API src

Found 2486 results.

Related terms

Flach lagernde Salze in Deutschland

Welche Salzformationen eignen sich zur Speicherung von Wasserstoff oder Druckluft? Im Forschungsprojekt InSpEE-DS entwickelten Wissenschaftler Anforderungen und Kriterien mit denen sich mögliche Standorte auch dann bewerten lassen, wenn sich deren Erkundung noch in einem frühen Stadium befindet und die Kenntnisse zum Aufbau der Salinare gering sind. Wissenschaftler der DEEP.KBB GmbH, Hannover erarbeiten gemeinsam mit ihren Projektpartnern der Bundesanstalt für Geowissenschaften und Rohstoffe und der Leibniz Universität Hannover, Institut für Geotechnik Hannover, Planungsgrundlagen zur Standortauswahl und zur Errichtung von Speicherkavernen in flach lagernden Salzen und Mehrfach- bzw. Doppelsalinaren. Solche Kavernen könnten erneuerbare Energie in Form von Wasserstoff oder Druckluft speichern. Während sich das Vorgängerprojekt InSpEE auf Salzformationen großer Mächtigkeit in Norddeutschland beschränkte, wurden jetzt unterschiedlich alte Salinar-Horizonte in ganz Deutschland untersucht. Zur Potenzialabschätzung wurden Tiefenlinienkarten des Top und der Basis sowie Mächtigkeitskarten der jeweils betrachteten stratigraphischen Einheit und Referenzprofile erarbeitet. Informationen zum Druckluft- und Wasserstoff-Speicherpotential in den einzelnen Bundesländern sind an die identifizierten Flächen mit nutzbarem Potential gekoppelt. Die Daten können über den Webdienst „Informationssystem flach lagernde Salze“ genutzt werden. Der Darstellungsmaßstab hat eine untere Grenze von 1 : 300 000. Die Geodaten sind Produkte eines BMWi-geförderten Forschungsprojektes „InSpEE-DS“ (Laufzeit 2015-2019). Das Akronym steht für „Informationssystem Salz: Planungsgrundlagen, Auswahlkriterien und Potenzialabschätzung für die Errichtung von Salzkavernen zur Speicherung von Erneuerbaren Energien (Wasserstoff und Druckluft) – Doppelsalinare und flach lagernde Salzschichten“.

INSPIRE: Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers (InSpEE-DS)

Which salt formations are suitable for storing hydrogen or compressed air? In the InSpEE-DS research project, scientists developed requirements and criteria for the assessment of suitable sites even if their exploration is still at an early stage and there is little knowledge of the salinaries’ structures. Scientists at DEEP.KBB GmbH in Hanover, worked together with their project partners at BGR and the Leibniz University Hanover, Institute for Geotechnics, to develop the planning basis for the site selection and for the construction of storage caverns in flat layered salt and multiple or double saliniferous formations. Such caverns could store renewable energy in the form of hydrogen or compressed air. While the previous project InSpEE was limited to salt formations of great thickness in Northern Germany, salt horizons of different ages have now been examined all over Germany. To estimate the potential, depth contour maps of the top and the base as well as thickness maps of the respective stratigraphic units were developed. Due to the present INSPIRE geological data model, it was necessary, in contrast to the original dataset, to classify the boundary lines of the potential storage areas in the Zechstein base and thickness layers, whereby the classification of these lines was taken from the top Zechstein layer. Consequently, the boundary element Depth criterion 2000 m (Teufe-Kriterium 2000 m) corresponds on each level to the 2000 m depth of Top Zechstein. However, the boundary of national borders and the boundary of the data basis could not be implemented in the data model and are therefore not included in the dataset. Information on compressed air and hydrogen storage potential is given for the identified areas and for the individual federal states. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE-DS (INSPIRE) is stored in 18 INSPIRE-compliant GML files: InSpEE_DS_GeologicUnit_Isopachs_Zechstein.gml contains the Zechstein isopachs. InSpEE_DS_GeologicUnit_Isobaths_Top_Zechstein.gml and InSpEE_DS_GeologicUnit_Isobaths_Basis_Zechstein.gml contain the isobaths of the top and basis of Zechstein. The three files InSpEE_DS_GeologicStructure_ThicknessMap_Zechstein, InSpEE_DS_GeologicStructure_Top_Zechstein and InSpEE_DS_GeologicStructure_Basis_Zechstein represent the faults of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Boundary_element_Potential_areas_Zechstein.gml contains the boundary elments of the potential areas at the top and the basis of Zechstein as well as of the Zechstein body. The three files InSpEE_DS_GeologicUnit_Uncertainty_areas_ThicknessMap_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Top_Zechstein.gml, InSpEE_DS_GeologicUnit_Uncertainty_areas_Basis_Zechstein.gml represent the uncertainty areas of the Zechstein body as well as at the top and at the basis of the Zechstein body. InSpEE_DS_GeologicUnit_Potentially_usable_storage_areas_Storage_potential_in_the_federal_states.gml comprises the areas with storage potential for renewable energy in the form of hydrogen and compressed air. The six files InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Malm.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Keuper.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Muschelkalk.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Roet.gml, InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Zechstein.gml and InSpEE_DS_GeologicUnit_Salt_distribution_in_Germany_Rotliegend.gml represent the salt distribution of the respective stratigraphic unit. InSpEE_DS_GeologicUnit_General_salt_distribution.gml represents the general salt distribution in Germany. This geographic information is product of a BMWi-funded research project "InSpEE-DS" running from the year 2015 to 2019. The acronym stands for "Information system salt: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) - double saline and flat salt layers".

