API src

Found 1811 results.

Modellregion Bioökonomie im Rheinischen Revier: (Modellregion, Phase 1, Bio4MatPro: BoostLab1-7 - EBRA), Teilprojekt 3

Biologie und Kontrolle von Orobanche ramosa L.

Das parasitische Unkraut Orobanche ramosa L. verbreitet sich in Mitteleuropa und bedroht die Produktion mehrerer Kulturpflanzen - Tabak, Raps, Kartoffel, Karotte und Tomate. Im Gegensatz zu anderen Unkräutern, die mit der Kulturpflanze um Ressourcen konkurrieren, entnimmt O. ramosa Wasser, Nährstoffe und Assimilate direkt aus der Wirtswurzel. Dies führt zu erheblichen Ertrags- und Qualitätsverlusten. Da O. ramosa unmittelbar mit der Wirtspflanze verbunden ist und 90 Prozent der Parasitenentwicklung unterirdisch stattfinden, ist dieser Parasite schwer zu kontrollieren. In dieser Arbeit werden drei Ziele verfolgt: 1) Wir möchten mehr über die Populationsdynamik und die Verbreitung von O. ramosa in Deutschland erfahren. Zur Beschreibung von Populationen verwenden wir verschiedene klassische, aber auch molekulare Marker-Techniken (Polymerase-Ketten-Reaktion, PCR, mit spezifischen Mikrosatelliten; ISSR-PCR, RAPD). 2) Untersuchung der Pflanze-Pflanze-Interaktion unter besonderer Berücksichtigung von Resistanzmechanismen der Kulturpflanze (in diesem Fall Tabak), sowie Faktoren der Pathogenität von O. ramosa. Analyse der Produktion sekundärer Metabolite, reaktiver Sauerstoff-Zwischenprodukte (ROI), sowie der Exprimierung und Aktivität spezifischer Enzyme und Gene. 3) Entwicklung von Methoden zur Kontrolle von O. ramosa, basierend auf erworbener systemischer Resistenz (SAR) und der Verwendung spezifischer hyperparasitischer Bakterien und Pilze, die zur biologischen Kontrolle verwendet werden können.

Die Biosynthese der pflanzlichen Cellulose

Cellulose stellt den am häufigsten vorkommenden Naturstoff unseres Planeten dar. Mit einer pflanzlichen Weltjahresproduktion von ca. 180 Milliarden Tonnen (Engelhardt, j. Carbohydr. Eur. 12, 5-14 (1995)) ist Cellulose der bedeutendste nachwachsende Rohstoff. Dieses Biopolymer findet außer in der Papier-, Pharma- und Textilindustrie in vielen anderen Bereichen (z.B. Medizin, Kosmetik, Kunststoff-Industrie) reichliche Verwendung. Trotz der großen wirtschaftlichen Bedeutung und über drei Jahrzehnten intensiver Forschung ist bisher nicht bekannt, wie Cellulose in der Pflanze gebildet wird. Informationen über die Gene und die dazugehörigen Enzyme, die die Cellulose synthetisieren, würden neue Möglichkeiten eröffnet bis hin zu transgenen Pflanzen mit erhöhtem Cellulosegehalt, einer verbesserten Qualität, aber auch der Entwicklung ganz neuer Herbizide, die gezielt die Cellulosebiosynthese z. B. von Unkräutern inhibieren können. Die Zielsetzung dieses Projektes ist es, die Proteine die an der Cellulosesynthese beteiligt sind, unter Aktivitätserhalt zu isolieren und zu charakterisieren sowie die entsprechenden Gene zu identifizieren, um so erstmals den molekularen Mechanismus der pflanzlichen Cellulosebiosynthese aufzuklären.

Die Veraenderung von Enzymaktivitaeten in Boeden durch chemische Systeme

Enzyme in Boeden bestimmen nachhaltig chemische Aktivitaeten in diesem Milieu. Dadurch wird wiederum der Boden als natuerlicher Standort hoeherer Pflanzen hinsichtlich ertragsbestimmender Faktoren in relativ engen Grenzen festgelegt. So kommt es, dass ein ueber laengere Zeiten ackerbaulich genutzter Boden ueber ein voellig anderes Enzymspektrum verfuegt wie beispielsweise ein Waldboden. Fuer mehr als 20 Enzyme konnte eine deutliche Aktivitaetsveraenderung durch im Boden gebildete Huminstoffe nachgewiesen werden.

