Diese Karte zeigt Ihnen das technisch-theoretische Potenzial für Luft- und Erdwärmepumpen. Die Potenzialergebnisse geben Ihnen einen ersten Anhaltspunkt, ob Ihr Gebäude mit einer Wärmepumpe beheizt werden kann, ersetzen aber nicht die Detailplanung vor Ort durch ein Fachunternehmen. Wir empfehlen Ihnen daher, zusätzlich den Hamburger Wärmepumpenrechner zu nutzen, um sich detailliert über die Eignung Ihres Gebäudes für die Wärmeversorgung mit einer Wärmepumpe zu informieren. So sind Sie für das Erstgespräch mit Ihrem Heizungsinstallateur oder Energieberater bestens vorbereitet. Durch Anklicken einer Fläche in der Karte werden in einem Popup-Fenster weitere Details und Links zu weiterführenden Informationen angezeigt. Die Einfärbung der Fläche veranschaulicht das Potenzial von hoch bis gering. Das Potenzial wird ausgedrückt als Anteil der Gebäude in der Gebietseinheit, die theoretisch mit einer Luft- oder Erdwärmepumpe beheizt werden könnten. Diesen prozentualen Anteil finden Sie unter der Kategorie „Anteil der versorgbaren Gebäude“.
„Unsere Analyse zeigt: es sind ausreichend Potentiale vorhanden, um die komplette Wärmeversorgung in Nordrhein-Westfalen mit erneuerbaren und klimafreundlichen Energien sicherzustellen“, erklärte Dr. Barbara Köllner, Vizepräsidentin des LANUV heute (Donnerstag, 5. September 2024) im Haus der Technik in Essen. Mit Begleitung durch die NRW-Wirtschaftsministerin Mona Neubauer wurden kommunalen Vertreterinnen und Vertretern sowie Planungsbüros und weiteren Akteuren im Bereich der Wärmewende die Inhalte der Studie vorgestellt. Neben den Potentialen wurden in der Studie Planungsgrundlagen für die kommunale Wärmeplanung ausgearbeitet. An den erarbeiteten Datengrundlagen können sich alle Kommunen in NRW orientieren, um den besten Weg für die eigene Wärmeplanung zu finden. „Wir haben insgesamt neun Szenarien erarbeitet, die verschiedene Wege zu einer klimaneutralen Wärmeversorgung aufzeigen“, betonte Dr. Köllner. „Bis spätestens zum Jahr 2045 muss die Wärmeversorgung vollständig auf klimafreundlichen und erneuerbaren Energien beruhen. Die Planungen zum Umbau der Wärmeversorgung haben in vielen Fällen bereits begonnen und stellen alle Kommunen vor große Herausforderungen. Mit unseren Daten geben wir aktiv Hilfestellung, um die kommunalen Wärmeplanungen anzustoßen und wichtige Hinweise zu geben, welche Wege möglich und damit umsetzbar wären.“ Die Wärmestudie NRW zeigt das theoretische Potential der Wärmequellen in NRW. Dieses Potential übersteigt den Wärmebedarf aller vorhandener Gebäude. Dem erwarteten Wärmebedarf aller Gebäude in NRW von maximal etwa 150 Terawattstunden pro Jahr (TWh/a) steht ein vielfaches an theoretischem Potential der erneuerbaren und klimafreundlichen Wärmequellen gegenüber. Der größte Anteil an der Deckung des zukünftigen Wärmebedarfs der Gebäude wird anhand der Szenarienanalyse innerhalb der Wärmestudie im Bereich der dezentralen Versorgung liegen. Mit 63 bis 80 Prozent Deckungsanteil wird die Wärmepumpe dominierend sein. Dabei könnten Luft-Wärmepumpen mit 66 TWh/a bis 94 TWh/a die führende Technologie im zukünftigen Wärmemix werden. Viel Potential steckt zudem in der Nutzung der oberflächennahen Geothermie über Sole-Wärmepumpen. 17,8 TWh/a bis 26,9 TWh/a könnten erzielt werden. Dies entspricht dann einem zukünftigen Strombedarf für die Wärmepumpen im dezentralen Bereich von 21,0 TWh/a bis 29,7 TWh/a. In Gebäuden mit besonders hohem Wärmebedarf könnten dezentrale Biomassekessel, die beispielsweise mit Pellets oder Hackschnitzel als Brennstoff betrieben werden, 4,5 bis 8,9 Prozent an der zukünftigen Wärmeversorgung ausmachen. Etwa 15 bis 33 Prozent dieses Bedarfs könnte über klimaneutrale Fernwärme gedeckt werden. Dies entspräche etwa einer Verdoppelung bis Vervierfachung des jetzigen Anteils. Dabei kann vor allem die Abwärme aus der Industrie, Rechenzentren oder Elektrolyseuren, die hydrothermale Geothermie sowie die thermische Nutzung des Abwassers über die Kanalisation, dem Ablauf von Kläranlagen oder der Industrie eine bedeutende Rolle einnehmen. Weitere bedeutende Wärmequellen wären die thermische Abfallbehandlung, Freiflächen-Solarthermie oder die verstärkte Nutzung regional verfügbarer Biomasse. Je nach Struktur der einzelnen Kommunen kann die Wärmeplanung aus einer Vielzahl an Potentialen und Möglichkeiten aufgebaut werden. Alle Daten und Fakten wurden gemeindescharf ermittelt. Damit hat das LANUV mit der Studie eine umfassende Datengrundlage für die Kommunen und deren Wärmeplanung erarbeitet. Erste Daten sind bereits im LANUV-Wärmekataster veröffentlicht, dazu gehören unter anderem der neu ermittelte Wärmebedarf und die Potenziale der hydrothermalen Geothermie. Die weiteren Daten wie das Potenzial des Abwassers oder die Aktualisierung der oberflächennahen Geothermie, werden bis zum Jahresende sukzessive ergänzt. Alle Daten stehen zudem auf dem Open-Data-Portal des Landes zur Verfügung und können damit frei von allen Kommunen genutzt werden. Die einzelnen Daten und weitere Informationen sind zu finden unter: zurück
Umweltwärme und Wärmepumpen Abwärme Solarthermie Photovoltaisch-Thermische (PVT) Module Oberflächennahe Geothermie Eisspeicher Biomasse Biogas / Bio-Methan Die neuen Generationen von Wärmenetzen ermöglichen es, Wärme aus der Umgebung für die Versorgung von Gebäuden nutzbar zu machen, die für konventionelle Wärmenetze der älteren Generationen nicht erschlossen werden konnte. Schlüsseltechnologie, um diese Wärmequellen zu nutzen, ist die Wärmepumpe. Das grundlegende Funktionsprinzip einer Wärmepumpe ähnelt einem Kühlschrank, nur, dass der thermodynamische Kreisprozess in die umgekehrte Richtung läuft. Während im Kühlschrank die Wärme aus dem Inneren abgeführt und an die Umgebung übertragen wird, entzieht die Wärmepumpe einer Wärmequelle Energie und hebt diese, angetrieben meist durch Elektrizität, auf ein höheres Temperaturniveau, sodass sie zum Heizen genutzt werden kann. Die Wärmepumpe besteht aus einem geschlossenen Kreislauf, in dem ein Kältemittel zirkuliert und einen thermodynamischen Kreisprozess durchläuft. Die wesentlichen Komponenten einer Wärmepumpe sind Verdampfer, Verdichter, Kondensator und Drosselventil. Der Verdampfer ist ein Wärmeübertrager, in dem die Wärme der externen Wärmequelle an das Kältemittel in der Wärmepumpe übergeht, wodurch dieses verdampft. Durch den Verdichter wird der Druck des nun gasförmigen Kältemittels erhöht. Dadurch kommt es auch zu einer Erhöhung der Temperatur des Kältemittels. Diese muss oberhalb der zu erreichenden Heiztemperatur liegen, damit es im Kondensator, einem weiteren Wärmeübertrager, zur Abgabe der Wärme an das Heizwasser kommt. Durch die Wärmeabgabe kondensiert das Kältemittel im Kondensator und liegt wieder flüssig vor. Der Kondensator wird daher auch oft als Verflüssiger bezeichnet. Das Drosselventil reduziert den Druck des Kältemittels, wodurch die Temperatur weiter abfällt und der Kreisprozess mit Wiedereintritt in den Verdampfer von vorn beginnen kann. Zu den möglichen Wärmequellen zählen unter anderem Außenluft, Oberflächengewässer und Grundwasser sowie die oberen Schichten des Erdreichs (oberflächennahe Geothermie). Entsprechend kommen folgende Wärmepumpen-Typen zum Einsatz: Luft-Wasser-WP; Außenluft oder Abluft einer technischen Anlage Sole-Wasser-WP; Erdkollektoren und -sonden, PVT, Eisspeicher, etc Wasser-Wasser-WP; Grundwasser, Flusswasser, Abwasser, Kühlwasser