API src

Found 5 results.

Phase 1: Earth and Space Based Power Generation Systems

Das Projekt "Phase 1: Earth and Space Based Power Generation Systems" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. This study has to be understood in the frame of the global Energy Policy. A great part of world energy production is currently based on non-renewable sources: oil, gas and coal. Global warming and restricted fossil energy sources force a strong demand for another climate compatible energy supply. Therefore, fossil energy sources will nearly disappear until the end of this century. The question is to find a viable replacement. By using viable' it is meant a low-cost and environmental friendly energy. In other words, the question is to find an alternative to nuclear energy among all proposed but still not mature renewable energies. One of the solutions proposed is solar energy. Yet, two major concerns slow down its development as an alternative: first, it lacks of technological maturity and secondly it suffers from alternating supply during days and nights, winters and summers. The idea proposed by Glaser in the sixties to bypass this inconvenient is to take the energy at the source (or at least, as near as possible): in other words, to put a solar station on orbit that captures the energy without problems of climatic conditions and to redirect it through a beam to the ground. That is the concept of Solar Power Satellites. Its principal feasibility was shown by DOE / NASA in 1970 years studies (5 GW SPS in GEO). Project objectives: This phase 1 study activity is to be seen as the initial step of a series of investigations on the viability of power generation in space facing towards an European strategy on renewable, CO2 free energy generation, including a technology development roadmap pacing the way to establish in a step-wise approach on energy generation capabilities in space. The entire activity has to be embedded in an international network of competent, experienced partners. As part of this, an interrelationship to and incorporation of activities targeting the aims of the EU 6th FP ESSPERANS should be maintained. In particular, the activities related to following objectives are described: The generation of scientifically sound and objective results on terrestrial CO2 emission free power generation solutions in comparison with state-of-the-art space based solar power solutions The detailed comparison and trades between the terrestrial and the space based solutions in terms of cost, reliability and risk The identification of possible synergies between ground and space based power generation solutions The assessment on terrestrial energy storage needs by combining ground based with space based energy generation solutions The investigation of the viability of concepts in terms of energy balance of the complete systems and payback times.

Forest management by small farmers in the Amazon - An opportunity to enhance forest ecosystem stability and rural livelihood (ForeLive)

Das Projekt "Forest management by small farmers in the Amazon - An opportunity to enhance forest ecosystem stability and rural livelihood (ForeLive)" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Waldbau-Institut durchgeführt. In many situations, forest management concepts arrived at for small farmers in the Amazon have been defined externally and do not adequately correspond with their livelihood systems and competences. This is one of the reasons why only few farmers effectively use the potential of the wide variety of forest management options available to enhance their well being. The project aim is to identify locally viable forest management options contributing to local livelihoods and the ecological stabilisation of landscapes, and to define possibilities to promote them as a basis for sustainable development in the rural areas of the Amazon. The project also seeks to strengthen the capacity for collaborative research and networking amongst local and international project partners. The project will identify and analyse existing local forest management initiatives in the Bolivian, Brazilian, Ecuadorian and Peruvian Amazon, where farmers have decided to manage and not clear forests for other land-use purposes. Following the 'Integrated Natural Resource Management approach, the project will analyse institutional, environmental and technical aspects of the livelihoods of small farmers, to assess and value the local viability of selected forest management systems and their possible contribution to the ecological stability of the different regions. Through the application of both 'Action Research and traditional research approaches, the project will ensure local relevance and stimulate constructive learning processes. A sound background to the decisions made by small farmers to invest in forests is provided through the analysis of a formal and informal institutional framework, such as political, economic, legislative and infra-structural key drivers. Complementary to this, an analysis of livelihoods and environmental aspects will be carried out. This is perceived as a basis for the development of key indicators for sustainable forest management by small farmers in the Amazon.

Fast advanced cellular and ecosystems information technologies (FACEIT)

