API src

Found 10067 results.

Related terms

Branchenabhängiger Energieverbrauch des verarbeitenden Gewerbes

<p>Alle Wirtschaftsbereiche zusammen verbrauchen fast drei Viertel der in Deutschland benötigten Primärenergie. Der Anteil des verarbeitenden Gewerbes am Primärenergieverbrauch aller Produktionsbereiche lag 2022 bei rund 46 Prozent. Der Energiebedarf dieses Gewerbes blieb im Zeitraum 2010 bis 2022 etwa konstant, der spezifische Energieverbrauch pro Tonne Stahl, Glas oder Chemikalien ging aber zurück.</p><p>Der Energiebedarf Deutschlands</p><p>Der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 2022 nach dem Inländerkonzept rund 11.854 Petajoule (PJ). Dabei wird der Verbrauch inländischer Wirtschaftseinheiten in der übrigen Welt in die Berechnung des Gesamtverbrauchs einbezogen, während der Verbrauch gebietsfremder Einheiten im Inland unberücksichtigt bleibt. Die privaten Haushalte in Deutschland verbrauchten rund 30 % der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠. Die Wirtschaft mit ihren vielen Produktionsbereichen benötigte die übrigen 70 %. Zu diesen Bereichen zählen das Herstellen von Waren, das Versorgen mit Energie und der Warentransport. All diese Produktionsbereiche verbrauchten im Jahr 2022 zusammen mehr als 8.170 PJ Primärenergie (siehe Abb. „Primärenergieverbrauch 2022 (Inländerkonzept)“).</p><p>Zur Begriffsklärung: Mit der Präposition „primär“ betonen Fachleute, dass der <a href="https://www.umweltbundesamt.de/daten/energie/primaerenergiegewinnung-importe">“Primär“-Energiebedarf</a> sowohl den realen Energiebedarf bei Energieverbrauchern erfasst als auch die Energieverluste, die bei der Bereitstellung und beim Transport von Energie entstehen. Und diese Verluste sind hoch: Mehr als ein Drittel aller Primärenergie geht bei der Bereitstellung und beim Transport von Energie verloren <a href="https://www.destatis.de/GPStatistik/receive/DEMonografie_monografie_00003790">(Statistisches Bundesamt 2006)</a>.</p><p>Der Energiebedarf des verarbeitenden Gewerbes</p><p>Die Firmen, die Waren herstellen, werden als „verarbeitendes Gewerbe“ bezeichnet. Sie hatten von allen Produktionsbereichen im Jahr 2022 mit circa 3.768 PJ den größten Primärenergiebedarf. Das ist ein Anteil von rund 46 % am Energieverbrauch aller Produktionsbereiche. Der nächstgrößte Energieverbraucher war die Energieversorgung mit 1.594 PJ (oder 19,5 % Anteil am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠), gefolgt vom Verkehr mit 1.121 PJ (oder 13,7 % Anteil am Primärenergieverbrauch) (siehe Abb. „Anteil wirtschaftlicher Aktivitäten am Primärenergieverbrauch aller Produktionsbereiche 2022“).</p><p>Primärenergienutzung des verarbeitenden Gewerbes</p><p>Die Primärenergienutzung innerhalb des verarbeitenden Gewerbes verteilt sich auf verschiedene Produktionssektoren (siehe Abb. „Anteile der Sektoren am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠ des verarbeitenden Gewerbes 2022“). Ein wichtiger Sektor ist dabei die Chemieindustrie. Sie benötigte im Jahr 2022 mit rund 1.592 PJ von allen Sektoren am meisten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠ zur Herstellung ihrer Erzeugnisse. Das ist ein Anteil von 42,3 % am Energieverbrauch im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>⁠. Weitere wichtige Energienutzer sind die Metallindustrie mit einem Anteil von 14,7 % sowie die Hersteller von Glas, Glaswaren, Keramik, verarbeiteten Steinen und Erden mit 7,3 % am Energieverbrauch im verarbeitenden Gewerbe.</p><p>Die Energie wird Unternehmen dabei als elektrischer Strom, als Wärme (etwa als Dampf oder Thermoöl) sowie direkt in Form von Brennstoffen (wie Erdgas, Kohle oder ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠) zur Verfügung gestellt.</p><p>Gleichbleibender Primärenergieverbrauch</p><p>Seit dem Jahr 2010 blieb der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠ in fast allen Produktionssektoren relativ konstant (siehe Abb. „Primärenergieverbrauch ausgewählter Sektoren des verarbeitenden Gewerbes“).</p><p>Gesunkene und gestiegene Primärenergieintensität </p><p>Die Primärenergieintensität beschreibt, wie viel ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠ bezogen auf die erzielte Bruttowertschöpfung eines Produktionsbereichs oder Wirtschaftszweigs verbraucht wird. Die Entwicklung dieser Energieintensität über mehrere Jahre kann einen Hinweis darauf geben, ob in einem Wirtschaftszweig energieeffizient gearbeitet wird.</p><p>Die Primärenergieintensität einzelner Wirtschaftszweige entwickelte sich im Zeitraum 2010 bis 2021 unterschiedlich (siehe Abb. „Primärenergieintensität ausgewählter Sektoren des verarbeitenden Gewerbes“):</p><p>Begrenzte Aussagekraft der Primärenergieintensität</p><p>Schwankende Preise für Rohstoffe und Produkte sowie andere äußere Wirtschaftsfaktoren oder ggf. auch die Auswirkungen der weltweiten Corona-Pandemie beeinflussen zwar die Bruttowertschöpfung, nicht aber die Energieeffizienz eines Prozesses. Die Primärenergieintensität eignet sich daher nur eingeschränkt, um die Entwicklung der Energieeffizienz in den jeweiligen Herstellungsprozessen zu beschreiben. Dies ist unter anderem deutlich bei den Kokerei- und Mineralölerzeugnissen zu sehen.</p>

Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung, Teilvorhaben: D4-3_Boehringer Ingelheim

Energie - Biomasseanlagen inkl. Biogasanlagen

Der Kartendienst (WMS-Gruppe) stellt die digitalen Geodaten aus dem Bereich Erneuerbare Energien des Saarlandes dar.:Anlagen zur Erzeugung von Biogas durch Vergärung von Biomasse. In folgender Datenabfrage sind alle aufgeführten Biomasseanlagen aus dem Marktstammdatenregister (MaStR) der Bundesnetzagentur (BNetzA) für das Saarland aggregiert und nach Hauptbrennstoff dargestellt. Stand: 20.02.2024

kommunale Wärmeplanung Moers - potenzielle Wärmenetzerweiterung

Der vorliegende Datensatz wurde im Rahmen der kommunalen Wärmeplanung der Stadt Moers erstellt und zeigt die potenziellen Wärmenetzerweiterungsgebiete auf Baublockebene, unterteilt nach Potenzialgebieten und Prüfgebieten. Bei Letzteren ist die Eignung für ein Wärmenetz aufgrund der Daten, die im Rahmen der kommunalen Wärmeplanung erhoben wurden, nicht eindeutig und sollte einer näheren Prüfung unterzogen werden. Aufgrund der Darstellung auf Baublockebene muss die potenzielle Wärmenetzerweiterung nicht jedes Gebäude in dem jeweiligen Baublock betreffen.

DeCarbonisierung der Wärmeversorgung am Geothermie-Modellstandort Schwerin, Teilvorhaben: Entwicklung eines nachhaltigen Erschließungs-und Bewirtschaftungskonzepts der hydrothermalen Lagerstätte