Weiterführende Informationen Umweltbundesamt Bundesverband Wärmepumpe zur grundlegenden Funktionsweise von Wärmepumpen Bundesverband Wärmepumpe zur Rolle von Wärmepumpen in Nah- und Fernwärmenetzen Abwärme ist Wärme, die als Nebenprodukt in einem Prozess entsteht, dessen Hauptziel die Erzeugung eines Produktes, die Erbringung einer Dienstleistung oder eine Energieumwandlung ist, und ungenutzt an die Umwelt abgeführt werden müsste . Kann die Abwärme nicht durch eine Optimierung der Prozesse, bei denen sie entsteht, vermieden werden, wird sie als unvermeidbare Abwärme bezeichnet. Aus Effizienzgründen sollte eine hierarchisierte Verwendung mit Abwärme angestrebt werden: 1. Verfahrensoptimierung/ Vermeidung, 2. prozess- bzw. anlageninterne Nutzung, 3. betriebsinterne Nutzung, 4. außerbetriebliche Nutzung. Je nach Temperaturniveau der Abwärme lässt sie sich für unterschiedliche Zwecke nutzen. Abwärme kann bei ausreichend hohen Temperaturen direkt in Fern- und Nahwärmenetze eingespeist werden oder über Wärmepumpen auf das benötigte Temperaturniveau angehoben werden. Bei niedrigen Temperaturen ist die Nutzung in LowEx- oder teilweise auch kalten Nahwärmenetzen möglich. Unvermeidbare und damit extern nutzbare Abwärme fällt typischerweise in Industrieprozessen an. Aber auch die Abwärme von Kälteanlagen, die beispielsweise zur Kühlung von Rechenzentren oder großer Büro- und anderer Nichtwohngebäude genutzt werden, lässt sich sinnvoll in Wärmenetzen nutzen. Abwasserwärme ist eine weitere übliche Abwärmequelle in urbanen Gebieten, die ganzjährig eine Temperatur zwischen etwa 12 °C und 20 °C aufweist. Sie eignet sich daher besonders für die Nutzung als Wärmequelle für Wärmepumpen oder in kalten Netzen. Eine Herausforderung bei der Nutzung von unvermeidbarer Abwärme können Schwankungen im Wärmeangebot sein. So fällt Abwärme von Kälteanlagen zur Büroklimatisierung hauptsächlich im Sommer an und auch Abwärme aus Industrieprozessen kann z.B. bedingt durch Produktionszyklen volatil sein. Hier ist in der Detailplanung des Nahwärmenetzes darauf zu achten, dass ein unregelmäßiges Abwärmeangebot durch entsprechende Speicher oder andere, regenerative Quellen ausgeglichen werden kann. Weiterführende Informationen Informationen rund um Abwasserwärme der Berliner Wasserbetriebe Analyse zum Abwärmepotenzial der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt Die Einstrahlung der Sonne kann zur direkten Erwärmung eines Wärmeträgermediums genutzt werden. Diese Umwandlung von Sonnenenergie in thermische Energie über Kollektoren wird Solarthermie genannt. Dabei kommen hauptsächlich Flachkollektoren oder Vakuumröhrenkollektoren zum Einsatz. Bei Flachkollektoren sind Kupferrohre in eine verglaste Absorberebene eingelassen. Vakuumröhrenkollektoren zeichnen sich durch einzelne, parallele und vakuumierte Glasröhren aus, in denen das Heizrohr mit Absorber verläuft. In den Kollektoren strömt in der Regel ein Wasser-Glykol-Gemisch, auch Sole, Solarflüssigkeit oder Wärmeträgerflüssigkeit genannt. Das beigemischte Glykol dient als Frostschutz, um bei geringer Einstrahlung und Außentemperatur ein Einfrieren im Winter zu verhindern. Mit Vakuumröhrenkollektoren können höhere Temperaturen und damit höhere Erträge pro Kollektorfläche erzielt werden. Besondere Bauformen besitzen auch Parabolspiegel, die das Sonnenlicht stärker auf die Absorber konzentrieren. Auch Systeme, die Wasser statt Sole führen, werden eingesetzt. Der Vorteil besteht in der höheren Wärmekapazität von Wasser gegenüber Sole, wodurch höhere Erträge und Temperaturen erzielt werden können. In wasserführenden Systemen findet im Winter bei fehlender Einstrahlung in regelmäßigen Abständen eine Zwangsumwälzung des Wassers statt, wodurch ein Einfrieren des Wärmeträgermediums in den Rohren vermieden wird. Mit einem Jahresertrag pro benötigte Grundfläche von 150 kWhth/(m²*a), ist die durchschnittliche Flächeneffizienz von ST-Anlagen beispielsweise um den Faktor 30 höher als die von Biomasseheizwerken bei der Verwendung von Holz aus Kurzumtriebsplantagen. In den letzten Jahren werden Solarthermie-Projekte zur Einspeisung in großstädtische Wärmenetze verstärkt umgesetzt. Bei der Einbindung von Solarthermischen Anlagen in Wärmenetze bietet sich sowohl die zentrale als auch die dezentrale Variante an. Zentrale Systeme speisen am Standort des Hauptwärmeerzeugers oft in einen vorhandenen Wärmespeicher ein. Dazu wird die Wärme von der Anlage über ein separates Rohrsystem zu der Heizzentrale geführt. Zu beachten: Im Sommer kann eine solarthermische Anlage die Deckung der gesamten Wärmelast übernehmen und je nach Auslegung auch einen Wärmespeicher füllen. Im Winter wird in der Regel ein weiterer Wärmeerzeuger eingesetzt, da Leistung und Wärmemenge aus der Solaranlage oft nicht ausreichen. Die Solarthermie kann in Wärmenetzen in Konkurrenz zu Grundlastquellen oder -Erzeugern stehen, z.B. Abwärme, Biomasse oder Blockheizkraftwerk (BHKW) und so den Bedarf an nötigem Wärmespeichervolumen erhöhen Eine Nutzung als Wärmequelle in kalten Netzen gestaltet sich schwierig, da die Sommertemperaturen zu hoch sind Weiterführende Informationen Solarthermie Wärmenetze PVT-Kollektoren sind ein Spezialfall der Sonnenenergienutzung. Sie kombinieren Photovoltaikzellen und solarthermische Kollektoren, um so Wärme und Strom in einem Modul zu erzeugen. Die verfügbare Dachfläche wird so optimal ausgenutzt. Die Kollektoren bestehen aus einem PV-Modul und einem rückseitig montiertem Wärmeübertrager. Dadurch, dass zeitgleich zur Stromerzeugung Wärme abgeführt wird, entsteht ein Kühleffekt, der zu einem höheren Stromertrag führt, da die Effizienz von PV-Modulen temperaturabhängig ist. PVT-Module gibt es in mehreren Varianten, die sich vor allem durch das Temperaturniveau der erzeugten Wärme unterscheiden. Für die Erzeugung hoher Temperaturen wird der Wärmeübertrager vollständig mit Wärmedämmung eingehaust. Dadurch geht jedoch der stromertragssteigernde Kühleffekt an den PV-Zellen verloren, sodass diese Module vor allem zur Erzeugung von Prozesswärme eingesetzt werden. Als Wärmequelle für Wärmepumpen in Nahwärmenetzen eignen sich daher vor allem ungedämmte sogenannte unabgedeckte PVT-Kollektoren, bei denen die Rohre des Wärmeübertragers mit zusätzlichen Leitblechen für einen Wärmeübergang aus der Luft optimiert sind. Diese liefern ganzjährig Energie, die beispielsweise direkt in ein kaltes Nahwärmenetz eingespeist werden kann. Weiterführende Informationen Informationen zu PVT-Modulen und Wärmepumpen im Rahmen des Forschungsprojektes integraTE Verwendung von PVT-Modulen im degewo Zukunftshaus In den oberen Erdschichten folgt die Bodentemperatur der Außenlufttemperatur. Mit zunehmender Tiefe steigt die Temperatur an und ist ab ca. 15 m unter Gelände Oberkante nahezu konstant. Die Wärme aus dem Erdreich kann über verschiedene horizontale und vertikale Erdwärmeübertrager oder auch Grundwasserbrunnen gewonnen und als Wärmequelle für Wärmepumpen genutzt werden. Horizontale Erdwärmeübertrager werden Erdkollektoren genannt. Es handelt sich hierbei um Rohrregister, üblicherweise aus Kunststoff, die horizontal oder schräg, spiral-, schrauben- oder schneckenförmig in den oberen fünf Metern des Untergrundes verlegt werden. Bei der häufigsten Nutzung der Erdwärme werden Erdsonden – meist Doppel-U-Rohrleitungen in vertikalen Tiefenbohrungen bis 100 m verwendet. Ab Tiefen über 100 m gilt Bergbaurecht, womit