Das Projekt "Fast advanced cellular and ecosystems information technologies (FACEIT)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Umweltmikrobiologie durchgeführt. Marine and freshwater ecosystems continue to be threathened by large scale pollution disasters. Such disasters are often caused by oil-related activities, but pollution nature, magnitude and site of occurrence all can be very different, with unpredictable outcome on the responses of individual organisms, the biodiversity and the functioning of the aquatic ecosystems. The FACEiT project proposes to develop rapid, cost-effective and reliable innovative measurement technologies to analyze and predict in situ population effects and ecosystems community diversity and functioning. For this purpose, FACEiT will develop in-situ pollutant monitoring technologies with semi-continuously operated microbial reporter systems, will design and test rapid methods based on unicellular planktonic viability and cell integrity, on diversity and functional responses of the whole microbial community and on multibiomarkers in organisms at higher trophic levels. FACEiT will also develop a set of state-of-the art ex-situ sample incubation analysis methods, including a multianalyte microbial reporter platform and whole genomic tests based on pollutant-induced transcriptomic and proteomic responses in microorganisms, mammalian cell lines and fish eggs. Innovative modeling approaches will focus on understanding and predicting pollutant fate in organisms, communities and the natural environment, which will be based on metabolic pathway prediction networks, physicochemical distribution processes and biota activities. All developed measurement technologies will be extensively validated on realistic samples from contaminated sites, and coherently tested in a pollution disaster scenario. Dissemination plans include various prototype developments up to market level implementation and two advanced courses for transferring FACEiT technologies and concepts to the end-user community. Prime Contractor: Universite de Lausanne; Lausanne; Switzerland.

ENhanced Geothermal - Innovative Network for Europe (ENGINE)

Das Projekt "ENhanced Geothermal - Innovative Network for Europe (ENGINE)" wird vom Umweltbundesamt gefördert und von GeoForschungsZentrum Potsdam (GFZ), Sektion 5.2 Geothermie durchgeführt. The contribution of geothermal energy is a key factor to the successful achievement of the objectives of the European Commission concerning the development of renewable and sustainable energy. The concept of Unconventional Geothermal Resources and in particular Enhanced Geothermal Systems examines ways of increasing the potential of geothermal power generation through (i) exploring new types of reservoirs for heat exchange (Hot Dry Rock, supercritical fluids..), (ii) enlarging the extent of productive geothermal fields by stimulating Geothermal energy for all permeability, (iii) enhancing the viability of current and potential hydrothermal areas by stimulation technology and improving thermodynamic cycles. The main objective of the proposed action is the co-ordination of the present research and development initiatives for Unconventional Geothermal Resources and Enhanced Geothermal Systems, from resource investigation and assessment stage through to exploitation monitoring. The Co-ordination Action will provide (1) an updated framework of activities concerning geothermal energy in Europe, including the integration of scientific and technical know-how and practices, the evaluation of socio-economic and environmental impacts; (2) the definition of innovative concepts for investigation and use of Unconventional Geothermal Resources and Enhanced Geothermal Systems; groups of expects will present a Best Practice Handbook; (3) a scientific and technical European Reference Manual including the information and dissemination systems developed during the Co-ordination Action. The links established between research and development teams, national development programmes, industrial partners and international agencies will be used to promote the geothermal energy as a major renewable and sustainable source of energy and to propose innovative high.level medium- to longer-term research projects.

Safeguarded Cultural Heritage-Understanding and Viability for the Enlarged Europe (SAUVEUR)

Das Projekt "Safeguarded Cultural Heritage-Understanding and Viability for the Enlarged Europe (SAUVEUR)" wird vom Umweltbundesamt gefördert und von Ustav Teoreticke A Aplikovane Mechaniky, Akademie Ved Ceske Republiky durchgeführt. The proposal suggests the organisation of the 7th EC Conference on Cultural Heritage Research in Prague, in 2006. The scope of the project stems from the SSP priorities, and the conference aims at the consolidation and impact assessment of results achieved in EU research projects related to movable and immovable cultural heritage, with a special focus on exploitation and spin-off of cultural heritage research results and testing of the acceptability of new sustainability approaches and new technologies by the user community, SMEs, owners, managers and restorers or conservationists of the cultural heritage. The Prague conference has been designed to further define the role of Europes cultural heritage research within the international context and as part of international cooperation, to explore the possibilities for SMEs in contributing to competitiveness and job creation, to define the support of cultural heritage research to policy needs and to contribute to the 7th Framework Programme establishment through support of the European Construction Technology Platform concept and research infrastructure development. The wider public will be addressed by means of special accompanying events, too, in order to ensure feedback and response from non-professional stakeholders. The Conference will consist of sessions dealing with political exploitation and public dissemination of cultural heritage research, the international role of European cultural heritage research, poster displays and verbal presentations of policy impact assessment, research infrastructure achievements, innovative applications and new ideas, as well as coordination of national education and research into cultural heritage issues. Public and professional awareness shall be increased by special demonstration and post-conference activities, including publication of the Conference Proceedings. The results and continuing activities will be supported by IT tools and follow-up working groups, after the event.

1