnet wird er als Summe aller im Inland gewonnenen Energieträger zuzüglich des Saldos der importierten und exportierten Mengen sowie der Lagerbestandsveränderungen abzüglich der auf Hochsee gebunkerten Vorräte. Statistisch wird der Primärenergieverbrauch über das Wirkungsgradprinzip ermittelt. Dabei werden die Einsatzmengen der in Feuerungsanlagen verbrannten Energieträger mit ihrem Heizwert multipliziert. Für Strom aus Wind, Wasserkraft oder Photovoltaik wird dabei ein Wirkungsgrad von 100 %, für die Geothermie von 10 % und für die Kernenergie von 33 % angenommen. Im Ergebnis wird durch diese internationale Festlegung für die erneuerbaren Energien ein erheblich niedrigerer PEV errechnet als für fossil-nukleare Brennstoffe. Dies hat in Zeiten der Energiewende methodenbedingte Verzerrungen bei der Trendbetrachtung zur Folge: Der Primärenergieverbrauch sinkt bei fortschreitender Substitution von fossil-nuklearen Brennstoffen durch erneuerbare Energien, selbst wenn die gleiche Menge an Strom zur Nutzung bereitgestellt wird. Dieser rein statistische Effekt überzeichnet den tatsächlichen Verbrauchsrückgang, wie die Entwicklung des Bruttoendenergieverbrauchs zeigt. Der Anteil erneuerbarer Energien am gesamten Primärenergieverbrauch steigt dagegen unterproportional (siehe Abb. „Primärenergieverbrauch“). Es wird – rechnerisch bedingt – ein langsamerer Anstieg des Erneuerbaren-Anteils am PEV wahrgenommen. Dies kann einen geringeren Ausbaueffekt suggerieren. Diese Effekte werden umso größer, je mehr Stromproduktion aus beispielsweise Kohlekraftwerken durch erneuerbare Energien und/oder Stromimporte (ebenfalls mit Wirkungsgrad von 100 % bewertet) ersetzt werden, weil immer weniger Umwandlungsverluste in die Primärenergiebilanzierung einfließen. Der Primärenergieverbrauch wird in erheblichem Maße durch die wirtschaftliche Konjunktur und Struktur, Preise für Rohstoffe und technische Entwicklungen beeinflusst. Auch die Witterungsverhältnisse und damit verbunden der Bedarf an Raumwärme spielen eine wichtige Rolle. Entwicklung und Ziele Der Primärenergieverbrauch in Deutschland ist seit Beginn der 1990er Jahre rückläufig (siehe Abb. „Primärenergieverbrauch“). Das ergibt sich zum einen aus methodischen Gründen beim Umstieg auf erneuerbare Energien (siehe Abschnitt „Primärenergieverbrauch erklärt“). Zum anderen konnten aber auch Effizienzsteigerungen beobachtet werden, zum Beispiel durch bessere Ausnutzung der in Energieträgern gespeicherten Energie (Brennstoffnutzungsgrad) in Kraftwerken , Motoren oder Heizkesseln. Im Energieeffizienzgesetz 2023 (EnEfG) hat der Gesetzgeber festgelegt, dass der Primärenergieverbrauch bis zum Jahr 2030 um 39,3 % unter dem Wert des Jahres 2008 liegen soll. Im „ Projektionsbericht 2023 für Deutschland “ wurde auf der Basis von Szenarioanalysen untersucht, ob Deutschland seine Klimaziele im Jahr 2030 erreichen kann. Wichtig ist dabei auch die Frage nach der zu erwartenden Entwicklung des Primärenergieverbrauchs. Das Ergebnis der Untersuchung: Wenn alle von der Regierungskoalition geplanten Maßnahmen umgesetzt werden, ist im Jahr 2030 mit einem PEV von etwa 10.000 Petajoule (PJ) zu rechnen (Mit-Maßnahmen- Szenario ). Das wäre gegenüber dem Jahr 2008 ein Rückgang von lediglich etwa 30 %. Weitere Maßnahmen zur Senkung des PEV sind also erforderlich, um die Ziele des EnEfG zu erreichen. Primärenergieverbrauch nach Energieträgern Seit 1990 hat sich der Energieträgermix stark verändert. Der Verbrauch von Primärenergie auf Basis von Braunkohle lag im Jahr 2023 um 72 %, der von Steinkohle um etwa 63 % unter dem des Jahres 1990. Der Energieverbrauch auf Basis von Erdgas stieg an: Noch im Jahr 2021 lag das Plus gegenüber dem Jahr 1990 bei 44 %. In der Folge des Krieges in der Ukraine und den daraus erwachsenden Versorgungsengpässen und der wirtschaftlichen Rezession sank der Gasverbrauch in den Jahren 2022 und 2023 gegenüber dem Jahr 2021 jedoch deutlich. Im Jahr 2023 lag der Energieverbrauch für Erdgas 14 % über dem des Jahres 1990. Der Einsatz erneuerbarer Energieträger hat sich seit 1990 mehr als verzehnfacht (siehe Abb. „Primärenergieverbrauch nach Energieträgern“).