komplexere Genehmigungsverfahren verbunden sind, die eine Nutzung in kleinen, dezentralen Netzen in der Regel ausschließen. Perspektivisch wird durch das 4. Bürokratieentlastungsgesetz voraussichtlich die oberflächennahe Geothermie bis 400 m nicht mehr unter das Bergrecht fallen. Es können mehrere Sonden zu einer Anlage vereint werden. Hierbei ist durch einen ausreichenden Abstand der Sonden untereinander eine gegenseitige Beeinflussung auszuschließen. Auch zu benachbarten Grundstücken muss ein entsprechender Abstand gewahrt bleiben. In Erdwärmeübertragern wird ein Gemisch aus Wasser und Frostschutzmittel, Sole genannt, verwendet, da die Temperatur der Sole auch unter 0 °C fallen kann. Aufgrund des Einsatz Wassergefährdender Stoffe und weil der Eingriff in den Wärmehaushalt nach geltendem Recht eine Gewässernutzung darstellt, ist für Erdwärmesonden im Allgemeinen und Erdwärmekollektoren, die weniger als 1 m über dem höchsten Grundwasserstand verlegt werden, in Berlin eine wasserbehördliche Erlaubnis erforderlich. Als Alternative zu Erdsondenanlagen kommen bei größeren Anlagen auch Grundwasserbrunnen in Frage, bei denen über zwei Bohrungen die im Grundwasser enthaltene Wärme genutzt wird. Dabei dient eine Bohrung der Entnahme und eine weitere der Rückspeisung des entnommenen Wassers. Die Eignung des örtlichen Grundwasserleiters für eine Wärmeanwendung muss im konkreten Einzelfall geprüft werden. Für eng bebaute Gebiete eignet sich auch ein Koaxialsystem in Form eines Grundwasserzirkulationsbrunnens, welcher aus nur einer Bohrung besteht. Weiterführende Informationen Informationen und Anforderungen zur Erdwärmenutzung in Berlin Energieatlas mit geothermischen Potenzialen Informationen zur oberflächennahen Geothermie Beim Phasenübergang von flüssig zu fest gibt Wasser bei konstantem Temperaturniveau Energie in Form von Wärme ab. Diese Wärme, die allein bei der Aggregatzustandsänderung transportiert wird, wird als latente Wärme bezeichnet. Bezogen auf die Masse von 1 kg handelt es sich um die Erstarrungsenthalpie eines Stoffes, die bei Wasser in etwa der Energiemenge entspricht, die auch benötigt wird, um dasselbe 1 kg Wasser von 0 °C auf 80 °C zu erwärmen. Zu- oder abgeführte Wärme, die eine Temperaturveränderung bewirkt, wird als sensible Wärme bezeichnet. In Eisspeichern wird eine Wassermenge, z.B. in einer unterirdischen Betonzisterne durch Wärmeentzug vereist. Dazu strömt ein Gemisch aus Wasser und Frostschutzmittel, Sole genannt, mit geringerer Temperatur als dem Gefrierpunkt von Wasser durch Rohrspiralen im Speicher. Durch den Temperaturgradienten kommt es zum Wärmetransport zwischen dem erstarrenden Wasser in der Betonzisterne und der Sole in den Rohrspiralen. Die latente Wärme aus dem Phasenübergang des Wassers wird an die Sole übertragen, welche sich dadurch erwärmt. Die erwärmte Sole dient wiederum einer Wärmepumpe als Wärmequelle. Am Verdampfer der Wärmepumpe gibt die Sole die Wärme wieder ab und kann anschließend erneut Wärme aus dem Eisspeicher aufnehmen. Durch Kombination mit Solarkollektoren kann die Effizienz der Anlage erhöht werden, wenn die damit gewonnene thermische Energie zur Regeneration des Eisspeichers genutzt wird. Weiterführende Informationen Informationen zu Eisspeichern Funktion und Kosten von Eisspeichern im Überblick Bei der Wärmebereitstellung durch Biomasse kommen in der Regel Anlagen zum Einsatz, in denen holzartige Biomasse verfeuert wird. Hierfür gibt es verschiedene Brennstoffe, die sich in Qualität und Kosten z.T. deutlich unterscheiden. Holzpellets sind kleine hochstandardisierte Presslinge mit einer Länge von 2-5 cm, die in unter anderem aus Resten der Holzverarbeitung gepresst werden. Ihr Einsatz in Pelletkessel ist hoch automatisiert und damit nur wenig störanfällig. Dennoch sind jährlich kleinere Arbeiten durch z.B. Ascheaustragung o.ä. erforderlich. Zudem ist eine entsprechende Lagerhaltung in einem sogenannten Bunker inkl. Fördersystem erforderlich. Der Einsatz von Holzhackschnitzeln ist etwas arbeitsaufwändiger, da sowohl Brennstoff als auch das Gesamtsystem zur Wärmeversorgung weniger automatisierbar ist. Die Beschaffung des etwa bis zu 10 cm großen, mechanisch zerkleinerten Holzpartikel ist deutlich günstiger und sie können zudem auch in außenliegenden, überdachten Lagerbereichen oder Wirtschaftsgebäuden gelagert werden. Jedoch bestehen größere Anforderungen an die Einbringtechnik und den Betrieb einer Feuerungsanlage. Durch den gröberen Brennstoff, unterschiedliche Brennstoffqualitäten und Ascheaustrag, kann es gegenüber einem Pelletkessel zu häufigerem Arbeitsaufwand kommen, sodass regelmäßige Präsenzzeiten zur Betreuung erforderlich sind. Des Weiteren kann zur Verteilung des Brennstoffes auch schweres Arbeitsgerät vor Ort erforderlich werden. Neben einer reinen Verbrennung der Holzbrennstoffe kann in einem Vergaser auch Holzgas aus der Biomasse gewonnen werden, um diese anschließend in einem speziellen BHKW in Wärme und Strom umzuwandeln. Holz als Brennstoff ist ein vergleichsweise günstiger und preisstabiler Brennstoff, der jedoch einen gewissen Arbeitsaufwand mit sich bringt. Hierbei sind auch die gegenüber der Verbrennung von gasförmigen Energieträgern erhöhten Staubanteile im Abgas zu beachten, welche im urbanen Bereich stärkere Anforderungen an die Abgasreinigung und Ascheentsorgung mit sich bringen. Auch ist bei der Verwendung von nicht lokal verfügbarer Biomasse ein umfangreicher Logistikaufwand zu betreiben, was zu mehr Verkehr auf den Straßen und einer zusätzlichen Belastung durch Emissionen führt. Ebenso ist bei der Abwägung, ob die Wärme für ein Nahwärmenetz mit Holz erzeugt werden soll, zu berücksichtigen, dass Holz nur bedingt als „klimaneutral“ bezeichnet werden kann. Die Verbrennung setzt neben Feinstaub auch Treibhausgase wie CO 2 und Methan frei. Die Annahme, dass die Wärmeerzeugung mit Holz klimaneutral ist, setzt eine nachhaltige Waldbewirtschaftung voraus, bei der mindestens genauso viel Kohlenstoff durch das Wachstum neuer Bäume gebunden wird, wie durch die Verbrennung von Holz freigesetzt wird. Wird Holz aus nicht nachhaltiger Waldbewirtschaftung (beispielsweise der Abholzung von Urwäldern) für die Wärmeerzeugung verwendet, dann fällt die Bilanz der Umweltauswirkungen negativ aus. Eine stärkere Reduktion von Treibhausgasen kann zudem erreicht werden, wenn das Holz für langlebige Produkte (beispielsweise als Bauholz) verwendet wird, da der Kohlenstoff dann dem natürlichen Kreislauf auf längere Zeit entzogen wird und nicht als CO 2 in die Atmosphäre gelangt. Empfehlenswert für die Wärmeerzeugung ist daher vor allem Restholz aus Produktionsprozessen, das nicht für andere Nutzungen geeignet ist, sowie Altholz, das am Ende der Nutzungskaskade angekommen ist. Die Qualität von Holzbrennstoffen lässt sich verschiedenen Normen in Güteklassen einteilen. Hierfür dient bspw. die DIN EN ISO 17225 oder das DINplus-Zertifizierungsprogramm, um Vergleichbarkeiten zu ermöglichen und eine entsprechende Brennstoffqualität sicherzustellen. Des Weiteren sollten Nachweise über die Herkunft der Biomasse bei den Lieferanten angefragt werden, um möglichst regionale Produkte zu nutzen. Die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt hat zu den Potenzialen von Biomasse in Berlin eine Untersuchung durchführen lassen, deren Ergebnisse hier einzusehen sind: Biomasse . Weitere Informationen zu diesem Thema finden Sie beim