API src

Found 265 results.

Related terms

Standards für die Überwachung der Luftqualität

20 Jahre nationales Referenzlabor in Essen Fachleute aus allen Bundesländern, des Umweltbundesamtes und Gäste aus den Messnetzen Luxemburgs und der Niederlande haben sich heute im Landesamt für Natur, Umwelt und Verbraucherschutz zu einem Großversuch getroffen. Sie alle kamen mit Luftschadstoff-Messgeräten ins Technikum des LANUV in Essen, um gemeinsam die Qualitätsstandards der Messergebnisse zu harmonisieren. Die Anforderungen an die Messtechnik sind im Laufe der vergangenen Jahrzehnte immer komplexer geworden. Immer genauere Daten zu immer kleineren Konzentrationen müssen messtechnisch ermittelt werden. LANUV-Präsident Dr. Thomas Delschen: „Die Ergebnisse der Luftschadstoff- Messungen müssen präzise, belastbar und vergleichbar sein. Die Messwerte sind die wichtigste Voraussetzung für eine verlässliche Beurteilung der Luftqualität. Der fachliche Austausch zwischen den Messnetzbetreibern ist dafür unverzichtbar. Dass das LANUV hierbei federführend ist, liegt an der Jahrzehnte langen Erfahrung, die hier in Essen vorliegt.“ Das Technikum im LANUV ist in Europa die einzige Anlage mit ausreichend vielen Versuchsplätzen für einen Großversuch mit  so vielen teilnehmenden Instituten. Seit 1981 werden mit Hilfe dieser Anlage in Essen wichtige Voraussetzungen für qualitätsgesicherte Messungen der Luftqualität geschaffen. 1998 forderte die EU-Luftqualitätsrichtlinie die Einrichtung eines Nationalen Referenzlabors. Aufgrund der jahrelangen Erfahrung wurde das NRW-Landesamt gemeinsam mit dem Umweltbundesamt mit dieser verantwortungsvollen Aufgabe betraut. Die Qualitätssicherung wird von Essen aus seit 20 Jahren in Deutschland und auch auf EU-Ebene  immer weiter harmonisiert. Dazu gehört auch die Teilnahme des LANUV an internationalen Ringversuchen, die die Qualität und die Kompetenz sicherstellen. Regelmäßige Begutachtungen durch externe Sachverständige bestätigen dem LANUV die Expertise, diese Aufgabe auch in Zukunft wahrnehmen zu können. Die Geschichte der Luftreinhaltung an diesem Standort geht aber noch weiter zurück. LANUV-Präsident Dr. Delschen berichtet: „Als Altkanzler Willy Brandt 1961 den ,Blauen Himmel über der Ruhr´ ausrief, wurde hier bereits begonnen, die Luftverschmutzungen zu erforschen. Vor allem Industrieanlagen, aber auch das Heizen mit Kohle in den Städten und der immer dichtere Straßenverkehr wurden als Verursacher schon damals unter die Lupe genommen.“ Im Dezember 1962 brachte eine schwere Smogepisode im Ruhrgebiet mit 30 Prozent mehr Todesfällen die Luftreinhaltung verstärkt auf die politische Agenda. Seitdem wachsen die Erkenntnisse um Luftschadstoffe, ihre Quellen und die gesundheitlichen Auswirkungen. Große Erfolge wurden durch strengere Grenzwerte für die Emissionen aus Industrieanlagen erreicht. Die Belastung durch Schwefeldioxid konnte auf weniger als fünf Prozent der Ausgangswerte gesenkt werden. Auch die Staubbelastung wurde drastisch reduziert. Ein besonders großer Schritt nach vorne war die Entschwefelung und Entstickung der Kraftwerke ab 1977. Viele gesetzliche Regelungen und technische Entwicklungen konnten auf den Weg gebracht werden, auch aufgrund der wissenschaftlichen und technischen Erkenntnisse, die hier in Essen seit Jahrzehnten erarbeitet werden. Trotz der sichtbaren Erfolge besteht auch weiterhin Handlungsbedarf auf wichtigen Feldern der Luftreinhaltung. Informationen zum nationalen Referenzlabor: www.lanuv.nrw.de/umwelt/luft/immissionen/referenzlabor/ Daten zur Luftqualität: www.lanuv.nrw.de/umwelt/luft/ Download: Pressemitteilung

LoNox

Das Projekt "LoNox" wird vom Umweltbundesamt gefördert und von Rolls-Royce Deutschland Ltd & Co KG durchgeführt.

