Abstract
Satellitendaten Seit Anfang der 70er Jahre werden von den Raumfahrtagenturen Erderkundungssatelliten betrieben. Der 1999 neu eingesetzte Beobachtungssatellit Landsat-7 der USA, in dem sich das multispektrale Aufnahmesystem "ETM+ (Enhanced Thematic Mapper)" (TM) befindet, umkreist die Erde in einer annähernd polaren Umlaufbahn in 705 km Höhe (vertiefende Informationen über www.nasa.gov ). Bei jedem der etwa 1 1/2 Stunden dauernden Erdumläufe nimmt der Satellit auf der Tagseite der Erde einen 185 km breiten Streifen auf. Innerhalb von 16 Tagen wird die gesamte Erdoberfläche einmal erfasst; der Bereich des Verflechtungsraumes Berlin wird in etwa 20 Sekunden überflogen. Die digitalen Daten werden durch Funk zur Erde übermittelt und auf Magnetband gespeichert. Seit April 1999 wird das verbesserte Folgeinstrument Landsat 7 eingesetzt. Die von dem Satelliten aufgenommenen Bildstreifen des Thermalkanals bestehen aus Zeilen von je etwa 3 100 einzelnen Bildpunkten (pixel), die am Boden jeweils eine Fläche von 60 m x 60 m abdecken. Dies bedeutet eine 4-fach höhere Auflösung gegenüber der Befliegung mit Landsat 5 im Jahre 1991 (vgl. Karte 04.06 Ausgabe 1993). Tag- und Nacht-Flugrichtung sind nicht identisch, so dass sich im späteren Kartenbild unterschiedliche Ausschnitte ergeben. Aufnahmen zur Nachtzeit des Untersuchungsgebietes müssen vorab gesondert über die Bodenstation der europäischen Weltraumorganisation ESA in Italien bestellt werden. Die insgesamt 7 Spektralkanäle von Landsat-TM reichen von einer Wellenlänge von 0,45 µm (blau-grünes Licht) bis zu 12,5 µm (Wärme-Infrarot). Dabei stehen zwei Spektralkanäle im thermalen Infrarot zur Verfügung. Die spektrale Auslegung beider Kanäle ist gleich und entspricht Landsat 5 TM. Zur Darstellung der Oberflächentemperaturen wird der langwellige Wellenlängenbereich zwischen 10,4 bis 12,5 µm aufgenommen. Dieser Bereich der langwelligen Eigenstrahlung der Erdoberflächenelemente kann verhältnismäßig ungestört von den in der Atmosphäre vorhandenen Gasen die atmosphärischen Schichten passieren und wird daher auch als “Infrarotfenster” bezeichnet. Die Auswahl der zwei Aufnahmen war gekoppelt an die (nicht zu beeinflussenden) Überflugzeiten des Berliner Gebietes jeweils am frühen Abend und Vormittag des darauffolgenden Tages sowie die meteorologischen Anforderungen. Um das Eigenverhalten der Oberflächenstrukturen möglichst ausgeprägt zu erfassen, darf keine Beeinflussung des Untersuchungsgebietes durch Bewölkung, vorherigen Niederschlag oder zu hohe Windgeschwindigkeiten vorhanden sein. Unter Berücksichtigung dieser Bedingungen konnten für das Sommerhalbjahr 2000 nur die Szenen vom 13.08., 21.45 Uhr MEZ und vom darauffolgenden 14.08., 10.30 Uhr MEZ herangezogen werden. Die meteorologischen Bedingungen an der Station Dahlem der Freien Universität waren: 13.08., 22.00 Uhr MEZ: Bewölkung: 0/8, Windgeschwindigkeit: 3,0 m/s, Lufttemperatur in 2 m Höhe: 19,2 °C 14.08., 10.00 Uhr MEZ: Bewölkung: 1/8, Windgeschwindigkeit: 2,0 m/s, Lufttemperatur in 2 m Höhe: 24,4 °C Im Vergleich zur vorhergehenden Satellitenbild-Aufnahme aus dem Jahre 1991, die in eine Phase extremer Trockenheit fiel, waren die Bedingungen im Vorfeld dieser Aufnahme abweichend. In der ersten Hälfte des Augustes war die Witterung in Deutschland von einem Wechsel unterschiedlicher Luftmassen und entsprechender Niederschlagsaktivitäten geprägt. Zu Beginn der zweiten Monatshälfte führte ein Hochdruckgebiet zu trockenem und zunehmend wärmerem Wetter, wobei die Temperaturen am 14.08. verbreitet mit Werten größer 30 °C ihr Monatsmaximum erreichten. Dieser Zeitpunkt fiel glücklicherweise mit der Landsat-Überfliegung zusammen. Geometrische Korrektur Die geometrische Korrektur der Szenen wurde mittels Passpunktbestimmung gegenüber den Vektordaten der Bebauungsstrukturen des Informationssystems Stadt und Umwelt sowie der Zuordnung der satellitenbildsichtbaren Objekte durchgeführt. Dabei wurde auch das bei Landsat 7 nunmehr zur Verfügung stehende panchromatische Band 8 mit einer Auflösung von 15 m für die Korrektur aller weiteren benötigten Daten genutzt. Terrestrische Messdaten Zeitgleich wurden vom Fachgebiet Bioklimatologie der TU-Berlin auf ausgewählten großflächigen Arealen am südlichen Stadtrand Berlins Vergleichsmessungen der Oberflächentemperatur durchgeführt sowie die Temperaturen ausgewählter Gewässer registriert. Es bestand somit die Möglichkeit, einen Vergleich berechneter und gemessener Oberflächentemperaturen durchzuführen .