Bundesumweltministerium: BMUV: Klimaauswirkungen von Heizen mit Holz sowie beim Umweltbundesamt: Heizen mit Holz . Weiterführende Informationen Hackschnitzel: Qualität und Normen FNR – Fachagentur Nachwachsende Rohstoffe Für die Wärmeerzeugung aus Biogas existieren regionale unterschiedliche Möglichkeiten. Im ländlichen Raum kann häufig direkt Biogas aus Gärprozessen aus der Landwirtschaft verwendet werden. Abfallstoffe wie z.B. Gülle können dafür genutzt werden, wie auch eigens dafür angebaute Energiepflanzen. Die Verwendung von Anbaubiomasse zur Produktion von Biogas steht jedoch in starker Kritik und kann ebenso wie die Produktion von flüssigen Energieträgern auf die Formel ‚Tank oder Teller‘ reduziert werden. Daher wurde mit den letzten Novellen des Erneuerbare-Energien-Gesetzes (EEG) die Nutzung von Anbaubiomasse zu Biogasproduktion immer weiter eingeschränkt (Stichwort ‚Maisdeckel‘). Biogas kann vor Ort genutzt und in Wärme und Strom umgewandelt und verbraucht bzw. über ein kleines Nahwärmenetz verteilt werden. Für eine Einspeisung in das Erdgasnetz ist eine Methan-Aufbereitung des Gases erforderlich. In Berlin besteht die Möglichkeit, ein Biogas- bzw. Biomethanprodukt eines beliebigen Lieferanten aus dem öffentlichen Gasnetz zu beziehen. Dieses Biomethan ist in der Regel aufbereitetes Biogas, z.B. aus Reststoffen oder Kläranlagen, welches in das Netz an einem anderen Verknüpfungspunkt eingespeist wird. Vor Ort zur (Strom- und) Wärmeerzeugung wird dann bilanzielles Biomethan eingesetzt – ähnlich dem Bezug von Ökostrom aus dem öffentlichen Versorgungsnetz. Der tatsächliche Anteil von Biomethan im Erdgasnetz entsprach im Jahr 2022 lediglich etwa 1 %. Bei dem Kauf gibt es entsprechende Nachweiszertifikate (z.B. “Grünes Gas Label” – Label der Umweltverbände oder TÜV) der Anbieter. Die Umsetzung in Wärme (und Strom) erfolgt dann klassisch über Verbrennungstechnologien wie Gaskessel oder BHKW.
Umweltfreundliches Heizen dank effizienter Wärmepumpe Worauf Sie beim Einbau einer Wärmepumpe achten sollten Wärmepumpen sind eine umweltfreundliche Heiztechnik: Prüfen Sie, ob Ihr Haus für Wärmepumpen geeignet ist. Kaufen Sie besonders energieeffiziente Wärmepumpen. Achten Sie bei Planung und Kauf auch auf weitere zentrale Punkte: Geeignete Wärmequelle (möglichst Erdreich), optimale Größe, geringe Lärmemissionen und umweltfreundliches Kältemittel. Für unsanierte Häuser können sich übergangsweise Hybrid-Wärmepumpen eignen. Warten und prüfen Sie Ihre Wärmepumpe regelmäßig. Gewusst wie Die Heizung ist im Haushalt der mit Abstand größte Verursacher von Kohlendioxid (CO 2 ). Diese Emissionen belasten das Klima. Eine Wärmepumpe ist eine Heizung, die wie ein Kühlschrank funktioniert, nur umgekehrt und mit viel höherer Leistung. Sie pumpt quasi die Wärme von außen (Boden, Wasser, Luft) in die Wohnung. Die elektrische Wärmepumpe ist eine energiesparende Form der Wärmegewinnung mit geringeren CO 2 -Emissionen als Heizöl- oder Erdgasheizungen. Einsatzmöglichkeiten für Wärmepumpen: Grundsätzlich sind sowohl Neu- als auch Altbauten für Wärmepumpen geeignet. Je niedriger der Wärmebedarf, desto effizienter arbeiten sie. Wärmepumpen eignen sich besonders gut in Häusern, in denen Niedertemperatur-Heizsysteme als Wärmeabnehmer zur Verfügung stehen. Der Anschluss an eine Flächenheizung (zum Beispiel Fußbodenheizungen) ist für Wärmepumpen günstig. Flächenheizungen kommen mit niedrigen Vorlauftemperaturen, 35 °C oder weniger, aus. Wärmepumpen können auch in vielen teilsanierten oder manchen unsanierten Häusern mit Heizkörpern hinreichend effizient betrieben werden. Die Heizkörper in Altbauten sind in der Regel zu groß und haben "Sicherheitsreserven", die man nutzen kann, um die Vorlauftemperatur zu senken. Einzelne, zu kleine Heizkörper können auch ausgetauscht werden. In Altbauten, die sich nicht alleine mit einer Wärmepumpe beheizen lassen, sind Hybridheizungen eine interessante Lösung: Eine Wärmepumpe übernimmt die Grundversorgung mit Wärme und ein Heizkessel unterstützt an kalten Tagen die Wärmepumpe. In unserem Wärmepumpenportal "So geht's mit Wärmepumpen!" finden Sie zahlreiche Praxisbeispiele aus ganz Deutschland. Wirtschaftlichkeit beachten: Die Wirtschaftlichkeit von Wärmepumpen können Sie vorab mit Online-Ratgebern für Neubau oder Altbau überschlagen. Wer ein bestehendes Haus mit einer Wärmepumpe beheizen möchte, kann zudem Fördermittel über die "Bundesförderung für effiziente Gebäude" erhalten. Dafür muss die Wärmepumpenanlage besonders energieeffizient sein. Nähere Informationen erhalten Sie bei der Kreditanstalt für Wiederaufbau (KfW) . Energieeffiziente Wärmepumpen sind eine Möglichkeit, die Verpflichtungen nach dem Gebäudeenergiegesetz besonders einfach zu erfüllen. Effiziente Wärmepumpe verwenden: Die Wärmepumpe sollte möglichst energieeffizient arbeiten. Sie erkennen dies an einer hohen Jahresarbeitszahl ( JAZ oder SCOP ), ideal sind Werte von 4,0 oder höher. Luft-Wärmepumpen erreichen diesen Wert nur unter günstigen Umständen. Die JAZ gibt das für ein Jahr ermittelte Verhältnis von abgegebener Heizwärme (Heizarbeit) für die Heizung zu dem dazu erforderlichen Aufwand (Antriebsarbeit einschließlich Hilfsenergie) an. Bei elektrischen Wärmepumpen ist dies der erforderliche elektrische Strom. Beispielsweise bedeutet eine JAZ von 4,0 für eine elektrische Wärmepumpe, dass für die Bereitstellung von 4 Kilowattstunden (kWh) Heizwärme 1 kWh elektrischer Strom erforderlich ist. Je höher die Jahresarbeitszahl einer Wärmepumpe ist, desto energieeffizienter, umweltfreundlicher und kostengünstiger arbeitet sie – und umgekehrt. Beachten Sie, dass die Angabe einer einzelnen Leistungszahl (COP) nicht ausreicht, da diese nur die (theoretische) Leistung der Wärmepumpe, nicht jedoch die weiteren Faktoren im laufenden Betrieb berücksichtigt. Kritische Punkte bei Planung und Kauf berücksichtigen: Ob eine Wärmepumpe umweltfreundlich und wirtschaftlich arbeitet, hängt von Grundsatzentscheidungen in der Planung und beim Kauf ab: Lassen Sie sich schon in Angeboten die Energieverbrauchskennzeichnung samt der Pflicht-Produktinformationen vorlegen. Denn seit 2015 müssen Heizgeräte, zu denen auch Wärmepumpen zählen, eine Energieverbrauchskennzeichnung tragen und Anforderungen an die Energieeffizienz erfüllen. Da eine hohe Jahresarbeitszahl die Betriebskosten senkt, ist eine gute und unabhängige Beratung, die auf Ihren speziellen Fall zugeschnitten ist, unerlässlich. Es gilt: die in der Anschaffung billigste Lösung ist nicht immer die auf Dauer preiswerteste. Holen Sie unabhängigen Rat ein, zum Beispiel von Energieberatern oder den Verbraucherzentralen . Vereinbaren Sie schriftlich eine möglichst hohe und dennoch realistische Mindest-Jahresarbeitszahl (Zielwert: 4,0). Dazu gehören Pflichten des Installateurs (korrekte Planung, Installation und Inbetriebnahme) ebenso wie Ihre Pflichten als Betreiber (z.B. bestimmungsgemäßer Betrieb bei geplanter Raumtemperatur, moderater Warmwasser-Verbrauch). Bei der Energieberatung der Verbraucherzentralen erhalten Sie weitere Beratung dazu. Geeignete Wärmequelle wählen: Prinzipiell stehen als Wärmequellen Boden, Wasser und Luft zur Verfügung. Die Effizienz der Wärmepumpe steigt, je geringer die Temperaturdifferenz zwischen der Wärmequelle und dem Heizsystem ist. Grundwasser und Erdreich verfügen während des Winters, wenn der Heizwärmebedarf groß ist, über eine relativ hohe, stabile