Die Mitteltiefe Geothermie hat durch die Erschließung eines hochproduktiven Sandsteinreservoirs in der Landeshauptstadt Schwerin, das ab 2023 mit ca. 7,5 MWth Heiznennleistung (= 5,7 MWth geothermische Leistung) etwa 10 % des Fernwärmebedarfs abdecken wird, einen entscheidenden Impuls erfahren. Diesen Impuls wollen die Energieversorgung Schwerin GmbH & Co. Erzeugung KG, nachfolgend EVSE, nutzen und die Leistung geothermischer Wärme in der Fernwärmeversorgung auf 67 MWth im Jahr 2035 steigern und dadurch mindestens 65 % des Fernwärmebedarfs bereitstellen. Das Verbundvorhaben DeCarbSN schafft die wissenschaftliche Basis (Know-how), dieses langfristige Ausbauziel durch folgende Schwerpunkte zu erreichen: (1)Entwicklung eines digitalen 3D-Reservoirmodells (digital twin) auf Grundlage hochauflösender 3D-Seismikdaten, (2)Wissenschaftliche Begleitung einer optimierten Erschließung am Standort Schwerin-Lewenberg zur Steigerung der Dublettenleistung auf 300 m³/h (Ausbaustufe I), (3)Thermo-hydraulische Laborstudien, Durchflussversuche und numerische Modellierung für die Maximierung der Dublettenleistung auf 500 m³/h (Ausbaustufe II), (4)Entwicklung eines nachhaltigen Erschließungs- und Bewirtschaftungskonzepts der hydrothermalen Lagerstätte und Integration in das Fernwärmenetz der Stadtwerke Schwerin (5)Öffentlichkeitsarbeit, Wissenstransfer und Upscaling. Das Gesamtziel des Verbundvorhabens DeCarbSN ist die Dekarbonisierung der Fernwärmeversorgung in Norddeutschland durch Ausbau der Mitteltiefen Geothermie. Der Modellstandort Schwerin steht hier exemplarisch für norddeutsche Mittel- und Großstädte mit bereits vorhandenen Wärmenetzen, so dass das entwickelte Know-how auf weitere Standorte mit vergleichbarer kommunaler Infrastruktur übertragen werden kann. Dadurch bietet sich ein geschätztes Potenzial für den Zubau von 400-800 MWth geothermischer Leistung bis 2035.

KI unterstützte Kommunikationstechnologien zur dynamischen Optimierung von Mobilität und Energiespeichern zur Frequenzstabilisierung und Energieversorgung, Teilvorhaben CampusGenius: Automated Integration with the 5G-Core

Das Ökosystem der Stromnetze ist auf dem Weg zu einem dezentralisierten Energieversorgungs- und Verteilungssystem. Haushalte können mit erneuerbaren Energiequellen wie Sonnenkollektoren oder Windgeneratoren, als verteilte Energieressourcen (DERs - Distributed Energy Resources) bezeichnet, unabhängig von den Stromanbietern operieren und Energie zurück an das Hauptnetz verkaufen. Für die Realisierung dieser Transformation des Stromnetzes wird eine kompetente Kommunikationsinfrastruktur benötigt. Die Einführung des Standards 5G in Mobilfunknetze erleichtert die Entwicklung zukünftiger Energieverwaltungslösungen. Weiterhin ermöglichen neue Technologien die Entwicklung intelligenter Algorithmen für die Steuerung zukünftiger Stromnetze. Hierzu gehören das Internet der Dinge (Internet of Things, IoT), Vernetzung über Mesh-Netzwerke zur Fernüberwachung des Netzstatus und die Künstliche Intelligenz (KI) für Management und Koordination. In Dymobat wird ein Single-User-Controller für die Verwaltung der einzelnen DERs auch unter Einsatz von privaten 5G-Netzwerken entwickelt. Anschließend wird eine zentrale Steuerungseinheit für die Synchronisierung und Optimierung des Netzbetriebs innerhalb einer kleinen Gruppe von DERs, einem Microgrid, entworfen. Die Kommunikation zwischen und innerhalb der DER soll mittels Mobilfunktechnologie erfolgen. Dabei soll die Energieoptimierung mittels KI-Algorithmen erfolgen und auch den Energietransport mit Fahrzeugen berücksichtigen. Die softwareseitige Integration der KI-Algorithmen und des Energiemanagementsystems in das Kommunikationssystem ist ein wesentlicher Bestandteil dieses Projektes. Die entwickelten Algorithmen werden virtuell in einem Testbed-Modell anhand von realen Eingangsparametern erprobt, optimiert und validiert. Im zweiten Schritt wird ein reales Testfeld konzipiert, installiert und die Leistungsfähigkeit der modellhaft erprobten Algorithmen in einer realen Testumgebung bewertet.