Seit Anfang der 70er Jahre werden von den Raumfahrtagenturen Erderkundungssatelliten betrieben. Der Beobachtungssatellit Landsat-5 der USA, in dem sich das multispektrale Aufnahmesystem "Thematic Mapper" (TM) befindet, umkreist die Erde in einer annähernd polaren Umlaufbahn in 705 km Höhe. Bei jedem der etwa 1 1/2 Stunden dauernden Erdumläufe nimmt der Satellit auf der Tagseite der Erde einen 185 km breiten Streifen auf. Innerhalb von 16 Tagen wird die gesamte Erdoberfläche einmal erfasst; der Bereich des Verflechtungsraumes Berlin wird in etwa 20 Sekunden überflogen. Die digitalen Daten werden durch Funk zur Erde übermittelt und auf Magnetband gespeichert. Die von dem Satelliten aufgenommenen Bildstreifen des Thermalkanals bestehen aus Zeilen von je etwa 1 500 einzelnen Bildpunkten (pixel), die am Boden jeweils eine Fläche von 120 m x 120 m abdecken. Tag- und Nacht-Flugrichtung sind nicht identisch, so dass sich im späteren Kartenbild unterschiedliche Ausschnitte ergeben. Aufnahmen zur Nachtzeit des Untersuchungsgebietes müssen vorab gesondert über die Bodenstation der europäischen Weltraumorganisation ESA in Italien bestellt werden. Die insgesamt 7 Spektralkanäle von Landsat-TM reichen von einer Wellenlänge von 0,45 µm (blau-grünes Licht) bis zu 12,5 µm (Wärme-Infrarot). Zur Darstellung der Oberflächentemperaturen wird der langwellige Wellenlängenbereich zwischen 10,4 bis 12,5 µm aufgenommen. Dieser Bereich der langwelligen Eigenstrahlung der Erdoberflächenelemente kann verhältnismäßig ungestört von den in der Atmosphäre vorhandenen Gasen die atmosphärischen Schichten passieren und wird daher auch als “Infrarotfenster” bezeichnet. Die Auswahl der zwei Aufnahmen war gekoppelt an die (nicht zu beeinflussenden) Überflugzeiten des Berliner Gebietes jeweils am frühen Abend und Vormittag des darauffolgenden Tages sowie die meteorologischen Anforderungen. Um das Eigenverhalten der Oberflächenstrukturen möglichst ausgeprägt zu erfassen, darf keine Beeinflussung des Untersuchungsgebietes durch Bewölkung, vorherigen Niederschlag oder zu hohe Windgeschwindigkeiten vorhanden sein. Unter Berücksichtigung dieser Bedingungen konnten für das Sommerhalbjahr 1991 nur die Szenen vom 14.09 ., 21.45 Uhr MEZ (Aufnahme 49-222) und vom darauffolgenden 15.09 ., 10.30 Uhr MEZ (193-23) herangezogen werden. Die meteorologischen Bedingungen an der Station Dahlem der Freien Universität waren: 14.09., 22.00 Uhr MEZ: Bewölkung: 0/8, Windgeschwindigkeit: 1,0 m/s, Lufttemperatur in 2 m Höhe: 13 °C 15.09., 10.00 Uhr MEZ: Bewölkung: 1/8, Windgeschwindigkeit: 2,5 m/s, Lufttemperatur in 2 m Höhe: 23 °C Die windschwache Hochdruckwetterlage vor und zum Zeitpunkt der Überfliegungen zeichnete sich durch eine Fortsetzung extremer Trockenheit mit Sonnenscheindauern im Bereich des astronomisch möglichen aus und war in dieser Hinsicht sehr gut zur Erfassung geeignet. Zeitgleich wurden im Rahmen des parallel laufenden Klima-Gutachtens der TU-Berlin (Karten 04.02 – 04.05 und 04.07) Messfahrten auf ausgesuchten Routen durchgeführt (Messung von Lufttemperatur, Wind und Dampfdruck in 2 m Höhe) sowie die Oberflächentemperaturen homogener Flächenstrukturen (Gewässer, großflächige Parkplätze) analog ermittelt. Es bestand somit die Möglichkeit, einerseits einen Vergleich berechneter und gemessener Oberflächentemperaturen durchzuführen, andererseits wurde die Einbindung der Oberflächentemperaturkarten in die Entwicklung der Klimafunktionskarte (Karte 04.07) durch die Parallelmessungen der Klimaparameter in 2 m Höhe erleichtert.