Durchschnittstemperatur. Dies begrenzt den notwendigen Temperaturhub und ist für die Energieeffizienz und den Stromverbrauch einer Wärmepumpe von Vorteil. Erdreich, Grundwasser und Abwasser sind deshalb im Allgemeinen bessere Wärmequellen als die im Winter kalte Außenluft. Ein Bonus bei der Förderung würdigt die systemisch höhere Effizienz, um die womöglich höhere Anfangsinvestition abzumildern, die später durch niedrigere Stromkosten ausgeglichen werden kann. Luft-Wärmepumpe Quelle: Bundesverband Wärmepumpe e.V. Grundwasser-Wärmepumpe Quelle: Bundesverband Wärmepumpe e.V. Wärmepumpe mit Erdwärmekollektoren Quelle: Bundesverband Wärmepumpe e.V. Wärmepumpe mit Erdwärmesonden Quelle: Bundesverband Wärmepumpe e.V. Luft-Wärmepumpe Grundwasser-Wärmepumpe Wärmepumpe mit Erdwärmekollektoren Wärmepumpe mit Erdwärmesonden Optimale Größe der Heizung ermitteln: Eine überdimensionierte Wärmepumpenanlage führt zu unnötigen Mehrkosten bei der Anschaffung. Ist die Wärmepumpe wiederum zu klein, springt zum Beispiel an kalten Tagen öfter der Heizstab an – das ist teuer und ineffizient. Lassen Sie deshalb von einer Fachkraft die passgenaue Dimensionierung der Wärmepumpe berechnen: Berechnung der Heizlast mit/ohne Trinkwassererwärmung (keine einfache Schätzung!) und der Wärmequelle (beispielsweise Ertrag des Erdreichs). Lärmemissionen gering halten: Wärmepumpen können Lärmbelästigung verursachen, die sowohl Sie als auch Ihre Nachbarn erheblich stören können. Für innen aufgestellte Wärmepumpen sind Schallleistungspegel von 50- 60 dB(A) unbedenklich. Eine Schallleistung ab 50 dB(A) außerhalb des Hauses kann aber für die Bewohner in der Nachbarschaft (Garten etc.) problematisch sein. Das gilt vor allem für ruhige Wohngegenden. Lassen Sie sich deshalb zu potentiellen Geräuschimmissionen der Wärmepumpe an dem von Ihnen bevorzugten Aufstellort beraten. Wählen Sie einen Aufstellort, der weder bei Ihnen noch bei Ihren Nachbarn zu belästigenden Geräuschen führt. Von der Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz gibt es hierzu auch einen Leitfaden für die Verbesserung des Schutzes gegen Lärm bei stationären Geräten (Kurzfassung) . Das Land Sachsen-Anhalt hat mit Unterstützung des UBA zudem einen interaktiven Assistenten zur Anwendung dieses Leitfadens entwickelt. Wenn es unter allen anderen Belangen möglich ist, planen Sie für Ihre Wärmepumpe einen Aufstellort im Innenraum, dann werden die wenigsten Geräusche in die Nachbarschaft emittiert. Achten Sie beim Kauf der Wärmepumpe auch auf den angegebenen Geräuschpegel in dB (zu finden auf dem Energielabel oder im Schallrechner des Bundesverbands Wärmepumpe e.V. ). Je geringer der Wert, desto leiser ist die Wärmepumpe im Betrieb. Wärmepumpen mit angegebenen Werten unter 55 dB (< 6kW), 60 dB (6-12 kW) und 65 dB (>12 kW) sind besonders geräuscharm. Insbesondere in der Heizperiode im Winter kommt es bei einigen Anlagen zudem regelmäßig zu Abtau- und Rückspülvorgängen, die sich in ihrer Geräuschcharakteristik und Belästigungswirkung unterscheiden. Besichtigen Sie gegebenenfalls eine Referenzanlage im Betrieb oder lassen Sie sich vom Hersteller Hörbeispiele des Wärmepumpenbetriebs in ruhiger Umgebung vorspielen, um sich dieser Umweltwirkung besser bewusst zu werden. Um langfristig Probleme mit Lärm zu vermeiden, planen Sie die Lärmminderung durch eine schalltechnisch günstige Aufstellung und sachgerechte Installation und Betrieb im Vorfeld ein. Nachträgliche Lärmminderung ist immer wesentlich teurer als die Berücksichtigung im Vorfeld. Umweltfreundliches Kältemittel nutzen: Wärmepumpen für Heizwärme enthalten heute größtenteils teilfluorierte Kohlenwasserstoffe (HFKW) als Kältemittel, deren Emissionen klimaschädlich sind. Diese Stoffe unterliegen deshalb der EU-Verordnung über fluorierte Treibhausgase , die unter anderem die Verringerung der in Verkehr gebrachten HFKW-Menge regelt. Solange sie am Markt noch verfügbar sind, sind sie teuer und treiben die Kosten Ihrer Wärmepumpe hoch, wenn in der Anlage einmal Kältemittel nachgefüllt werden muss. Schon aus wirtschaftlichen Gründen sollten Sie deshalb beim Kauf darauf achten, dass die Wärmepumpe keine hoch treibhausgaswirksamen Kältemittel enthält, sondern am besten natürliche Kältemittel wie Propan oder auch CO 2 . Propan hat günstige thermodynamische Eigenschaften und ermöglicht so hohe Wirkungsgrade. Was Sie bei der Planung noch beachten sollten: Beauftragen Sie ein einzelnes, erfahrenes Unternehmen als verantwortlichen Generalunternehmer mit Planung, Installation und Inbetriebnahme der ganzen Wärmepumpenanlage. Erkundigen Sie sich vorher nach Referenzen. Die Wärmepumpenanlage sollte möglichst einfach sein – mit der Komplexität der Anlage steigt oft die Fehleranfälligkeit. Die Wärmepumpe sollte auch das Trinkwasser erwärmen. Der Warmwasserspeicher sollte nicht zu groß und gut isoliert sein (Energieeffizienzklasse A). Ein zusätzlicher Heizungspufferspeicher ist nur für Heizkörper-Heizungen nötig, um Sperrzeiten des Stromtarifs zu überbrücken, nicht für Fußbodenheizungen. Die Wärmepumpe sollte so geplant werden, dass sie im regulären Betrieb ohne Heizstab auskommen kann. Wenn eine Luftwärmepumpe nachts im schallreduzierten Betrieb ("Silent mode") arbeiten muss, um die zulässigen Geräuschimmissionen einzuhalten, sollte die Planung berücksichtigen, dass in diesen Zeiten die Heizleistung sinkt. Wärmepumpen eignen sich nicht nur zum Heizen, sondern auch zum Kühlen – vorausgesetzt, das Haus hat eine Fußboden- oder Flächenheizung. Besonders energiesparend und umweltfreundlich ist das mit oberflächennaher Geothermie, die auch im Sommer kühl genug ist, um das Haus ohne Zutun der Wärmepumpe zu temperieren. Dies erhöht zusätzlich den Wirkungsgrad der Anlage. Beachten Sie: Wärmepumpenanlagen, die Grundwasser oder Erdreich als Wärmequelle nutzen, müssen bei der unteren Wasserbehörde angezeigt oder genehmigt werden. Was Sie bei Kauf und Installation noch beachten sollten: Bevorzugen Sie zertifizierte Unternehmen, beispielsweise: Gütezeichen "Fachbetrieb Wärmepumpe" nach VDI 4645 für Installationsfirmen, Zertifizierung nach DVGW W120 für Erdsonden-Bohrunternehmen. Achten Sie auf fachgerechte Installation der Anlage. Dazu gehören auch der korrekte Einbau von 3-Wege-Ventilen und Temperaturfühlern und die lückenlose Wärmedämmung aller Bauteile und Leitungen (inkl. Armaturen). Achten Sie darauf, dass ein hydraulischer Abgleich der Heizungsanlage vorgenommen wird. Das ist Voraussetzung für niedrige Heiztemperaturen und hohe Energieeffizienz der Anlage. Zur Inbetriebnahme muss die Regelung mit den richtigen Betriebszeiten und einer möglichst niedrigen Heizkurve eingestellt werden; Werkseinstellungen sind nicht ausreichend. Der (integrierte) Heizstab sollte standardmäßig deaktiviert und nur im Notfall (oder zur Trocknung von Neubauten) eingeschaltet werden. Fordern Sie eine vollständige Dokumentation der gesamten Anlage, der Pläne und der Einstellungen ein. Zum Abschluss der Installation gehört die Einweisung der Nutzer. Achten Sie auf möglichst schwingungsgeminderte Aufstellung und flexible Anschlüsse an Kältemittel- und Wasserleitungen, um unerwünschte Vibrationen oder Geräusche zu vermeiden. Installieren Sie sachgerecht die zur Wärmepumpe gelieferten Zubehörteile zur Schallminderung. Gegebenenfalls bietet der Hersteller Nachrüst-Zubehör zur Schallminderung an. Wärmepumpe warten und Verbräuche prüfen: Die Heizung funktioniert nur