Kraftwerke: konventionelle und erneuerbare Energieträger Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein. Kraftwerkstandorte in Deutschland Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das UBA stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung. In der Karte „Kraftwerke und Verbundnetze in Deutschland“ sind Kraftwerke der öffentlichen Stromversorgung und Industriekraftwerke mit einer elektrischen Bruttoleistung ab 100 MW verzeichnet. Basis ist die Datenbank „Kraftwerke in Deutschland“ . Weiterhin sind die Höchstspannungsleitungstrassen in den Spannungsebenen 380 Kilovolt (kV) und 220 kV eingetragen. In der Karte „ Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland “ sind Kraftwerke der öffentlichen Stromversorgung und Industriekraftwerke ab einer elektrischen Bruttoleistung von 50 MW bzw. mit einer Wärmeauskopplung ab 100 MW verzeichnet. Auch hier ist die Basis die Datenbank „Kraftwerke in Deutschland“ . Die Karte „Kraftwerke und Windleistung in Deutschland“ zeigt die installierte Windleistung pro Bundesland und die Kraftwerke ab 100 MW. Die Karte „Kraftwerke und Photovoltaikleistung in Deutschland“ vermittelt ein Bild des Zusammenspiels von Photovoltaikleistung und fossilen Großkraftwerken. Aus der Karte "Kraftwerksleistung in Deutschland" werden bundeslandscharf die jeweiligen Kraftwerksleistungen ersichtlich. Kraftwerke und Verbundnetze in Deutschland Kraftwerke und Verbundnetze in Deutschland, Stand Januar 2025. Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Kraftwerke und Verbundnetze in Deutschland, Stand Januar 2025. Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand Januar 2025 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als PDF herunterladen Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand Januar 2025 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke und Windleistung in Deutschland Karte Kraftwerke und Windleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Karte Kraftwerke und Windleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke und Photovoltaikleistung in Deutschland Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerksleistung in Deutschland Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025) Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025) Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke auf Basis konventioneller Energieträger Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt. In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der CO2 -Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus. Braunkohlenkraftwerke : Mit Einsetzen der „Kommission für Wachstum, Strukturwandel und Beschäftigung“ wurde der Prozess zum Ausstieg aus der Kohlestromerzeugung in Deutschland gestartet. Im Januar 2020 wurde im Rahmen des Kohleausstiegsgesetzes ein Ausstiegspfad für die Braunkohlestromerzeugung zwischen Bund, Ländern und beteiligten Unternehmen erarbeitet, welcher Entschädigungsregelungen für die Unternehmen und Förderung für die betroffenen Regionen enthält. Die Leistung von Braunkohlenkraftwerken als typische Grundlastkraftwerke lässt sich nur unter Energieverlust kurzfristig regeln. Sie produzieren Strom in direkter Nähe zu den Braunkohlenvorkommen im Rheinischen und Lausitzer Revier sowie im Mitteldeutschen Raum. Steinkohlenkraftwerke: Im Rahmen des Kohleausstiegs wird auch der Ausstieg aus der Steinkohle angestrebt. 