null SAMOSEE-BW: Satellitenbasiertes Monitoring von Seen in BW Baden-Württemberg/Karlsruhe/ Langenargen. Mit der nun veröffentlichten Broschüre „Satellitenbasiertes Monitoring von Stehgewässern in Baden-Württemberg“ (SAMOSEE-BW) gibt das Institut für Seenforschung der LUBW Landesanstalt für Umwelt Baden-Württemberg erstmals wissenschaftlich interessierten Bürgerinnen und Bürgern einen detaillierten Einblick in das Leuchtturmprojekt. „Wir sind stolz auf das Leuchtturmprojekt SAMOSEE-BW. Es ist Teil der Digitalisierungsstrategie des Landes Baden-Württemberg für das Handlungsfeld „Smarte Umweltdaten“, so Werner Altkofer, stellvertretender Präsident der LUBW. „Wir nutzen dafür Daten der Erdbeobachtungssatelliten der europäischen (ESA) und der amerikanischen Weltraumagentur (NASA). Diese haben mit ihren Messsensoren die gesamte Landoberfläche und damit auch die Seen im Blick. Mit diesen Möglichkeiten der Fernerkundung sind neue effektivere Monitoringkonzepte für die Seen Baden-Württembergs möglich“, erläutert der stellvertretende Präsident. In Baden-Württemberg gibt es 28 Seen mit einer Fläche von mehr als 50 Hektar, die regelmäßig im Zuge der Wasserrahmenrichtlinie der Europäischen Union überwacht werden müssen. Von besonderer Bedeutung ist der Bodensee, der nicht nur Touristen anzieht, sondern insgesamt rund fünf Millionen Menschen mit Trinkwasser versorgt. Darüber hinaus gibt es 261 Stehgewässer, die zwischen 10 und 50 Hektar groß sind – und rund 1300 natürliche und künstliche Stehgewässer zwischen einem und zehn Hektar. „Mit den klassischen Methoden der Probenahmen ist ihre kontinuierliche Überwachung kaum möglich. Die Fernerkundung kann künftig Zeit, Arbeit und Geld sparen und es können mehr Seen als bisher in das Gewässermonitoring einbezogen werden. Das ist für den Schutz der Seen als wertvolle Ökosysteme ebenso hilfreich wie für ihre Nutzung beispielsweise für die Freizeitgestaltung“, erläutert Altkofer. Die Satelliten liefern bei ihren häufigen Überfliegungen eine Flut von Rohdaten. Diese so zu interpretieren, dass sie anschließend in Tabellen, Grafiken und Abbildungen schnell erfassbare Information zur Gewässerqualität liefern, ist eine Herausforderung. Bewertungen und eventuelle Korrektur der Rohdaten sowie spezielle Computerprogramme und Arbeitsroutinen sind dafür erforderlich. In den vergangenen zwei Jahren haben die Wissenschaftlerinnen und Wissenschaftler des in Langenargen ansässigen Instituts hierfür die Voraussetzungen geschaffen. Vorrangig werden dabei diejenigen Gewässerqualitätsparameter berücksichtigt, die für die Bewertung von Seen ein besonderes Gewicht haben, wie Chlorophyll-a sowie Trübung und Sichttiefe. Auch die Temperatur an der Seeoberfläche wird erfasst. Darüber hinaus sind satellitenbasierte Informationen über die Gewässertrophie von Interesse und Daten, die auf Blaualgen schließen lassen. Entsprechend liefern künftig einige wesentliche Wasserqualitätsparameter – erfasst per Satellit – erste Informationen über den Zustand der Gewässer in Baden-Württemberg. Falls erforderlich, werden dann weitere detaillierte seenkundliche Untersuchungen durchgeführt. Überfliegt ein Erdbeobachtungssatellit einen See bei schönem Wetter im Sommer, liefert er hervorragende Daten. Im Winter dagegen sieht es wegen des flach einfallenden Sonnenlichtes schlecht aus. Und auch sonst können Wolken, Dunst und Effekte, etwa an Übergangslinien wie dem Ufer, die Messergebnisse mehr oder weniger stark beeinträchtigen. Dies