Electrolyte Production in central Europe - EPIC

Die E-Lyte Innovations GmbH ist in der Chemiebranche tätig und entwickelt und produziert Elektrolyte für verschiedene Batteriezelltechnologien, deren Bedarf stark steigt aufgrund der zunehmenden Elektromobilität, aber auch durch erweiterte Anwendung im Medizin- und Weltraumbereich. Die konventionelle Herstellung der Elektrolyte, die größtenteils in Asien oder durch asiatische Marktteilnehmer in Osteuropa stattfindet, basiert auf diskontinuierlichen Mischprozessen verschiedener Chemikalien unter Schutzatmosphäre (Stickstoff). Ein Wechsel der Chemikalien bei Abänderung der Formulierung bedarf einer gründlichen Reinigung der verwendeten Anlagen. Die Reinigung der lösemittelhaltigen Abluft erfolgt über ein mehrstufiges System mit wässriger Abgaswäsche. Nachteile dieses Verfahrens sind neben der fehlenden Flexibilität für verschiedene Formulierungen insbesondere der hohe Reinigungsaufwand, welcher sich in einem hohen Wasser- und Chemikalienverbrauch sowie hohem Abwasseraufkommen widerspiegelt sowie hohe Verbräuche an Prozessschutzgasen und kontaminierter Abluft, da stets das ganze Reaktorvolumen mit Stickstoff überlagert und zuvor evakuiert werden muss. Ziel dieses Projektes ist die Errichtung einer flexiblen Produktionsanlage - bestehend aus einem diskontinuierlichen und kontinuierlichen Prozess - mit einer Jahreskapazität von bis zu 8.000 Tonnen individuell abgestimmter und hochreiner Elektrolyte. Zunächst werden sogenannte Masterbatches in einem gekühlten Batch-Verfahren durch Rühren hergestellt (exotherme Reaktion). Diese beinhalten eine erhöhte Leitsalzkonzentration. Anschließend wird in einem viel kleineren Aggregat die Finalisierung des Elektrolyten durch Verdünnung mit Lösemitteln vorgenommen. Der Vorteil ist hierbei, dass der große Batch-Reaktor nicht nach jedem Vorgang gereinigt werden muss, da die Grundformulierung im Wesentlichen gleichbleibt, und der Reinigungsaufwand beim kleineren in-line Reaktor erheblich geringer ist, weil das zu reinigende und mit Stickstoff zu überlagernde Volumen viel niedriger ist. Durch das innovative und neue Produktionskonzept mit einem kombinierten Batch-in-line-Verfahren können pro Jahr nachstehende Ressourcen bis zu 60 Prozent eingespart werden: jeweils ca. 100 Kubikmeter Wasser und Abwasser, ca. 20 Tonnen Reinigungsmittel sowie Reinigungsabfälle ca. 6.000 Kubikmeter Stickstoff. Außerdem werden über 500.000 Kubikmeter VOC-haltige Abluft vermieden. Die Energieersparnis (durch optimierte Behältergrößen und -kühlung) beträgt 19 Megawattstunden, was einer THG-Minderung von 8 Tonnen CO 2 pro Jahr entspricht. Dieses innovative Verfahren ermöglicht erstmals die Herstellung hochspezialisierter Elektrolyte für die zunehmende Marktdurchdringung innovativer Energiespeichertechnologien und kann auch auf andere Anlagen zur Elektrolytproduktion übertragen werden, deren Notwendigkeit aufgrund des wachsenden Batteriemarkts in Europa zu erwarten ist. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Ressourcen Fördernehmer: E-Lyte Innovations GmbH Bundesland: Rheinland-Pfalz Laufzeit: seit 2023 Status: Laufend

Demonstrationsanlage "Naturstromspeicher in Gaildorf"