optimal als Gesamtsystem. Deshalb müssen alle Heizkomponenten optimal aufeinander abgestimmt sein: Wärmeerzeuger, Heizflächen, Thermostatventile, Pumpen- und Reglereinstellungen. Regelmäßige Wartung stellt deshalb die Funktionsfähigkeit und Effizienz der Anlage sicher: Reinigung der Wärmetauscher, Leitungen und Ventile, Überprüfen der Füllstände, schrittweises Absenken der Heizkurve. Sie können auch selbst überprüfen, ob die Wärmepumpe optimal arbeitet. Mit regelmäßiger Kontrolle der Verbrauchsdaten stellen Sie fest, wie effizient und kostengünstig die Heizung arbeitet. Die meisten Wärmepumpen haben hierzu einen Wärmemengenzähler, der erfasst, wieviel Heizwärme produziert wurde. Wenn Sie die Menge an Heizwärme durch den Stromverbrauch der Wärmepumpe aus dem gleichen Zeitraum teilen, erhalten Sie die " Jahresarbeitszahl ". Viele Wärmepumpen können die Jahresarbeitszahl im Menü anzeigen. Vergleichen Sie diesen Wert mit den Planungsunterlagen, um zu prüfen, ob die Wärmepumpe so effizient arbeitet wie geplant. Hilfsmittel wie das kostenlose Energiesparkonto machen die Kontrolle leichter. Was Sie beim Betrieb noch beachten sollten: Drücken Sie Ihr Engagement für die Energiewende aus, indem Sie zu einem Ökostrom-Anbieter wechseln oder selbst in erneuerbare Energien investieren. Stellen Sie den Regelbetrieb so ein, dass die Anlage in den Abendstunden (20 bis 22 Uhr) und Nachtstunden (22 bis 6 Uhr) möglichst wenige (bestenfalls gar keine) Geräusche verursacht, aber trotzdem noch effizient genug arbeitet. Dies kann unterstützt werden durch die zusätzliche Installation eines geeigneten Heizungspufferspeichers. Kontrollieren Sie den Betrieb der Wärmepumpe auf auffällige unregelmäßige Geräusche. Gegebenenfalls ist dann eine Wartung der Wärmepumpe erforderlich. Gehen Sie verantwortungsvoll mit Beschwerden aus der Nachbarschaft über belästigenden Lärm durch Ihre Anlage um. Reagieren Sie rücksichtsvoll und lösungsorientiert darauf, um einen unnötigen Nachbarschaftsstreit zu vermeiden. Was Sie noch tun können: Profitieren Sie von den Praxiserfahrungen anderer: In unserem Wärmepumpenportal "So geht's mit Wärmepumpen!" finden Sie zahlreiche Praxisbeispiele aus ganz Deutschland. Beachten Sie unsere Tipps zu Heizen/Raumtemperatur . Hintergrund Umweltsituation: Gut 35 Prozent der Energie werden in Deutschland eingesetzt, um Gebäude zu beheizen und Wasser zu erwärmen. Das verursacht rund 30 Prozent der CO 2 -Emissionen. Die Heizung verbraucht im Haushalt am meisten Energie und verursacht damit mit Abstand die größte Menge an CO₂. Wärmepumpen verringern Energieverbrauch und CO 2 -Emissionen. Klimaschädliche Treibhausgasemissionen entstehen, wenn ein fluoriertes Kältemittel, das viele Wärmepumpen enthalten, bei der Herstellung, beim Betrieb oder bei der Entsorgung der Wärmepumpe entweicht. Eine klimafreundliche Alternative sind Wärmepumpen mit dem Kältemittel Propan (R290), die inzwischen von verschiedenen Herstellern angeboten werden. Gesetzeslage : Das Gebäudeenergiegesetz , das 2023 geändert wurde, verpflichtet die Eigentümerinnen und Eigentümer neu errichteter Gebäude, ab 1.1.2024 mindestens 65 Prozent des Wärmebedarfs aus erneuerbaren Quellen zu decken. Ab Mitte 2026 greift diese Pflicht sukzessive auch für Bestandsgebäude. Eine Möglichkeit, den Anteil an erneuerbaren Energien zu decken, ist der Einsatz einer Wärmepumpe oder einer Hybrid-Wärmepumpe. Wärmepumpen, die in Häusern mit mindestens 6 Wohnungen oder Nutzungseinheiten installiert werden, erhalten eine Betriebsprüfung, in der festgestellt wird, ob die Wärmepumpe so effizient wie geplant arbeitet. Seit September 2015 müssen neue Heizgeräte, zu denen auch Wärmepumpen zählen, eine Energieverbrauchskennzeichnung tragen und Ökodesign-Anforderungen an die Energieeffizienz erfüllen. Das gibt eine Reihe von EU-Verordnungen vor. Wärmepumpenanlagen, die geothermische Umgebungswärme über Bohrungen erschließen, müssen bei der unteren Wasserbehörde angezeigt oder genehmigt werden, Bohrungen mit einer Tiefe von über 100 Metern können zusätzliche Genehmigungen erfordern. Die Regelungen und Genehmigungsverfahren für Erdwärmesysteme sind bundeslandspezifisch. Auskunft über die geltenden Vorschriften geben Leitfäden. In den oberen Untergrund eingebundene Systeme wie Erdwärmekollektoren, Energiepfähle und erdberührende Betonbauteile bedürfen in der Regel keiner zusätzlichen Genehmigung. Die Verordnung (EU) Nr. 2024/573 regelt den Einsatz von fluorierten Kältemitteln. So wird seit 2015 die verfügbare Menge der als Kältemittel verwendeten teilfluorierten Kohlenwasserstoffe in der EU schrittweise reduziert. Zudem sind Betreiber von Wärmepumpen , die eine bestimmte Menge fluorierter Treibhausgase enthalten, dazu verpflichtet, diese regelmäßig auf Dichtheit kontrollieren zu lassen und darüber Aufzeichnungen zu führen. Wärmepumpen sind in der Anschaffung teurer als konventionelle Heizungen. Für energieeffiziente Wärmepumpen gewährt die Bundesregierung Investitionszuschüsse in der Bundesförderung effiziente Gebäude , wenn sie eine Mindest- Jahresarbeitszahl (laut Planung) erreichen. Marktbeobachtung: 2022 stellten Wärmepumpen in Deutschland 20 Terawattstunden Heizwärme bereit. Das entspricht drei Prozent des Wärmebedarfs der Gebäude. Beim Neukauf von Wärmeerzeugern hatten Wärmepumpen 2022 einen Marktanteil von 24 Prozent. Es bräuchte für Wärmepumpen deutlich stärkere politische und preisliche Impulse, damit sie zum Rückgrat der treibhausgasneutralen Wärmeversorgung werden. Bei Neubauten werden immerhin schon in fast 60 Prozent der Fälle Wärmepumpen eingesetzt. Als Wärmequellen wurde 2022 bei den Neuinstallationen von Wärmepumpen in rund 80 Prozent der Fälle Luft, in rund 20 Prozent der Fälle Grundwasser, Erdreich und sonstige Quellen gewählt. Weitere Informationen finden Sie auf unseren UBA -Themenseiten: Umgebungswärme und Wärmepumpen Energiesparende Gebäude Geothermie Nachbarschaftslärm und haustechnische Anlagen Fluorierte Treibhausgase und FCKW Quellen: dena Gebäudereport 2023 Statistisches Bundesamt
Mit Antrag vom 26.04.2023 beantragt der Landkreis Neuburg-Schrobenhausen die Neuerteilung der wasserrechtlichen Erlaubnis für die Grundwasserwärmepumpe am Schulcampus Bittenbrunn ab dem 01.01.2024. Die aktuell geltende wasserrechtliche Genehmigung ist bis Ende 2023 befristet. Der Schulcampus Bittenbrunn ist Teil des Staatlichen Beruflichen Schulzentrums an der Monheimer Straße 66 in Neuburg a. d. Donau. Mit Antrag vom 18.12.2019 wurde der Plan, für das Schulzentrum eine neue, einheitliche Heizungsanlage zur Nahwärmeversorgung mit regenerativen Energien zur Verfügung zu stellen, eingereicht. Dem Landkreis Neuburg-Schrobenhausen wurde mit Bescheid vom 14.05.2020 die gehobene wasserrechtliche Erlaubnis nach § 15 WHG für die thermische Nutzung von oberflächennahem Grundwasser für das Vorhaben Schulcampus Bittenbrunn, Monheimer Straße 66, 86633 Neuburg a. d. Donau, Fl.-Nrn. 171 (Gemarkung Bittenbrunn), 1165 und 1165/1 (Gemarkung Neuburg a. d. Donau) erstmalig erteilt. Geplant war die Errichtung einer geothermischen Brunnenanlage, bestehend aus vier Entnahme- und vier Schluckbrunnen mit einer Gesamtentnahme- und Injektionsrate von 109,2 m³/h und einer jährlichen Gesamtentnahmemenge von etwa 165.000 m³ Grundwasser. Mit Hilfe dieser Brunnenanlage soll die geothermische Wärme über ein kaltes Nahwärmenetz mit dezentralen Wärmepumpen in den einzelnen Gebäuden verteilt werden.