Geologische und verfahrenstechnische Möglichkeiten der Erdwärmenutzung am Standort der Medizinischen Hochschule Hannover (MHH)

Für die Medizinische Hochschule Hannover hat das GeothermieZentrum Bochum gemeinsam mit der GeoDienste GmbH (Garbsen) im Zeitraum von August 2007 bis März 2008 eine Vorstudie zur Einbindung der Geothermie in das Energiekonzept des Klinikums erstellt. Im Anschluss an diese Vorstudie wurde eine Wirtschaftlichkeitsanalyse erstellt, welche die petrothermale und hydrothermale Versorgung betrachtete. Vorstudie: Die Medizinische Hochschule Hannover (MHH) wird derzeit von den Stadtwerken Hannover mit den Medien Gas, Strom und Fernwärme zur Erzeugung ihrer dreigliedrigen Energieversorgung, bestehend aus Dampf, Raumwärme und Klimakälte, versorgt. Aufgrund der hydrogeologischen Situation am Standort der MHH in Hannover wird eine Einbindung der Geothermie sowohl in den Heizkreislauf (direkte Integration über Wärmetauscher) als auch in den Kälteklimakreislauf (modular betriebene Absorptionskältemaschinen) vorgeschlagen. Ziel der Einbindung ist es konventionelle, preislich fluktuierende und primärenergetisch nachteilige Energieträger, wie in erster Linie elektrischen Strom und nachrangig Fernwärme oder Gas, durch den Einsatz der Geothermie vollständig, oder im Rahmen der Leistungsfähigkeit des geothermischen Reservoirs teilweise, zu ersetzen. Wirtschaftlichkeit, CO2-Bilanz und Versorgungssicherheit stehend dabei im Vordergrund. Die Grundlastfähigkeit der Geothermie wird in der vorgeschlagenen Anlagenkonfiguration vollständig ausgenutzt. Im Bereich der Spitzenlastdeckung spielt die Geothermie daher keine Rolle. Die geothermisch unterstützte Dampferzeugung findet im betrachteten Szenario keinen Eingang. Dies liegt in der internen Wärmerückgewinnung im Dampferzeuger durch den Economizer zur Vorwärmung des Speise- und Verbrauchswassers begründet. Da die Geothermie bei der Dampfherstellung nur einen geringen energetischen Beitrag leisten kann und Investitionen für ihre Anbindung an das Dampferzeugersystem entstehen, wird von der Betrachtung dieser Systeme abgesehen. Übersteigt die Bereitstellung von geothermischer Energie im Heiz- oder Kühlfall die Energienachfrage, lassen sich Pufferspeicher integrieren um diese überschüssig Energie effizient zu speichern. Bei Lastspitzen kann die Energie zurückgewonnen werden. Somit erhöht sich der geothermische Anteil an der Gesamtenergiebereitstellung. Wirtschaftlichkeitsanalyse: Hier wurden 9 verschiedene Szenarien untersucht, welche sich aufgrund ihrer Art (petrothermal / hydrothermal), der Bohrtiefe (4500 / 3000 m), ihrer Schüttung (15-50 l/s), Temperatur (115 / 160 Grad C) oder Bereitstellung (Wärme / Strom+Wärme) unterscheiden. Die höheren Investitionskosten für die petrothermalen Systeme werden durch die höhere Energieausbeute (Schüttung und Temperatur) abgefangen und diese somit wirtschaftlicher als die hydrothermalen Systeme, welche sich in der Amortisationsrechnung nur aufgrund der steigenden Energiepreise nach einigen Jahren rechnen.

Demonstration umweltgerechter Ver- und Entsorgungssysteme auf ausgewählten Berg- und Schutzhütten am Beispiel der Göppinger Hütte auf 2.245 m ü. NN im Lechquellengebirge in Vorarlberg / Österreich^Förderung von Planungsleistungen für das geplante Projekt, Demonstration umweltgerechter Ver- und Entsorgungssysteme für ausgewählte Berg- und Schutzhütten am Beispiel der Göppinger Hütte im Lechquellengebirge in Vorarlberg, Österreich