Denox process for the refinery of the future

Das Projekt "Denox process for the refinery of the future" wird vom Umweltbundesamt gefördert und von Technische Universität München, Institut für Technische Chemie, Lehrstuhl für Technische Chemie II durchgeführt. Objective: The scope of this proposal is the reduction of the NOx emissions from the regenerator of the Fluid Catalytic Cracking Unit (FCC). The innovative approach of the project is the design of novel deNOx additives that catalyse the reaction of nitrogen-containing reaction intermediates (NH3, HCN) formed during regeneration of spent FCC catalysts with NO formed by direct oxidation of the experiments. The physicochemical properties of the novel additives will be measured and mechanistic studies over the promising catalysts will be carried out. Superior performance of the new additives will lead to production of large catalyst quantities for pilot plant testing. Commercial scale tests will be carried out in 3 refineries using state of the art deNOx additives. Prime Contractor: Foundation of Research and Technology - Hellas; Chemical Process Engineering Research Institute; Thermi; Greece.

Einhaltung der TA-Luft bei Dampfkesseln der 5-MW-Klasse durch neue Technologien

Das Projekt "Einhaltung der TA-Luft bei Dampfkesseln der 5-MW-Klasse durch neue Technologien" wird vom Umweltbundesamt gefördert und von APC Angewandte Physik Consulting GmbH durchgeführt.

Bau und Betrieb einer High-Dust-SCR-Anlage (DENOX) im Zementwerk

Das Projekt "Bau und Betrieb einer High-Dust-SCR-Anlage (DENOX) im Zementwerk" wird vom Umweltbundesamt gefördert und von Solnhofer Portland-Zementwerke durchgeführt.

Reduction of NOx emissions from coal fired boilers using low temperature catalysts (Test Phase)

Das Projekt "Reduction of NOx emissions from coal fired boilers using low temperature catalysts (Test Phase)" wird vom Umweltbundesamt gefördert und von Energie-Versorgung Schwaben AG durchgeführt. Objective: The use of an innovative, catalytically operative process to reduce NOx in exhaust gases from coal-fired steam boilers. The advantage of the DENOX unit is that it may be built on to existing plants, without major modification, thus saving time, money and avoiding shutdowns. General Information: This contract relates only to the fourth phase of the project construction and demonstration. The demonstration plant is constructed at the Heilbronn Power Station and will remove the nitrogen from exhaust gases in Blocks 3-6. Rather than use the DENOX unit as it is used in Japan, between the boiler outflow and air preheater (prior to the desulphurisation unit, crude gas system) it is installed after the desulphurisation unit. Dust will be filtered out by electric filter and sulphur removed by the use of limestone as absorbent, with plaster as the end product. The nitrogen in exhaust gases will be selectively reduced by catalyst, with the addition of ammonia to break down the NOx into nitrogen and water vapour. The exhaust gases emerging from desulphurisation, at +/- 50 degree of Celsius, are heated to required reaction temperature prior to passing into the DENOX-reactor. Since the process causes no major heat loss in the reactor, the heat content of the clean exhaust gases can largely be recovered before the gases are passed into the chimney, by using the gas preheater. In constant operation, the gases only have to be heated by the temperature difference corresponding to the levels of the heat exchanger system. For this task a natural gas burner is used. Before entry into the DENOX reactor, ammonia, in the firm of an air/ammonia mixture, is added to the exhaust gas in proportion to the quantity on NOx contained. In the reactor, nitrogen oxide is reduced, producing water vapour and N2 as end products. After passing through the DENOX reactor, the exhaust gases are passed through the heat recovery system and cooled to the chimney temperature before being passed through and removed.