Wie Wärmepumpen in Bestandsgebäuden effizienter arbeiten Wärmepumpen können auch in nicht optimal gedämmten Bestandsgebäuden effizient arbeiten. Eine UBA-Studie zeigt, welche Maßnahmen hierfür nötig sind, etwa größere Heizkörper, eine effizientere Wärmepumpe oder die Nutzung des Erdreichs statt Umgebungsluft als Wärmequelle. Werden Wärmepumpen besonders effizient betrieben, entlastet dies auch das deutsche Stromsystem. Im Rahmen ihrer 2022 gestarteten Wärmepumpen-Offensive strebt die Bundesregierung an, dass in Deutschland jährlich über 500.000 Wärmepumpen installiert werden. 2023 waren es bereits 356.000 Stück. Insgesamt soll der Bestand an Wärmepumpen von derzeit rund 2 Millionen bis zum Jahr 2030 auf über sechs Millionen Wärmepumpen steigen, zu einem großen Teil in Bestandsgebäuden. Ziel der UBA-Studie „Wärmepumpensysteme in Bestandsgebäuden“ war, die technischen und wirtschaftlichen Vorteile, Folgen und Grenzen des breiten Wärmepumpeneinsatzes aus einzelwirtschaftlicher wie aus Energiesystem-Perspektive zu beschreiben. Hierzu wurden Wärmepumpensysteme in Bestandsgebäuden detailliert und zeitlich hoch aufgelöst simuliert. Der Schwerpunkt lag auf Einfamilienhäusern. Die Simulationen des Projektes zeigten Effizienzpotenziale bei Wärmepumpen in einem durchschnittlichen Einfamilienhaus: Größer dimensionierte Heizkörper können die Jahresarbeitszahl ( JAZ ) um 17 Prozent erhöhen und den Stromverbrauch entsprechend senken. Ein effizienteres Wärmepumpen-Gerät erhöht die JAZ um zehn Prozent, der Umstieg auf das Erdreich statt Umgebungsluft als Wärmequelle sogar um über 30 Prozent. Eine eventuell vorhandene Zirkulationsleitung für warmes Trinkwasser sollte im Einfamilienhaus stillgelegt werden, weil sie die Effizienz einer Wärmepumpe verringert. Diese Effizienzgewinne würden sich nicht nur positiv auf die Wirtschaftlichkeit des Wärmepumpeneinsatzes in einem Einfamilienhaus auswirken, sondern auch auf die Stromversorgung in Deutschland: Untersuchungen mit einem vereinfachten Stromsystemmodell zeigten, dass zum Beispiel der flächendeckende Einsatz besonders effizienter Wärmepumpen die Spitzenlast im Jahr 2030 um 2 Gigawatt und 2040 um 6 Gigawatt reduzieren würden – das entspricht zehn (2030) und 30 (2040) Gasturbinen-Kraftwerken bzw. der Stromproduktion von 1.500 Windkraftanlagen für den Betrieb dieser Spitzenlast-Kraftwerke mit Wasserstoff. Hybridwärmepumpen, bei denen an besonders kalten Tagen eine Gas- oder Ölheizung einspringt, können in unsanierten Häusern übergangsweise bis etwa 2030 das deutsche Stromsystem entlasten, solange die Stromspitzenlast noch mit fossilen Energieträgern gedeckt wird. Die Studie empfiehlt, die Rahmenbedingungen für den weiteren Wärmepumpen-Hochlauf noch besser zu gestalten, und leitet Politikempfehlungen ab. Einige Beispiele: Ökodesign-Vorschriften und Förderkriterien können zu einem größeren Marktangebot an effizienteren Wärmepumpen führen. Ertragreichere Wärmequellen als Umgebungsluft würden häufiger genutzt, wenn die Fördersätze attraktiver sind und Hemmnisse abgebaut werden. Einfach anwendbare Tools für die raumweise Heizlastberechnung oder zur Unterstützung des hydraulischen Abgleichs können es einfacher machen, die Temperaturen des Heizungssystems abzusenken (z.B. durch größere Heizkörper) und Wärmepumpen effizienter zu betreiben. Die Entwicklung herstellerübergreifender Standard-Installationsschemata kann die Fehleranfälligkeit bei der Installation verringern. Mit einer klassifizierenden Energieeffizienz-Anzeige (z.B. als Ampel) könnten Betreiber*innen leichter erkennen, wenn ihre Wärmepumpe nicht effizient genug arbeitet. Eine im Rahmen der Studie durchgeführte (nicht repräsentative) Online-Umfrage im Sommer 2023 mit rund 680 auswertbaren Antworten ergab, dass viele Personen grundsätzlich positive Einstellungen zu Wärmepumpen hatten, aber Installationskosten und Strompreise für zu hoch halten und sich bessere Förderung wünschen. Zusätzliche Informationen wurden vor allem in Bezug auf die technische Eignung der Gebäude und die erforderlichen Bau- und Anpassungsmaßnahmen am Gebäude gewünscht. Im Anhang zum Abschlussbericht der Studie befindet sich ein Exkurs zu innovativen Finanzierungs- und Förderinstrumenten . Rund 1,2 Millionen Haushalten in Deutschland fehlen Rücklagen oder Kreditwürdigkeit, um Klimaschutzmaßnahmen am Gebäude finanzieren zu können. Für diese Zielgruppe hat die Deutsche Unternehmensinitiative Energieeffizienz e. V. (Deneff) innovative Finanzierungsinstrumente entwickelt . Diese können die Hemmschwelle für Klimaschutzmaßnahmen senken, weil sie den nach Förderung verbleibenden Finanzbedarf abdecken. Die Berechnungen zeigen am Beispiel einer Heizungserneuerung mit Wärmepumpe, dass eine Finanzierbarkeit unter der Prämisse gleichbleibender Wohnkosten ohne Förderung zwar nur bei sehr geringen Zinssätzen sowie langen Laufzeiten erreicht werden kann, aber schon eine geringe Förderquote von 10 Prozent nennenswerte Spielräume schaffen kann. Kern dieser Finanzierungsinstrumente ist eine Absicherung durch eine Bundesbürgschaft für etwaige Rückzahlungsausfälle Darüber hinaus wurden in diesem Projekt folgende Fragestellungen untersucht und in separaten Papieren veröffentlicht (siehe „Publikationen“): Realitätsnahe Berechnung des Energiebedarfs Lösungsoptionen für Wärmepumpen in Bestandsgebäuden Der Umgang mit dem Wirtschaftlichkeitsgrundsatz in der Novelle zum GEG 2023 Abwasserwärme Trinkwarmwasserkonzepte für Gebäude mit einer Wärmepumpenheizung
Die Firma Schleswiger Stadtwerke GmbH in Werkstraße 1, 24837 Schleswig, plant die Errichtung und den Betrieb einer Anlage zur Erzeugung von Strom und Warmwasser in einer Energiezentrale mit Verbrennungsmotoren durch den Einsatz von Erdgas mit einer Feuerungswärmeleistung von mehr als 1,0 Megawatt (MW) in der Stadt 24837 Schleswig, Werkstraße 1, Gemarkung Schleswig, Flur 42, Flurstücke 464, 56/70. Gegenstand des Genehmigungsantrages sind im Wesentlichen folgende bauliche Maßnahmen: Neubau einer Energiezentrale mit folgenden Bestandteilen: – Zwei erdgasbetriebene BHKW-Module; – Ein erdgasbefeuerter Brennwertkessel; – Drei elektrisch angetriebene Sole/Wasser-Wärmepumpen; – Ein Solebehälter; – Zwei Warmwasserpufferspeicher; – Ein dreizügiger Stahlschornstein.