2019 wurde bereits aus ökonomischen Gründen der Abbau von Steinkohle in Deutschland eingestellt. Im Gegensatz zur Braunkohle wird der Ausstieg aus der Steinkohle durch einen Auktionsmechanismus geregelt, der die Entschädigungszahlungen bestimmt. Steinkohlenkraftwerke produzieren Strom in den ehemaligen Steinkohle-Bergbaurevieren Ruhr- und Saarrevier, in den Küstenregionen und entlang der Binnenwasserstraßen, da hier kostengünstige Transportmöglichkeiten für Importsteinkohle vorhanden sind. (Weitere Daten und Fakten zu Steinkohlenkraftwerken finden sie in der Broschüre „Daten und Fakten zu Braun- und Steinkohle“ des Umweltbundesamtes.) Gaskraftwerke: Die Strom- und Wärmeerzeugung mit Gaskraftwerken erzeugt niedrigere Treibhausgasemissionen als die mit Kohlenkraftwerken. Des Weiteren ermöglichen sie durch ihre hohe Regelbarkeit und hohe räumliche Verfügbarkeit eine Ergänzung der Stromerzeugung aus erneuerbaren Energien. Dennoch muss zum Erreichen der Klimaziele die gesamte Stromerzeugung dekarbonisiert werden, etwa durch Umrüstung auf Wasserstoffkraftwerke. Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern Quelle: Umweltbundesamt Diagramm als PDF Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern Quelle: Umweltbundesamt Diagramm als PDF Tab: Braunkohlenkraftwerke in Deutschland gemäß Kohleausstiegsgesetz Quelle: UBA-Kraftwerksliste und BMWi Diagramm als PDF Kraftwerke auf Basis erneuerbarer Energien Im Jahr 2023 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden 18,5 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt 70 % höher als die vorherige Ausbauspitze aus dem Jahr 2011. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 168,4 GW (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“). Getragen wurde der Erneuerbaren-Zubau in den vergangenen vier Jahren vor allem von einem starken Ausbau der Photovoltaik (PV). Seit Anfang 2020 wurden mehr als 33 GW PV-Leistung zugebaut, davon mit 15,1 GW allein 45 % im Jahr 2023. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau in den Folgejahren zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich und übertraf im Jahr 2023 die Rekordjahre 2011 und 2012 deutlich. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde bereits im August des Jahres 2024 erreicht. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich etwa 20 GW zur Zielerreichung notwendig. Auch wenn das Ausbautempo bei Windenergie zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2023 wurden 3,3 GW neue Windenergie-Leistung zugebaut (2022: 2,4 GW; 2021: 1,6 GW). In den Jahren 2014 bis 2017 waren es im Schnitt 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 69,5 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig. Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential. Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der Themenseite „Erneuerbare Energien in Zahlen“ . Wirkungsgrade fossiler Kraftwerke Im Brutto-Wirkungsgrad ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider. Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen. Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig. Kohlendioxid-Emissionen Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden: Braunkohlen : Die spezifischen Kohlendioxid-Emissionen von Braunkohlenkraftwerken variieren je nach Herkunft des Energieträgers aus einem bestimmten Braunkohlerevier und der Beschaffenheit der mitverbrannten Sekundärbrennstoffe (siehe „Emissionsfaktoren eingesetzter Energieträger zur Stromerzeugung“). Mit mindestens 103.153 kg Kilogramm Kohlendioxid pro Terajoule (kg CO 2 / TJ) war der Emissionsfaktor von Braunkohlen im Jahr 2023 höher als der der meisten anderen Energieträger. Steinkohlen : Der Kohlendioxid-Emissionsfaktor von Steinkohlenkraftwerken betrug im Jahr 2023 94.326 kg CO 2 / TJ. Erdgas : Erdgas-GuD-Anlagen haben mit derzeit 56.221 kg CO 2 / TJ den geringsten spezifischen Emissionsfaktor fossiler Kraftwerke (abgesehen von Kokerei-/Stadtgas): Bei der Verbrennung von Erdgas entsteht pro erzeugter Energieeinheit weniger Kohlendioxid als bei der Verbrennung von Kohle. Weitere Entwicklung des deutschen Kraftwerksparks Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig. Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.