Die Göppinger Hütte liegt auf 2245 m.ü.NN. in Österreich, Vorarlberg, im Karstgebiet. Das Trinkwasser für den Hüttenbetrieb wird aus einem Schneefeld bezogen, bzw. gegen Ende der Saison wird Regenwasser genutzt. Durch die Installation einer neuen UV-Anlage wird die Hütte mit hygienisch einwandfreiem Trinkwasser versorgt werden. Bisher traten in warmen Perioden Engpässe in der Wasserversorgung auf. Daraufhin stand zur Diskussion, ob der Speicherbehälter erweitert werden soll. Unter ökologischen Gesichtspunkten sollte allerdings zuerst der Hüttenbetrieb auf Einsparungsmaßnahmen untersucht werden. Im Küchenbereich wurde bereits bei den zurückliegenden Anschaffungen auf wassersparende Geräte Wert gelegt. Als größter Wasserverbraucher wurde die Toilettenanlagen mit 9 l Spülkästen festgestellt. Hier besteht das größte Einsparpotential. Durch die Installation von urinseparierenden Komposttoiletten und wasserlosen Urinalen soll dieses Potential voll ausgeschöpft werden. Der anfallende Urin wird als Teilstrom separat gesammelt und mittels Materialseilbahn zur unterhalb gelegenen Alpe transportiert und dort in eine Güllegrube gegeben. Dadurch wird eine einfachere Abwasserreinigung möglich und das Hüttenumfeld vor dem Eintrag von Nährstoffen geschützt. Das Abwasser wird derzeit in eine 2 Kammer-Grube geleitet und bei Vollfüllung ausgepumpt und der Schlamm im Hüttenumfeld verbracht. Durch die Änderungen im Sanitärbereich, verändert sich auch die Zusammensetzung des verbleibenden Abwassers. Bei Installation einer Komposttoilette muss lediglich der sogenannte Teilstrom Grauwasser gereinigt werden (26). Nach einem Variantenvergleich, der die speziellen Randbedingungen der Göppinger Hütte berücksichtigt hat, wurde als Vorzugsvariante eine mechanische Vorreinigung über eine Filtersackanlage mit einer anschließenden biologischen Reinigung in einem bewachsenen Bodenfilter gewählt. Das Küchenabwasser wird zusätzlich an einen Fettfang angeschlossen. Die Abwasserreinigungsanlage benötigt sehr wenig Energie (26) und ist gut in die Landschaft einzugliedern. Es werden durch diese Anlage mindestens die Grenzwerte für den biologischen Abbau der Extremlagen-Verordnung eingehalten. Durch diese Reinigung wird das ökologische Gleichgewicht der Umgebung der Hütte weitgehend entlastet . Durch einem gestiegenen Bedarf an Energie der Göppinger Hütte sowie durch die geplanten Anlagen (UV-Entkeimung und Abwasserreinigung) wird die Energieversorgung neu überplant. Derzeit existiert eine Photovoltaikanlage, über die auch die Materialseilbahn betrieben wird. Als Notstromversorgung dient ein Dieselaggregat. Der Gastraum wird über einen Kachelofen beheizt. Das erstellte Energiekonzept sieht in einem ersten Schritt eine verbesserte Wärmedämmung der Gaststube vor, ein wärmegedämmtes Warmwasserverteilnetz sowie den Ersatz einzelner Verbraucher durch energiesparende Einheiten. (Text gekürzt)

EVI Energieversorgung Hildesheim GmbH & Co. KG - Fernwärmeversorgung.

Die EVI Energieversorgung Hildesheim ist ein Tochterunternehmen der Stadtwerke Hildesheim AG. Als modernes und dienstleistungsorientiertes Unternehmen bieten wir Ihnen eine sichere Energie- und Wasserversorgung zu wettbewerbsfähigen Konditionen. Zusätzlich profitieren Sie von unseren Service- und Beratungsleistungen. In unser Fernwärmenetz wird ausschließlich Wärme eigespeist, die in unserem Holzhackschnitzelheizkraftwerk erzeugt wird. Dieses produziert neben Wärme auch Ökostrom durch die Verbrennung von Biomasse in Form von Holzhackschnitzeln. Diese werden ausschließlich aus Waldresthölzern gewonnen.

Regionale Energiewende aktiv gestalten, Teilvorhaben: Neue Methoden zur Stakeholder-Einbindung und -Sensibilisierung für Energiewendemaßnahmen

1 2 3 4 51005 1006 1007