Das Unternehmen, welches am 31.08.2011 gegründet wurde, plant den Betrieb einer Demonstrationsanlage, in der ein Windpark mit einem Pumpspeicherkraftwerk kombiniert wird. Hierzu sollen vier Windenergieanlagen mit einer Leistung von jeweils 5 Megawatt errichtet werden. In die Bauwerke dieser Windkraftanlagen werden die Wasserspeicher integriert. Diese oberen Wasserspeicher sollen über eine Druckrohrleitung mit dem Kraftwerk und mit dem Unterbecken, einer bereits vorgesehenen Flutmulde, verbunden werden. Die elektrische Speicherkapazität des Pumpspeicherkraftwerks beträgt 70 Megawattstunden. Durch die Integration des oberen Wasserspeichers in die Bauwerke der Windkraft- anlagen kann auf den Bau eines gesonderten Oberbeckens verzichtet werden. Dadurch entfallen Baumaßnahmen sowie An- und Abtransport der Aushubmasse. Es können ca. 19.000 Lkw-Fahrten mit einem CO 2 -Ausstoß von ca. 400 Tonnen vermieden werden. Weiterhin entfallen Rodungsarbeiten einer Waldfläche von 2 bis 4 Hektar. Die Anlagenkonzeption erlaubt einen hohen Grad der Standardisierung, welcher in der Pumpspeichertechnik bisher nicht bekannt ist. Der Vorteil dieser neuartigen Anlage besteht unter anderem darin, dass die überschüssige regenerativ erzeugte Energie kurzfristig vor Ort gespeichert werden kann statt deren Erzeugung drosseln zu müssen. Die Anlage liefert neben der Stromerzeugung auch die fürdas zukünftige Energiesystem benötigte Flexibilität. Eine Kombination von Windenergieanlage und Wasserspeicher wurde bislang noch nicht umgesetzt. Eine weitere Neuerung stellt die Verwendung von unterirdisch verlegten, biegsamen PE (Polyethylen)-Rohren anstelle der üblichen teilweise oberirdisch verlegten, starren Stahlrohre für die Druckrohrleitungen dar. Dadurch wird die Landschaft geschont. Mit dem angestrebten Ausbau der erneuerbaren Energie wird der Bedarf an Energiespeichern zum Ausgleich von Einspeiseschwankungen zunehmen. Das Vorhaben wird einen Beitrag zur Etablierung solcher Speicher und damit zur besseren Integration der erneuerbaren Energien in das Energiesystem leisten. Branche: Energieversorgung Umweltbereich: Klimaschutz Fördernehmer: Naturstromspeicher Gaildorf GmbH & Co. KG Bundesland: Baden-Württemberg Laufzeit: seit 2014 Status: Laufend

Ressourcenschonender SB-Waschpark

Die Firma FAWA Fahrzeugwaschanlagen GmbH ist seit über 30 Jahren in der Fahrzeugreinigungsbranche tätig. Aktuell betreibt das Unternehmen zwei maschinelle Fahrzeugwaschanlagen im Stadtgebiet der Universitätsstadt Gießen. Beim Betrieb von Autowaschanlagen werden dem Waschwasser verschiedene Stoffe zugefügt, beispielsweise Tenside, Säuren oder Laugen zur Erhöhung der Reinigungsleistung. Außerdem gelangen bedingt durch den Reinigungsprozess selbst organische und anorganische Substanzen in den Wasserkreislauf. In Deutschland wird die Behandlung von Abwässern aus Autowaschanlagen im Rahmen der Abwasserverordnung geregelt. Zudem wird darin zwar auch festgelegt, dass Waschwasser weitestgehend im Kreislauf zu führen ist, allerdings greift diese Regelung nicht für SB-Waschplätze, da es sich hierbei nicht um eine maschinelle, sondern um eine manuelle Fahrzeugreinigung handelt. Standard-SB-Waschplätze haben allgemein folgenden Aufbau: Die Bodenabläufe der SB-Waschplätze enthalten selbst separate Schlamm- und Sandfänge, oder werden über Rohrleitungen in einen zentralen Schlammfang geführt. Danach ist ein Leichtflüssigkeitsabscheider installiert. Das verbrauchte Waschwasser wird dann in die Kanalisation eingeleitet, da die Qualität des Abwassers für eine Kreislaufführung nicht ausreicht. Im Rahmen dieses UIP-Projekts ist ein Kfz-Waschpark mit SB-Waschplätzen geplant, der mit Regenwassernutzung und einer membranbasierten Wasseraufbereitung ausgestattet ist und so fast komplett ohne Frischwasser auskommt. Darüber hinaus wird ein neutraler CO 2 -Betrieb mit Energieversorgung durch PV-Anlage und Energiespeicher sowie eine innovative Wärmerückgewinnung aus dem Betrieb von speziellen SB-Staubsaugern angestrebt. Durch die Realisierung des Vorhabens werden regenerative Energien effizient genutzt, Regenwasser verwendet und der Einsatz von Chemikalien minimiert. Durch Kreisläufe wird Grauwasser wieder zu Nutzwasser. Anfallende Wärme wird in den energetischen Kreislauf eingebunden und minimiert damit den energetischen Aufwand. Die Nutzung von Regenwasser reduziert im Projekt die projizierte notwendige Menge von Frischwasser auf null, wenn Niederschläge, wie in den vergangenen Jahren fallen. Wenn kein Regenwasser zur Verfügung steht, kann die nötige Qualität auch mittels Umkehrosmose erzeugt werden. Das Wasser, welches normalerweise aufgrund seiner hohen Salzfracht ins Stadtnetz eingeleitet werden würde, kann hier einfach zurück in den Entnahmebehälter geleitet werden. Dort vermischt es sich im Betrieb wieder mit dem Osmosewasser und kann so ohne Weiteres erneut aufbereitet werden. Der Bedarf an Osmosewasser beträgt etwa 20 Prozent des Gesamtbedarfs. Die Bereitstellung des Wassers durch die Aufbereitungsanlage folgt einfachen Regeln, welche in der Steuerung über die Zeit in Abhängigkeit vom Nutzungsverhalten, Wetterdaten und damit u.a. dem PV-Strom Aufkommen optimiert werden. Im weiteren Betrieb optimiert sich die Anlage bezüglich genauerer Vorhersagen, was die täglichen Bedarfsmengen betrifft. Gegenüber einer herkömmlichen Anlage werden voraussichtlich mindestens 1.050 Kubikmeter, gegenüber einer effizienten Anlage immer noch ca. 350 Kubikmeter Frischwasser eingespart. Regenwasser hat eine geringere Härte, dadurch und durch eine Erhöhung der Prozesswassertemperatur um ca. 5 Grad Celsius kann eine Reduzierung von bis zu 35 Prozent der schaumbildenden Chemie erreicht werden. Es können ca. 440 Liter Chemikalien eingespart werden. Trotz der 100-prozentigen Einsparung von Frischwasser kann die innovative Anlage mit dem gleichen Energiebedarf wie eine herkömmliche Anlage betrieben werden. Der Gesamtenergiebedarf reduziert sich bei der Projektanlage um ca. 6.800 Kilowattstunden auf 11.503 Kilowattstunden pro Jahr, was einer Reduktion von etwa 40 Prozent gegenüber einer effizienten Anlage entspricht. Besonders an der Anlage ist vor allem die sehr gute Übertragbarkeit der einzelnen Technologien in der Branche. Die Komponenten können fast alle, teilweise in abgewandelter Form, einfach in bereits bestehende SB-Waschanlagen, Portalanlagen und Waschstraßen integriert und nachgerüstet werden. Branche: Grundstücks- und Wohnungswesen und Sonstige Dienstleistungen Umweltbereich: Ressourcen Fördernehmer: FAWA Fahrzeugwaschanlagen GmbH Bundesland: Hessen Laufzeit: seit 2023 Status: Laufend