Um die Auswirkungen der Energieholznutzung auf die Kohlenstoffsenkenleistung des Waldes in Deutschland zu untersuchen, wurden mit dem Holzverwendungsmodell TRAW, dem Waldmodell FABio-Forest und der Treibhausgasbilanzierung für Energieholz mit dem Modell HoLCA ein Referenzszenario und drei Holzenergieszenarien berechnet. In einer Literaturstudie zur Kohlenstoffspeicherung im Wald in Abhängigkeit zur Holzentnahme wurden auch Auswirkungen auf Wälder in anderen Ländern betrachtet.Im Referenzszenario (Annahmen wurden Anfang des Jahres 2023 getroffen) steigt die Energieholzverwendung bis zum Jahr 2030 an und sinkt danach aufgrund von Effizienzmaßnahmen in Gebäuden. Durch die steigende stoffliche Holznutzung kann Mitte der 2030 Jahr die Nadelholznachfrage nicht mehr aus heimischem Nadelholz gedeckt werden, wenn mittlerer oder starker natürlicher Störungen angenommen werden. Die Laubholznachfrage kann über dem gesamten Modellierungszeitraum mit heimischem Laubholz erfüllt werden. Eine steigende Laubholzentnahme für z.B. Energieholz führt in den modellierten Szenarien zu einer Verringerung der Senkenleistung der Wälder und steht so im Konflikt zu Zielen des natürlichen Klimaschutzes. Eine verringert Laubholzentnahme erhöht hingegen die Senkenleistung. Natürliche Störungen verschlechtern zwar die Senkenleistung der Wälder, der Effekt der Intensität der Laubholzentnahme auf die Senkenleistung bleibt aber unabhängig vom Störungsniveau bestehen. Ein Vorratsaufbau in Beständen mit geringen Risiken erscheint daher als eine robuste Strategie, um im LULUCF-Sektor Senkenziele zu erreichen. In instabilen Nadelbaumbeständen sind waldbauliche Maßnahmen zur Stabilisierung notwendig.Auf Basis der Ergebnisse wird vorgeschlagen, in die Produkt-THG-Bilanz die direkten CO2 Verbrennungsemissionen aus der Energieholznutzung aufzunehmen, anstatt sie mit Null zu bewerten. So ist es möglich, Effekte auf LULUCF-Senken zu berücksichtigen. Unter dieser Annahme führt die Energieholznutzung in Deutschland im Vergleich zum Energiemix zu deutlichen THG-Emissionen.
Laut Stadtratsbeschluss der Landeshauptstadt Dresden enthält die Fortschreibung des Integrierten Energie- und Klimaschutzkonzeptes der Landeshauptstadt Dresden sowohl Maßnahmen zur Erreichung der Treibhausgasneutralität bis 2035 als auch alternativ ein Szenario mit Zielhorizont 2040. Das Verbundvorhaben OLGA lieferte mit dem Thema Agroforstnutzung und nachhaltiger extensiver Agrarholzanbau einen Beitrag zum Handlungsfeld "Land- und Forstwirtschaft, Landnutzungsänderung" zur Treibhausgasreduktion. Dabei spielt die Holzbiomassenutzung im Energiemix zur Dekarbonisierung der Dresdner Wärmeenergieversorgung bisher eine eher untergeordnete Rolle. Neben der Emissionsneutralität bringt die agroforstliche Nutzung vielfältige Vorteile für Klima, Boden, Biodiversität und Ernährung mit sich. Lesen Sie mehr dazu in der Infobox auf S. 63 von Band 1 (Konzeptband) und auf der Webpage der Landeshauptstadt Dresden .
Origin | Count |
---|---|
Bund | 111 |
Land | 18 |
Type | Count |
---|---|
Ereignis | 3 |
Förderprogramm | 88 |
Text | 31 |
unbekannt | 7 |
License | Count |
---|---|
geschlossen | 36 |
offen | 91 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 119 |
Englisch | 26 |
Resource type | Count |
---|---|
Archiv | 2 |
Bild | 1 |
Datei | 7 |
Dokument | 14 |
Keine | 85 |
Webseite | 36 |
Topic | Count |
---|---|
Boden | 90 |
Lebewesen & Lebensräume | 91 |
Luft | 81 |
Mensch & Umwelt | 129 |
Wasser | 65 |
Weitere | 128 |