Reduction of NOx emissions from coal fired boilers using low temperature catalysts - Demonstration Phase -

Das Projekt "Reduction of NOx emissions from coal fired boilers using low temperature catalysts - Demonstration Phase -" wird vom Umweltbundesamt gefördert und von Energie-Versorgung Schwaben AG durchgeführt. Objective: The use of an innovative, catalytically operative process to reduce NOx in exhaust gases from coal-fired steam boilers. The advantage of the DENOX unit is that it may be built on to existing plants, without major modification, thus saving time, money and avoiding shutdowns. General Information: This constract relates only to the fifth phase of the project (completion of the plant, commissioning and demonstration). The demonstration plant is constructed at the Heilbronn Power Station and removes the nitrogen from exhaust gases in the units 3 -6. Rather than use the DENOX unit as it is used in Japan, between the boiler outflow and air preheater (prior to the electric precipitator and the desulphurisation unit) it is installed after the desulphyrisation unit. Dust is filtered out by electric as the end product. The nitrogen in exhaust gases is selectively reduced by catalysts, with the addition of ammonia to break down the NOx into nitrogen and water vapour. The exhaust gases emerging from desulphyurisation, at about 50 deg. C, are heated to required reaction temperature prior to passing into the DENOX-reactor. Since the process causes no major heat loss in the reactor, the heat content of the clean exhaust gases can largely be recovered before the gases are passed into the chimney, by using the gas preheater. In constant operation, the gases only have to be heated by the temperature difference corresponding to the hot side temperature approach of the heat exchanger system. For this task a natural gas burner is used. Before entry into the DENOX reactor, ammonia, in the firm of an air/ammonia mixture, is added to the exhaust gas in proportion to the quantity on NOx contained. In the reactor, nitrogen oxide is reduced, producing water vapour and N2 as end products. After passing through the DENOX reactor, the exhaust gases are passed through the heat recovery system and cooled to the chimney temperature before being passed through and removed. Achievements: The plant has operated in at load conditions according to the legal requirements and the suppliers quaranteed data. The NOx-emission is smaller than 200 mg/m3, the NH3-slip smaller than 0. 1 mg/m3. The pressure drop of the reactor is 9 mbar, of the total plant 24 mbar. The hot side temperature approach of the GAVO is lower than 30 deg. C. To compensate this temperature approach the consumption of natural gas is about 1400 m3/h at 100 per cent load. It takes around 7 hours to heat up the DENOX plant after a longer stoppage (cold start up). After a week-end shut down it lasts around 2. 5 - 3 hours and after a night-shut down 1 hour to set the plant into operation. First tests of the catalysts in a laboratory after a operation time of 3700 h showed no activity loss.