Sozio-ökonomische Folgenabschätzung zum Projektionsbericht 2024

Die sozio-ökonomische Folgenabschätzung des Projektionsberichts 2024 vergleicht das Mit-weiteren-Maßnahmen-⁠ Szenario ⁠ (MWMS) mit dem Mit-Maßnahmen-Szenario (MMS) hinsichtlich Investitionsbedarf, Kosteneinsparungen und gesamtwirtschaftlicher Auswirkungen. Analysiert werden Veränderungen in den Sektoren Energie, Industrie, Gebäude und Verkehr, ergänzt durch die Abschätzung von Arbeitsmarkteffekten sowie durch die Verteilungsanalyse der Instrumentenwirkungen auf verschiedene Haushaltsgruppen in den Sektoren Gebäude und Verkehr. Die Studie zeigt, dass im MWMS zusätzliche Investitionen in Gebäudehüllen, erneuerbare Heiztechnologien, Energiespeicher und elektrische Fahrzeuge erforderlich sind. Diese Investitionen bieten positive gesamtwirtschaftliche Effekte und stärken das BIP, während sie zugleich eine höhere Nachfrage nach Arbeitskräften, insbesondere in der Gebäudesanierung und Elektromobilität, schaffen. Die Verteilungsanalyse weist darauf hin, dass gerade im Bereich der Sanierung die bestehenden Förderprogramme oft noch nicht ausreichen, damit diese sich, insbesondere für einkommensschwache Haushalte, lohnen. Veröffentlicht in Treibhausgas-Projektionen für Deutschland.

Willingmann wirbt für E-Autos als Stromspeicher

Sachsen-Anhalt zählt bundesweit zu den Vorreitern beim Ausbau erneuerbarer Energien. Bereits heute wird hier viel Strom mit Windkraft und Photovoltaik erzeugt, manchmal sogar zu viel. Denn der Ausbau der Stromnetze hat erst in den vergangenen drei Jahren richtig Fahrt aufgenommen. Um grünen Strom besser einzusetzen und einen Beitrag zur klimaneutralen Transformation zu leisten, wirbt Sachsen-Anhalts Energieminister Prof. Dr. Armin Willingmann dafür, Elektroautos in den kommenden Jahren verstärkt als Stromspeicher zu nutzen. „An wind- und sonnenreichen Tagen müssen wir immer häufiger Windräder und PV-Anlagen herunterregeln, weil sonst die Netze überlastet werden. Neben dem weiteren Ausbau der Stromnetze, dem Bau von Großspeichern und Power-to-Heat-Anlagen könnten in den kommenden Jahren auch Elektroautos verstärkt als Energiespeicher genutzt werden“, erklärte Willingmann am heutigen Freitag. Denn mit einer durchschnittlichen Batterie eines Elektroautos könnte schon heute ein Vier-Personen-Haushalt gut zwei Tage mit Strom versorgt werden. Die Bundesregierung hatte im vergangenen Jahr bereits ein entsprechendes Gesetz auf den Weg gebracht, mit dem der Weg für das so genannte bidirektionale Laden regulatorisch und steuerlich geebnet werden sollte. Durch den Bruch der Berliner Regierungskoalition wurde das Gesetz zur Modernisierung und zum Bürokratieabbau im Strom- und Energiesteuerrecht im Bundestag jedoch nicht mehr verabschiedet. Willingmann hofft, dass die nächste Bundesregierung das Thema wieder aufgreifen wird. „Wir werden die Energiewende vor allem dann erfolgreich gestalten, wenn wir innovative Lösungen wie das bidirektionale Laden fördern“, so der Minister. „Wer eine PV-Anlage auf dem Dach hat, könnte den produzierten Strom gleich selbst im Auto speichern und nutzen. Darüber hinaus würden Stromverbraucher grundsätzlich profitieren, weil künftig weniger Erzeugungsanlagen kostenintensiv abgeregelt werden müssten.“ Nach Angaben der Bundesnetzagentur stieg die abgeregelte Leistung in Sachsen-Anhalt von 253 Gigawattstunden im Jahr 2020 auf 665 Gigawattstunden im Jahr 2023. Die Kosten für die Abregelung beliefen sich 2023 bundesweit auf 3,2 Milliarden Euro. Die Zahl der Elektroautos ist in Sachsen-Anhalt zuletzt beständig gestiegen. Zum 1. Oktober 2024 waren insgesamt 33.300 Fahrzeuge gemeldet, davon 18.676 reine Elektroautos und 14.041 Fahrzeuge mit Plug-In-Hybrid-Antrieb. Der Marktanteil belief sich auf 2,6 Prozent. Zum Vergleich: 2020 waren lediglich 2.589 Fahrzeuge gemeldet (Marktanteil: 0,2 Prozent). Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Mastodon und X