gilt es bei der Interpretation der Daten zu berücksichtigen. Derzeit werden bei der Fernüberwachung von Gewässern vor allem optische Sensoren eingesetzt, die ein weites Lichtspektrum auswerten. Es gibt aber auch Sensoren, die mit Radarwellen arbeiten oder neuartige „Messaugen“, die sogenannten Hyperspektralsensoren. Sie können künftig weitere wertvolle Informationen liefern und aktuelle Nachteile der optischen Erfassung ausgleichen. Derzeit dauert es etwa ein Vierteljahr, bis die von den Satelliten gelieferten Messdaten so weiterverarbeitet sind, dass sie alltagstauglich in das Gewässermonitoring der LUBW einfließen können. Dies reicht für den vorsorgenden Gewässerschutz und die Fragestellungen der praktischen Wasserwirtschaft in der Regel aus. Um ein Warnsystem mit sehr kurzen Reaktionszeiten zu verwirklichen, müssen die entsprechenden Voraussetzungen im Hinblick auf die Prozessierung der Daten, sowohl bei der Hardware als auch der Software, erst noch entwickelt werden. Dies ist eines der nächsten Ziele der Wissenschaftlerinnen und Wissenschaftler in Langenargen. „Insgesamt zeigt das im Rahmen der Digitalisierungsstrategie des Landes durchgeführte Projekt SAMOSEE-BW deutlich, dass im noch jungen Arbeitsgebiet der Fernerkundung und Verarbeitung digitaler Messdaten viel Innovationspotenzial steckt, das unser aktuell bestehendes Umweltmonitoring sinnvoll ergänzt und erweitert“, so Altkofer. Weitere Details zum Projekt finden Sie in der nun veröffentlichten Broschüre: Satellitenbasiertes Monitoring von Stehgewässern in Baden-Württemberg Weitere interessante Details am Beispiel der Erfassung der Algenblüte finden Sie im LUBW-Blog: LUBW Monatsthema Satellitenfernerkundung: Die Seen von oben im Blick behalten Bei Rückfragen wenden Sie sich bitte an die Pressestelle der LUBW. Telefon: +49(0)721/5600-1387 E-Mail: pressestelle@lubw.bwl.de
Durch das europäische Erdbeobachtungsprogramm Copernicus entsteht seit 2014 eine moderne und leistungsfähige Infrastruktur für Erdbeobachtung und Geoinformation. Es beinhaltet eine Weltraumkomponente, eine Dienste Komponente sowie eine In-Situ Komponente. Die Weltraumkomponente umfasst die Sentinel Erdbeobachtungssatelliten und die zugehörige Infrastruktur, z. B. das Bodensegment. Die Dienste Komponente deckt die sechs thematischen Bereiche Land, Klimawandel, Atmosphäre, Meere, Krisen- und Katastrophenmanagement und Sicherheit ab. Die Kerndienste sind damit beauftragt, fertige Datenprodukte bereitzustellen. Die Produkte integrieren u. a. Daten der Sentinel Missionen, Daten aus beitragenden Missionen, In-situ- und Modelldaten.<BR>Sowohl auf europäischer Ebene als auch auf nationaler Ebene laufen derzeit Überlegungen, wie Copernicus-Daten und Dienste auch für die Wasserwirtschaft besser genutzt und weiterentwickelt werden können. In diesem Sachverständigengutachten war zu untersuchen, in welchem Maße Copernicus Daten und Dienste herangezogen werden können, um einen Beitrag für das Hochwasserrisikomanagement in Deutschland zu leisten sowie um ggf. bundesweit vergleichbare Daten für die Berichterstattung zur Umsetzung der Hochwasserrisikomanagementrichtlinie bereitzustellen.