Aerobic mikrobielle Aktivität in der Tiefsee abyssal Ton

Meeressedimente enthalten schätzungsweise größer als 10^29 mikrobielle Zellen, welche bis zu 2.500 Meter unter dem Meeresboden vorkommen. Mikrobielle Zellen katabolisieren unter diesen sehr stabilen und geologisch alten Bedingungen bis zu einer Million mal langsamer als Modellorganismen in nährstoffreichen Kulturen und wachsen in Zeiträumen von Jahrtausenden, anstelle von Stunden bis Tagen. Aufgrund der extrem niedrigen Aktivitätsraten, ist es eine Herausforderung die metabolische Aktivität von Mikroorganismen unterhalb des Meeresbodens zu untersuchen. Die Transkriptionsaktivität von diesen mikroben kann seit Kurzem metatranskriptomisch untersucht werden, z.B. durch den Einsatz von Hochdurchsatzsequenzierung von aktiv transkribierter Boten-RNA (mRNA), die aus Sedimentproben extrahiert wird. Tiefseetone zeigen ein Eindringen von Sauerstoff bis zum Grundgebirge, welches auf eine geringe Sedimentationsrate im ultra-oligotrophen Ozean zurückzuführen ist. Der Sauerstoffverbrauch wird durch langsam respirierende mikrobielle Gemeinschaften geprägt, deren Zellzahlen und Atmungsraten sehr niedrig gehalten werden durch die äußerst geringe Menge organischer Substanz, die aus dem darüber liegendem extrem oligotrophen Ozean abgelagert wird. Die zellulären Mechanismen dieser aeroben mikroben bleiben unbekannt. Im Jahr 2014 hat eine Expedition erfolgreich Sedimentkerne von sauerstoffangereichertem Tiefseeton genommen. Vorläufige metatranskriptomische Analysen dieser Proben zeigen, dass der metatranskriptomische Ansatz erfolgreich auf die aeroben mikrobiellen Gemeinschaften in diesen Tiefseetonen angewendet werden kann. Wir schlagen daher vor diese Methode mit einem hohen Maß an Replikation, in 300 Proben von vier Standorten, anzuwenden. Dieser Einsatz wird es uns ermöglichen, Hypothesen in Bezug auf zelluläre Aktivitäten unterhalb des Meeresbodens, mit einer beispiellosen statistischen Unterstützung, zu testen.Wir warden den aeroben Stoffwechsel, welcher die langfristige Existenz von Organismen in Tiefseetonen unterstützt, bestimmen, Subsistenzstrategien identifizieren in aeroben und anaeroben Gemeinden unterhalb des Meeresbodens, und extrazelluläre Enzyme und ihr Potenzial für den organischen Substanzabbau charakterisieren. Die folgenden Fragen werden damit beantwortet: Wie das Leben im Untergrund über geologische Zeiträume unter aeroben Bedingungen überlebt? Was die allgegenwärtigen und einzigartigen Mechanismen sind, die langfristiges Überleben in Zellen unter aeroben und anaeroben Bedingungen fördert? Was die Auswirkungen von Sedimenttiefe und Verfügbarkeit von organischer Substanz auf die mikrobielle Produktion von extrazellulären Hydrolasen unter aeroben und anaeroben Bedingungen sind? Dies wird sowohl ein besseres Verständnis dafür liefern, wie mikrobielle Aktivitäten unterhalb des Meeresbodens verteilt sind und was ihre Rolle in biogeochemischen Zyklen ist, als auch wie das Leben über geologische Zeiträume unter extremer Energiebegrenzung überlebt.

Indukation der Hydroxylasen der Lebermikrosomen durch Inhalation von D,L-Campher und Cyclohexan

Maeuse inhalieren 0,5-3 tg lang Campher oder Cyclohexan. Es wird die Zunahme an cyt. P-450, der nadph-Cyt. p-450-Reduktase sowie der Aethylumbelliferon-Desalkylase bestimmt. Es soll vor allem die untere Grenze der Wirksamkeit der Induktoren und ihre Konzentration in Blut und Leber bestimmt werden. Weiter soll der Stoffwechsel der Induktoren in Abhaengigkeit von der Induktionszeit in vivo und in vitro untersucht werden. Campher wird in der Medizin als Einreibungsmittel benutzt und kommt in Konservierungs- und Desinfektionsmitteln sowie in Mottenkugeln vor. Cyclohexan ist Bestandteil bestimmter Benzinarten.

Ringversuch Acetylcholinesterase-Hemmung in Wasser der Arbeitsgruppe 'Pestizide im Wasser' der Senatskommission fuer Pflanzenschutz-, Pflanzenbehandlungs- und Vorratsschutzmittel der DFG

Ringversuch; Methode nach Prof. Ohnesorge/Dr. Menzel (Universitaet Duesseldorf) bzw. Dr. Weil (TU Muenchen).