Balkonkraftwerk, Steckersolargerät

Steckersolargeräte reduzieren eigene Stromkosten - auch für Mieter*innen Wie Sie mit Balkon-Solaranlagen umweltfreundlich Strom erzeugen Die Südausrichtung der Module liefert die besten Erträge, Ost- oder Westausrichtungen sind ebenfalls möglich. Ein einzelnes Modul (ca. 400 Watt) ist aus finanzieller Sicht in der Regel die optimale Größe, weil damit die Haushaltsgrundlast gedeckt werden kann. Batteriespeicher lohnen sich bei Steckersolargeräten in der Regel nicht. Achten Sie darauf, dass das Gerät die in Deutschland geltende Anschlussnorm VDE-AR-N 4105 erfüllt. Normale Schutzkontaktstecker sind für die Stromeinspeisung u. a. aus Gründen des Personenschutzes nicht zulässig. Organisieren Sie eine Sammelbestellung , um zusätzliche Fahrten und Kosten der Spedition zu reduzieren. Achten Sie auf eine normgerechte Montage , die auch Windlasten standhält. Melden Sie das Steckersolargerät im Marktstammdatenregister an. Nutzen Sie das Steckersolargerät möglichst lange. Entsorgen Sie es anschließend sachgerecht bei Ihrer kommunalen Sammelstelle. Gewusst wie Steckersolargeräte (auch: Balkonkraftwerke, Mini-PV) erzeugen aus Sonnenlicht klimafreundlichen Strom. Mit ihnen können auch Mieter*innen einfach und unbürokratisch einen Teil ihres Strombedarfs kostengünstig selbst erzeugen und damit einen Beitrag zum Umstieg auf erneuerbare Energien leisten. Süd-, Ost- oder Westausrichtung möglich: Nach Süden ausgerichtete Module liefern im Jahresverlauf die höchsten Erträge. Bei nach Osten oder Westen ausgerichteten Modulen sind ebenfalls gute Erträge zu erwarten. Bei diesen Ausrichtungen passen Stromerzeugung und Stromverbrauch möglicherweise besser zusammen, da die Stromerträge morgens (bei Ostausrichtung) bzw. am späten Nachmittag (bei Westausrichtung) höher sind. Senkrecht am Balkongeländer angebrachte Module (90° „Dachneigung“) liefern im Sommer niedrigere, im Winter dafür etwas bessere Erträge. (Teil-)Verschattungen der Module können den Stromertrag deutlich reduzieren. Rechnerisch vereinfacht liefern im optimalen Anstellwinkel südausgerichtete Module ihre volle Nennleistung während 950 Stunden eines Jahres, die sogenannten Volllaststunden (tatsächlich arbeiten Photovoltaikanlagen meist in Teillast). Werden Module senkrecht am Balkon montiert, sinkt der Jahresertrag um ca. 30 Prozent (d.h. 665 Volllaststunden). Ein so montiertes Steckersolargerät mit 800 Watt hat demnach einen Jahresertrag von 532 Kilowattstunden (kWh). Davon können ohne Speicher in Durchschnitt 45 Prozent zeitgleich im Haushalt verbraucht werden, d.h. 240 Kilowattstunden. Bei einem angenommenen Arbeitspreis von 37 ct/kWh ergeben sich Einsparungen von knapp 90 Euro pro Jahr. Bei Kosten von 400 Euro dauert es dementsprechend knapp fünf Jahre bis die Anschaffungskosten eingespart wurden. Steigt der Strompreis zwischenzeitlich an, kann sich die Amortisation beschleunigen. Ein Modul meist ausreichend: Balkonsolaranlagen sind vollständig auf den zeitgleichen Eigenverbrauch ausgerichtet. Stromüberschüsse werden unvergütet ins öffentliche Stromnetz eingespeist. Daher ist es – im Unterschied zu größeren Photovoltaikanlagen – besonders sinnvoll, die Anlagengröße an den eigenen Stromverbrauch anzupassen. Die Dauerlast in durchschnittlichen Haushalten liegt meist deutlich unter 100 Watt. Daher kann bereits ein einzelnes Modul mit z. B. 400 Watt Leistung die ökonomisch sinnvollste Variante sein. Die passende Größe können Sie mit dem Stecker-Solar-Simulator der HTW Berlin ermitteln. Neben den klassischen Glasmodulen mit Aluminiumrahmen können auch Steckersolargeräte mit flexiblen ETFE-Modulen genutzt werden, die geringere Anforderungen an die Montage stellen. Dieser Rechner zeigt Ihnen, wie viel Strom und Geld Sie mit ei­nem Stecker­solar­gerät am Balkon, an der Haus­wand oder auf dem Dach ein­sparen. Batteriespeicher bei Steckersolargeräten unrentabel: Überschüssiger Solarstrom wird bei Steckersolargeräten ohne Vergütung ins Netz eingespeist. Es erscheint deshalb naheliegend, durch Batteriespeicher diesen überschüssigen Strom zu speichern und ebenfalls für den Eigenverbrauch nutzbar zu machen. Aber ein sehr großer Teil der Stromerzeugung aus Steckersolargeräten wird bereits zeitgleich direkt im Haushalt verbraucht. Die überschüssige Stromerzeugung dürfte daher – gerade in den Wintermonaten – kaum ausreichen, um den Speicher effektiv zu beladen. Im Verhältnis zu den