Two'nd generation PFBC cogeneration plant for eastern German lignite

Das Projekt "Two'nd generation PFBC cogeneration plant for eastern German lignite" wird vom Umweltbundesamt gefördert und von Stadtwerke Cottbus GmbH durchgeführt. Objective: The aim of this project is to demonstrate efficient and clean Combined Heat and Power (CHP) production from brown coal in a city location, using second generation Pressurized Fluidized Bed Combined-cycle (PFBC) technology. The successful application of PFBC to brown coal in eastern Germany can help ensure the continued use of a domestic source and thus long term stability and security of fuel supply. Experience gained in this PFBC project can be used as a basis for further applications in all EC 'coal countries'. After the demonstration it is also planned to transfer this technology into the CHP market world-wide, with special emphasis on use in populated areas and for rehabilitation of old, polluting power plants. General Information: Stadtwerke Cottbus GmbH operates in the immediate vicinity of the city of Cottbus a CHP plant which supplies the city of Cottbus with electricity and with steam for district heating purposes. The maximum electrical output is 48 MWe, and the maximum district heat output is 230 MW. In addition, Stadtwerke Cottbus purchases hot water for district heating purposes from the Jaenschwalde power plant, situated 9 km from Cottbus and owned by Vereinigte Energiewerke AG (VEAG). The Stadtwerke Cottbus CHP plant currently has four conventional, dry-ash-removal, grate fired steam boilers, equipped with exhaust gas cleaning systems for dust, but with no measures taken to reduce other pollutants such as sulphur and nitrogen oxides. In order to meet new, stricter environmental requirements, the facility urgently needs to be upgraded. After a thorough study, it was found that the best alternative would be to replace the existing equipment with a new, modern, efficient P200 PFBC plant with excellent environmental performance, and to supplement this with two natural gas fired boilers for peak load district heating, while retaining also hot water supply from the Jaenschwalde power plant. Compared to the P200 PFBC plants which have already been built in Sweden, Spain, U.S.A. and Japan, the Cottbus PFBC plant represents second generation PFBC technology. Especially, freeboard firing, i.e., the firing of additional fuel in the region above the fluidized bed, will be used for the first time. The purpose for this is to maintain a high temperature in the flue gas stream also at part load conditions, to improve desulfurization, and to reduce nitrogen oxides formation. In addition, the electrical output from the plant will be enhanced, as a result of the higher temperature at the inlet to the gas turbine expander section of the GT35P machine which drives the air compressors of the PFBC boiler and also generates about 20 per cent of the electricity produced in the plant. Coal feed and ash removal systems will be adapted, as needed, for the brown coal application and non catalytic techniques (SNCR) for reducing of nitrogen oxides will be applied. ... Prime Contractor: Stadtwerke Cottbus GmbH; Cottbus; Germany.

Entstickung von Rauchgasen nach dem SCR-Verfahren

Das Projekt "Entstickung von Rauchgasen nach dem SCR-Verfahren" wird vom Umweltbundesamt gefördert und von Technische Universität Braunschweig, Institut für Technische Chemie durchgeführt.

Fuel and lubricant formulations for high depolluted engines

Das Projekt "Fuel and lubricant formulations for high depolluted engines" wird vom Umweltbundesamt gefördert und von FEV Motorentechnik GmbH durchgeführt. General Information/Objectives: Combustion of liquid hydrocarbons fuels in transport generates pollutant emissions, which have non-negligible effects on human health and on the earth's atmosphere. The aim of this project is to answer the question how could we enable a reduction of fuel consumption and pollutant formation by acting on engine technology and fuel and lubricant formulations in order to increase the system efficiency. The main objective of this project is to help to define the best matching between fuels (including additives), lubricant and vehicles equipped with high de-polluted and low consumption engines. Technical Approach The work programme is divided into two sub programmes: diesel engines and spark ignition engines, each of them split up into five phases: Phase 1 will be dedicated to fuel definition and preparation, supplying of engines, vehicles and control systems. Chosen engine and anti-pollution technologies are those which might be predominant in the near future: 1. IDI diesel engine for passenger car with high rate of EGR and oxidation catalyst; 2. DI diesel engine for passenger car with high rate of EGR and oxidation catalyst; 3. DI heavy duty engine with oxidation catalyst or particulate trap; 4. SI engine running at stoichiometry with high rate of EGR and a three way catalyst; 5. SI lean burn engine with three way and De NOx catalysts. In phase 2 tests will be performed on engines using the different fuels. Performances and emissions (including noise) will be measured for different running conditions (standard and after variation of EGR rate, injection and/or ignition timing...). In phase 3 the regulated and non-regulated emissions of four different vehicles, equipped with engines equivalent to those previously tested, will be measured on the European driving cycle. In phase 4 driveability tests will be performed on a SI and on a diesel vehicle. In phase 5 tests will be realised on two engines (diesel and SI). For each of them, two different lubricant formulations and two fuels will be evaluated through a 100 h duration procedure. Expected Achievements and Exploitation The project should lead to a valuable enlargement of our knowledge on the sensibility of modern engines and on the behaviour of the post-treatment devices when the characteristics of the fuels change. Prime Contractor: Groupement Europeen de Recherches Technologiques sur les Hydrocarbures; Rueil Malmaison; France.

1 2 3 4 525 26 27