Untersuchungen zu den Abbau-Mechanismen der Sprengstoffe RDX und TNT durch bodenbewohnende Pilze

Sprengstoffe, v.a. TNT und Hexogen (RDX), sind als Kontaminationen in den Boden eingetragen worden und gelangen aufgrund ihrer geringen Wasserlöslichkeit langsam in das Grundwasser. Aufgrund ihrer Umwetlttoxizität ist eine Sanierung kontaminierter Standorte nötig. Bisherige Untersuchungen zum Abbau dieser Xenobiotika haben sich auf die oxidativen Enzyme von Pilzen aus fremden Habitaten (v.a. Weißfäule-Pilzen) konzentriert. Unter Ansatz basiert hingegen auf der Charakterisierung des Abbau-Potentials der nativen Bodenmycota. TNT wird durch Nitratreduktase-Aktivität reduziert und in die Humus-Schicht eingebunden, während das instabile heterozyklische RDX-Moleküle durch Reduktion gespalten und somit mineralisiert wird. TNT-Reduktion und RDX-Abbau werden durch eine große Diversität an bodenbewohnenden Pilzen durchgeführt, v.a. Zygomyceten (Cuninghamella, Absidia) und imperfekte Stadien von Ascomyceten (Penicillium, Trichoderma). Unsere derzeitigen Studien befassen sich mit der Einbringung der RDX-Fragmente in den pilzlichen Sekundärmetabolismus.

Induktion des Umsatzes von Aethanol in Mikrosomen und Cytosol der Maeuseleber durch chronische orale Verabreichung von Aethanol und Inhalation von Cyclohexan oder D,L-Campher

Bei einem 3-methylcholanthrenempfindlichen Maeusestamm (C57BL/6N) soll geprueft werden, ob chronische orale Verabreichung von Aethanol in der Leber sowohl die mikrosomale Aethanoloxidation als auch die Dehydrierung von Aethanol durch die Alkohol-Dehydrogenase des Lebercytosols induziert. Die induzierende Wirkung des Aethanols soll mit derjenigen von D,L-Campher und Cyclohexan verglichen werden. Es soll versucht werden, die Induktionen durch Induktionshemmer zu verhindern. Inzwischen ist nachgewiesen worden: In den Lebermikrosomen induziert orale chronische Verabreichung von Aethanol MEOS bei maennlichen C57-Maeusen in 4 Monaten, um den Faktor 2-3. Die Induktion ist bereits nach 14 Tagen nachweisbar und durchlaeuft ein Minimum nach 1,5 Monaten. Alkohol-Dehydrogenase wird im Cytosol anscheinend nicht induziert, wohl aber andere Proteine, denen moeglicherweise Acetaldehyd-Dehydrogenaseaktivitaet zukommt. Diese induzierbaren Nicht-Haem-Proteine erscheinen auch vermehrt nach Vorbehandlung der Maeuse mit anderen Induktoren. Es soll 1982 geprueft werden, wie weit die Dehydrierung von Acetaldehyd durch Aethanol induziert werden kann, und ob andere Induktoren diese nicht wirksamer induzieren.

Einfluß von Laccase-Produktion durch Pilze und Mykorrhizen auf die Bildung und Stabilität organischer Substanz in land- und forstwirtschaftlichen Böden

Im Projekt soll der Einfluß oxydativer Exoenzyme von Pilzen und Mykorrhizen auf den Auf- und Abbau der organischen Bodensubstanz charakterisiert werden. Über die gesamte Dauer des SPP sind zwei Arbeitsetappen geplant. Zuerst werden Primer zum molekularbiologischen Nachweis von Boden- und Mykorrhizapilzen mit Laccase-Genen und zur Analyse der Expression dieser Gene in Böden entwickelt. Um die bodenökologische Aussagekraft der Methode zu gewährleisten, werden Protokolle zur Extraktion von DNA und mRNA aus Böden mit Proben von den SPP-Standorten optimiert und geeicht. In einem zweiten Arbeitsschritt werden die Methoden an den landwirtschaftlichen und forstwirtschaftlichen Böden der SPP-Standorte eingesetzt. Die Ergebnisse von Untersuchungen der Struktur und Funktionen der Pilzpopulationen werden im Zusammenhang mit Analysen anderer SPP-Teilnehmer interpretiert. Dabei sollen insbesondere Daten über Gehalt und Kreislauf der festen und gelösten organischen Bodensubstanz, über Fraktionierung natürlicher Isotope in den Phasen des Kreislaufs sowie über Aufbau- und Abbauvorgänge durch nicht pilzliche Bodenmikroorganismen und durch Bodentiere berücksichtigt werden. Die Beteiligung an Experimenten zum Abbau radioaktiv markierter Streu ist ebenfalls vorgesehen.

1 2 3 4 5180 181 182