hohen Anschaffungskosten wird er sich darum in der Regel nicht lohnen. Aus Umweltsicht sind Energiespeicher auf Netzebene zu bevorzugen und von Heimspeichern eher abzuraten, da Heimspeicher in der Regel auf Eigenverbrauch und nicht im Hinblick auf den gesamten Netzbedarf optimiert werden. Normgerechte Geräte kaufen: Achten Sie beim Kauf darauf, dass der enthaltene Wechselrichter die in Deutschland geltende Anschlussnorm VDE-AR-N 4105 erfüllt. Demnach dürfen nur Geräte mit einer Wechselrichterleistung von derzeit bis zu 600 Voltampere (Watt) durch elektrotechnische Laien in Betrieb genommen werden. Anschluss an das Hausnetz: Vielfach werden Steckersolargeräte mit einem klassischen Schutzkontaktstecker (Schuko-Stecker) angeboten. Dieser ist allerdings für die Stromeinspeisung bisher nicht zugelassen, da die Gefahr eines Stromschlags besteht, wenn der Stecker nicht eingesteckt ist, die Solaranlage aber Strom produziert. Die Anschlussnorm soll bis Sommer 2025 überarbeitet werden. Derzeit sieht sie als Stand der Technik eine spezielle Energiesteckdose oder einen Festanschluss vor. Wenden Sie sich für die Einbindung in das Hausnetz am besten an eine Elektrofachkraft. Achtung: Aus Brandschutzgründen darf ein Steckersolargerät auf keinen Fall über eine Mehrfachsteckdose an das Hausnetz angeschlossen werden! Transport sorgsam planen: Für Steckersolargeräte werden meist marktgängige Photovoltaikmodule mit Abmessungen von ca. 1,8 x 1,0 m genutzt. Wenn Sie ein Steckersolargerät vor Ort kaufen, achten Sie auf einen sicheren Transport. Wenn das Modul z B. aus Platzmangel quer aufgestellt im Kofferraum transportiert wird, können bereits beim Transport Mikrorisse entstehen, die die Leistungsfähigkeit beeinträchtigen und die Lebensdauer verkürzen. Darum erfolgt die Anlieferung meist mit einer Spedition. Angesichts hoher Speditionskosten und langer Fahrtwege bietet es sich an, gleich eine Sammelbestellung z. B. mit Ihren Nachbarn aufzugeben. Auf stabile Anbringung achten: Standard-Solarmodule wiegen jeweils etwa 20 Kilogramm und tragen zudem eine Windlast z. B. in das Balkongeländer ein (Eurocode 1: DIN EN 1991-1-4:2010-12: Teil 1 bis 4). Insbesondere bei schräg installierten Modulen müssen zusätzlich die Schneelasten (DIN EN 1991-1-3) berücksichtigt werden. Sowohl das Balkongeländer als auch die Unterkonstruktion und das Montagematerial müssen diesen Kräften sicher standhalten können. Beachten Sie deshalb unbedingt die Montagehinweise des Herstellers. Kabelbinder sind z. B. zur Anbringung definitiv nicht geeignet. Wenn Sie sich unsicher sind, lassen Sie die Montage am besten von Fachkräften durchführen. Beim Marktstammregister anmelden: Steckersolargeräte müssen Sie nicht beim Netzbetreiber, wohl aber innerhalb eines Monats nach Inbetriebnahme im Marktstammdatenregister der Bundesnetzagentur anmelden. Dabei werden nur wenige Daten abgefragt. Die Bundesnetzagentur bietet hierfür auch eine einseitige Anleitung als PDF . Balkon-Solaranlagen müssen innerhalb eines Monats nach Inbetriebnahme im Marktstammdatenregister der Bundesnetzagentur angemeldet werden. Defekte Module richtig entsorgen: Photovoltaikmodule halten im Regelfall 20 bis 30 Jahre. Für die Herstellung werden Ressourcen und Energie aufgewendet. Je länger ein Steckersolargerät genutzt wird, desto geringer sind folglich die Umweltwirkungen pro erzeugte Kilowattstunde. Nach ein bis zwei Jahren haben Photovoltaikanlagen so viel Energie erzeugt, wie für deren Herstellung und Entsorgung aufgewendet wird. Sie sind gesetzlich verpflichtet, Elektroaltgeräte getrennt vom übrigen Müll z. B. über den kommunalen Wertstoffhof zu entsorgen, sodass diese fachgerecht recycelt werden können. Dies gilt entsprechend auch für nicht mehr funktionstüchtige Steckersolargeräte. Weitere Informationen zur richtigen Entsorgung Ihres Steckersolargerätes und anderer Elektroaltgeräte finden Sie in unserem ⁠UBA⁠-Umwelttipp Alte Elektrogeräte richtig entsorgen . Was Sie sonst noch tun können: Einige Bundesländer und Gemeinden bieten Zuschussförderungen für Steckersolargeräte an. Fragen Sie gegebenenfalls bei Ihrer Gemeinde nach. Für die Wirtschaftlichkeit ist in der Regel keine Förderung notwendig, da sich Steckersolargeräte durch den hohen Eigenverbrauch meist innerhalb weniger Jahre amortisieren. Hintergrund Weitere Informationen zu Steckersolaranlagen finden Sie auf unserer ⁠ UBA ⁠-Themenseite Steckersolargeräte (Balkonkraftwerke) .