<BR>Nach einem einführenden Überblick über Copernicus erfolgt eine Darstellung des Wissens- und Kenntnisstandes bei der Anwendung von Copernicus-Daten und Diensten im Hochwasserrisikomanagement. Die Untersuchungen hierzu erfolgten durch Expertengespräche, eine Literaturrecherche und eine Untersuchung von bisher durchgeführten Aktivierungen des Copernicus Katastrophen- und Krisenmanagementdienstes in Deutschland. In einem zweiten Schritt wurde eine Zuordnung von Copernicus Daten und Diensten zu den einzelnen Umsetzungsschritten der Hochwasserrisikomanagement-Richtlinie durchgeführt. Ein weiterer Fokus liegt auf der Untersuchung von Einsatzmöglichkeiten von Copernicus für eine bundeseinheitliche Schadenspotentialermittlung. Im Weiteren werden anhand von vier Fallbeispielen die Potentiale eines satellitenbasierten Monitorings demonstriert bzw. der Mehrwert einer Integration von Copernicus Datenprodukten aufgezeigt.<BR>Aus Sicht der Autoren besteht ein hohes Potential für den Einsatz von Copernicus-Daten und Diensten für das Hochwasserrisikomanagement. Dieses wird von den Fachexperten v. a. in den Behörden der Bundesländer bisher noch nicht ausgeschöpft. Eine umfangreichere Nutzung wird empfohlen. Um die Akzeptanz hierfür zu erhöhen sind jedoch weitere Maßnahmen des Bundes und von Bundesländerseite notwendig. Weitere Schulungen in den Behörden zur Nutzung der bestehenden Dienste und Daten, eine Copernicus Arbeitsgruppe Wasserwirtschaft, eine Plattform zum Wissensmanagement und Pilotprojekte zum Test von Arbeitsweisen und Produkten sollten zeitnah umgesetzt werden, um das große Potential auszuschöpfen, welches Copernicus schon heute bietet. Quelle: Forschungsbericht
Am 13. Oktober 2017 startete der jüngste Satellit des Europäischen Erdbeobachtungsprogramms Copernicus Sentinel-5P um 11.27 Uhr Mitteleuropäischer Sommerzeit an Bord einer Rockot-Trägerrakete vom nordrussischen Weltraumbahnhof in Plesetsk ins All. Der rund 820 Kilogramm schwere Sentinel-5P beobachtet aus 824 Kilometern Höhe die Spurengase der Erdatmosphäre. Mit seinem Messinstrument TROPOMI (Tropospheric Monitoring Instrument) ist der Satellit in der Lage, Tag für Tag wichtige Information über die Luftverschmutzung, den Zustand der Atmosphäre sowie die Änderung des Klimas zu liefern. Mit einem Sichtfeld von 2600 Kilometern, knapp 1000 hochauflösenden Spektralkanälen und einer hohen räumlichen Auflösung wird Sentinel-5P jeden Tag unseren gesamten Planeten kartieren und setzt auch technisch neue Standards: TROPOMI misst im ultravioletten, sichtbaren, nahen und kurzwelligen infraroten Wellenlängenbereich und kann einen weiten Bereich an Luftschadstoffen wie Stickoxide, Ozon, Formaldehyd, Schwefeloxide, Methan und Kohlenmonoxid beobachten. Die Produkte zu diesen Spurengasen werden im Copernicus Atmosphärendienst eingesetzt, um Daten auch zu regionaler Luftverschmutzung zur Verfügung zu stellen. Die Mission soll aber auch andere Daten bereitstellen wie zum Beispiel für die Überwachung von Vulkanasche für die Flugsicherheit oder für Warnungen vor zu hoher UV-Strahlung. Bedeutend ist die Fortsetzung der Zeitreihen der Messinstrumente GOME, SCIAMACHY, GOME-2 und MIPAS durch Sentinel-5P: Langjährige Klimadatensätze werden damit fortgeschrieben und finden Eingang in den Copernicus Klimadienst.
Origin | Count |
---|---|
Bund | 117 |
Land | 4 |
Wissenschaft | 5 |
Type | Count |
---|---|
Ereignis | 7 |
Förderprogramm | 109 |
Text | 4 |
unbekannt | 6 |
License | Count |
---|---|
geschlossen | 3 |
offen | 122 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 78 |
Englisch | 72 |
Resource type | Count |
---|---|
Datei | 7 |
Dokument | 1 |
Keine | 84 |
Webseite | 42 |
Topic | Count |
---|---|
Boden | 90 |
Lebewesen & Lebensräume | 87 |
Luft | 126 |
Mensch & Umwelt | 126 |
Wasser | 79 |
Weitere | 121 |