INSPIRE: Information system salt structures: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air) (InSpEE)

InSpEE (INSPIRE) provides information about the areal distribution of salt structures (salt domes and salt pillows) in Northern Germany. Contours of the salt structures can be displayed at horizontal cross-sections at four different depths up to a maximum depth of 2000 m below NN. The geodata have resulted from a BMWi-funded research project “InSpEE” running from the year 2012 to 2015. The acronym stands for "Information system salt structures: planning basis, selection criteria and estimation of the potential for the construction of salt caverns for the storage of renewable energies (hydrogen and compressed air)”. Additionally four horizontal cross-section maps display the stratigraphical situation at a given depth. In concurrence of maps at different depths areal bedding conditions can be determined, e.g. to generally assess and interpret the spread of different stratigraphic units. Clearly visible are extent and shape of the salt structures within their regional context at the different depths, with extent and boundary of the salt structures having been the main focus of the project. Four horizontal cross-section maps covering the whole onshore area of Northern Germany have been developed at a scale of 1:500.000. The maps cover the depths of -500, -1000, -1500, -2000 m below NN. The four depths are based on typical depth requirements of existing salt caverns in Northern Germany, mainly related to hydrocarbon storage. The shapes of the structures show rudimentary information of their geometry and their change with depths. In addition they form the starting point for rock mechanical calculations necessary for the planning and construction of salt caverns for storage as well as for assessing storage potentials. The maps can be used as a pre-selection tool for subsurface uses. It can also be used to assess coverage and extension of salt structures. Offshore areas were not treated within the project. All horizontal cross-section maps were adjusted with the respective state geological survey organisations. According to the Data Specification on Geology (D2.8.II.4_v3.0) the content of InSpEE (INSPIRE) is stored in 15 INSPIRE-compliant GML files: InSpEE_GeologicUnit_Salt_structure_types.gml contains the salt structure types (salt domes and salt pillows), InSpEE_GeologicUnit_Salt_pillow_remnants.gml comprises the salt pillow remnants, InSpEE_GeologicUnit_Structure_building_salinar.gml represents the structural salinar(s), the four files InSpEE_Structural_outlines_500.gml, InSpEE_Structural_outlines_1000.gml, InSpEE_Structural_outlines_1500.gml and InSpEE_Structural_outlines_2000.gml represent the structural outlines in the corresponding horizontal cross-sections, the four files InSpEE_GeologicUnit_Cross_Section_500, InSpEE_GeologicUnit_Cross_Section_1000, InSpEE_GeologicUnit_Cross_Section_1500 and InSpEE_GeologicUnit_Cross_Section_2000 display the stratigraphical situation in the corresponding horizontal cross-sections and the four files InSpEE_GeologicStructure_500.gml, InSpEE_GeologicStructure_1000.gml, InSpEE_GeologicStructure_1500.gml and InSpEE_GeologicStructure_2000.gml comprise the relevant fault traces in the corresponding horizontal cross-sections. The GML files together with a Readme.txt file are provided in ZIP format (InSpEE-INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

Weltweit erste Fertigung von neuartigem Speicher-Material // Willingmann überreicht Förderbescheid über 18,3 Millionen Euro

Weltneuheit – made in Sachsen-Anhalt! Das 2009 gegründete Unternehmen Skeleton Materials wird im Chemiepark Bitterfeld-Wolfen die weltweit erste Fabrik zur industriellen Produktion von „Curved Graphene“ errichten. Das neuartige Material ermöglicht deutlich leistungsstärkere Energiespeicher und ist in der Herstellung zudem erheblich umweltschonender als herkömmliches Graphit, das derzeit fast ausschließlich aus chinesischen Raffinerien stammt. Das Energieministerium unterstützt die innovative Investition mit 18,3 Millionen Euro. Den Förderbescheid hat Minister Prof. Dr. Armin Willingmann am heutigen Montag an den Geschäftsführer von Skeleton Materials, Dr. Linus Froböse, überreicht. Insgesamt will das Unternehmen nach eigenen Angaben rund 42 Millionen Euro investieren und zunächst etwa 35 neue Arbeitsplätze schaffen. Willingmann betonte: „Energiespeicher sind eine Schlüsseltechnologie für die Energiewende. Wer hier technologisch die Nase vorn hat, setzt Maßstäbe für die eigene Wettbewerbsfähigkeit und darüber hinaus für unseren notwendigen Weg hin zur Klimaneutralität. Ich freue mich außerordentlich, dass künftig auch in vielen Hochleistungs-Energiespeichern ein Stück Sachsen-Anhalt steckt. Damit stärken wir unsere Zugkraft als Land der Zukunftstechnologien.“ Dr. Linus Froböse fügte hinzu: „Investitionen in Materialentwicklung waren bei Skeleton schon immer ein zentraler Schwerpunkt: Die Skalierung der Produktion von ‚Curved Graphene‘ im industriellen Maßstab ist das Ergebnis von zwei Jahrzehnten Entwicklung. Die Förderung durch das Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt zeigt, dass Deutschland und Europa bereit sind, unsere eigene Industrie sowie die europäische Rohstoff- und Energieunabhängigkeit voranzutreiben. Unsere Skalierung der Produktion wird es uns ermöglichen, Kunden in Schlüsselindustrien weltweit zu bedienen, einschließlich in den Bereichen Netzstabilität und KI-Rechenzentren, während wir gleichzeitig Industrie und Arbeitsplätze vor Ort ausbauen.” Für moderne Lithium-Ionen-Batterien und andere Energiespeicher werden auch Kohlenstoff-Rohmaterialien benötigt. Derzeit wird vor allem Graphit genutzt, das weit überwiegend aus Raffinerien in China stammt. Im Vergleich dazu ermöglicht das von Skeleton Materials entwickelte und patentierte „Curved Graphene“ nach Unternehmensangaben die Produktion von Energiespeichern mit deutlich höherer Leistungsdichte – und ist daher vor allem für die Anwendung in Sektoren interessant, die vergleichsweise schwer zu dekarbonisieren sind. Diese Hochleistungs-Energiespeicher – so genannte Superkondensatoren – kommen in verschiedenen Bereichen zum Einsatz, von der Automobilindustrie über die Energieversorgung bis hin zum Schwerlasttransport oder der Satellitentechnologie. Die Besonderheit von „Curved Graphene“ besteht darin, dass die glatte Oberfläche des Kohlenstoffs gekrümmt wird – ähnlich einem zerknüllten Blatt Papier. Dies erhöht sowohl die Leistung als auch Lebensdauer der Superkondensatoren. Gleichzeitig entstehen bei der Produktion von „Curved Graphene“ im Vergleich zu Graphit gut zehnmal weniger CO2-Äquivalente sowie keine schädlichen Abgase wie etwa Kohlenstoffmonoxid und Stickoxide. Hinzu kommt: Vier der fünf Ausgangsstoffe für die Herstellung von „Curved Graphene“ kommen direkt aus dem Chemiepark Bitterfeld-Wolfen, das fünfte aus Europa. Dadurch gibt es keine Abhängigkeit von Lieferanten außerhalb Europas. Skeleton ist auf die Produktion von Superkondensatoren mit erhöhter Energiedichte auf Basis von karbid-basiertem Kohlenstoff spezialisiert. Für die Entwicklung von „Curved Graphene“ erhielten drei Skeleton-Forscher 2022 den „European Inventor Award“. 2019 wurde das Unternehmen zudem mit dem „Hugo-Junkers-Preis für Forschung und Innovation aus Sachsen-Anhalt“ ausgezeichnet. Die Förderung stammt aus dem Programm „Ressourceneffizienz KMU“ und wird aus dem Europäischen „Fonds für einen gerechten Übergang“ (Just Transition Fund – JTF) finanziert. Damit soll der Strukturwandel in den vom Braunkohleausstieg betroffenen Regionen weiter vorangebracht werden. Aktuelle Informationen zu interessanten Themen aus Wissenschaft, Energie, Klimaschutz und Umwelt gibt es auch auf den Social-Media-Kanälen des Ministeriums bei Facebook, Instagram, LinkedIn, Threads, Bluesky, Mastodon und X (ehemals Twitter). Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950 Fax: +49 391 567-1964 E-Mail: PR@mule.sachsen-anhalt.de

1 2 3 4 5247 248 249