Neue Heizungen sollen ab 2024 einen Mindestanteil erneuerbarer Energien nutzen. Wärmepumpen spielen dabei eine wichtige Rolle. Das Kurzgutachten schätzt ein, wie die Heizung von Bestands-Wohngebäuden auf Wärmepumpen umgestellt werden kann. Es beschreibt, wie häufig technische Hemmnisse beim Einbau von Wärmepumpen in Bestandsgebäude sind und wie sie sich lösen lassen. Es wird geschätzt, dass bei rund 80 % der Wohngebäude nur kleine Anpassungen wie Heizkörpertausch notwendig sind, um die Systemtemperaturen so weit zu senken, dass Wärmepumpen effizient arbeiten können. Es gibt weitere Hinweise, wie sich bauliche Einschränkungen lösen lassen.
LENA GmbH Olvenstedter Str. 66, 39108 Magdeburg www.lena.sachsen-anhalt.de Wir machen Energiegewinner. Pressekontakt: Anja Hochmuth E-Mail hochmuth@lena-lsa.de Tel. 0391 5067-4045 Gefördert durch das Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressemitteilung Magdeburg | 15. Dezember 2022 Mit gutem Beispiel voran: „Grüne Hausnummer PLUS“ in Behnsdorf übergeben Familie Jeremias aus Behnsdorf, einem Ortsteil der Gemeinde Flechtingen im Landkreis Börde, darf sich nun über eine „Grüne Hausnummer Sachsen-Anhalt PLUS“ freuen. Das individuell ange- fertigte Hausnummernschild aus Emaille sowie eine Urkunde zur Würdigung ihres Engagements in Sachen Klimaschutz wurden der Familie am Donnerstag, dem 15. Dezember 2022, überreicht. Das ausgezeichnete Einfamilienhaus wurde 2018 nach KfW-Effizienzhaus-Standard 55 in Holzstän- derbauweise errichtet. Die Wärmeversorgung erfolgt mittels einer Erdwärmepumpe. Da das Haus aber nicht nur besonders energieeffizient gebaut, sondern bei dem Ausbau umfangreich nach- wachsende Baumaterialien verwendet wurden, hat die Fachjury per Einzelfallentscheidung beschlossen, der Familie das zusätzliche Prädikat „PLUS“ zu verleihen. So wurden ein Holzfuß- boden und Sandstein aus der Region verbaut sowie Lehmbauplatten, ein Lehm-Innenputz und Lehmfarbe sowie ökologische Klebstoffe für den Innenausbau verwendet. Darüber hinaus hat die Familie einen Erdkeller aus Ziegelsteinen zur Aufbewahrung eigener Obst- und Gemüseernten errichtet. Überreicht wurde die Grüne Hausnummer PLUS durch Energiestaatssekretär Thomas Wünsch, den Geschäftsführer der Landesenergieagentur Sachsen-Anhalt (LENA), Marko Mühlstein, sowie Vertreterinnen und Vertreter der Architektenkammer Sachsen-Anhalt und der Ingenieurkammer Sachsen-Anhalt. Die am Bau beteiligten Handwerksfirmen wurden ebenfalls mit einer Urkunde gewürdigt. Staatssekretär Thomas Wünsch sagte: „Sachsen-Anhalt wird grüner – das lässt sich immer häufiger auch an der Hausnummer ablesen. Familie Jeremias hat beim Hausbau nicht nur auf Energieeffizienz, sondern auch auf nachwachsende, möglichst regionale Baustoffe gesetzt. Dieses starke Statement für den Klimaschutz wollen wir würdigen und möglichst viele Häuslebauer in Sachsen-Anhalt zum Nachahmen anregen.“ „Mit Blick auf die stark gestiegenen Energiekosten lohnt sich ein energieeffizientes Wohngebäude mehr denn je - nicht nur für den Klimaschutz, sondern auch den eigenen Geldbeutel“, ergänzte LENA-Geschäftsführer Marko Mühlstein. LANDESENERGIEAGENTUR SACHSEN-ANHALT Wir machen Energiegewinner. Hintergrund zum Auszeichnungswettbewerb „Grüne Hausnummer Sachsen-Anhalt“ Der von der Landesenergieagentur Sachsen-Anhalt GmbH (LENA) ins Leben gerufene Auszeich- nungswettbewerb um die „Grüne Hausnummer Sachsen-Anhalt“ und die „Grüne Hausnummer Sachsen-Anhalt PLUS“ startete im November 2017 und würdigt Gebäudeeigentümerinnen und - eigentümer, die nach dem 1. Dezember 2009 besonders innovativ, energieeffizient, nachhaltig oder wohngesund saniert oder gebaut haben. Seit 2021 richtet sich der Wettbewerb nicht mehr ausschließlich an private, sondern auch an gewerbliche Eigentümerinnen und Eigentümer von Wohngebäuden. Alle Bewerberinnen und Bewerber, die von einer Jury geprüfte Qualitätskriterien erfüllen, erhalten ein individuell angefertigtes Hausnummernschild. Bei der Verleihung an Familie Jeremias handelt es sich um die insgesamt 32. Verleihung einer „Grünen Hausnummer“ oder einer „Grünen Hausnummer PLUS“ in Sachsen-Anhalt und um die dritte Auszeichnung im Landkreis Börde. Alle Informationen zum Wettbewerb und zur Bewerbung erhalten Sie unter www.gruene- nummer.de.
Wir machen Energiegewinner. Landesenergieagentur Sachsen-Anhalt GmbH Olvenstedter Straße 66 I 39108 Magdeburg I www.lena.sachsen-anhalt.de Pressekontakt: Anja Hochmuth I hochmuth@lena-lsa.de I Tel.: 0391-5067-4045 PRESSEMITTEILUNG Magdeburg, 24. September 2020 „Grüne Hausnummer PLUS“ an Familie aus Möser übergeben Am Mittwoch, den 23. September 2020, hat die Ministerin für Umwelt, Landwirtschaft und Energie des Landes Sachsen-Anhalt, Prof. Dr. Claudia Dalbert, eine „Grüne Hausnummer Sachsen-Anhalt PLUS“ in Möser übergeben: Familie Jäger darf sich nun über ein individuell angefertigtes Hausnummernschild aus Emaille sowie eine Urkunde freuen. Überreicht hat die Umweltministerin die „Grüne Nummer“ gemeinsam mit dem Präsidenten der Architektenkammer Sachsen-Anhalt, Prof. Axel Teichert, Thomas Rochel von der Ingenieurkammer Sachsen-Anhalt sowie den Prokuristen der Landesenergieagentur Sachsen-Anhalt GmbH (LENA), Dirk Trappe. Familie Jäger ist bereits die dritte Familie in der Einheitsgemeinde Möser, die im Rahmen der Kampagne „Grüne Hausnummer Sachsen-Anhalt“ ausgezeichnet wurde. Zusätzlich wurden auch die am Hausbau beteiligten Handwerksfirmen aus Sachsen-Anhalt für die Umsetzung des besonders energieeffizienten Eigenheims mit einer eigenen Urkunde gewürdigt. „Die Grüne Hausnummer zeichnet Familien aus, die über den Tellerrand schauen und mehr machen. Und genau das hat Familie Jäger mit Bravour getan “, so Umweltministerin Prof. Dr. Dalbert. „Mehr PLUS als bei der Grünen Hausnummer von Familie Jäger ist nur schwer zu erreichen: Sie setzt auf innovative Anlagentechnik, nutzt umfangreich ökologische Baustoffe, erreicht hervorragende Dämmwerte und ergänzt das Ganze in absehbarer Zeit mit Sektorenkopplung im Bereich E-Mobilität. Sowas ist bei Weitem kein Standard und durchaus auszeichnungswürdig“, ergänzt Thomas Rochel. Familie Jäger hatte sich mit ihrem 2019 errichtetem Neubau eines KfW-Effizienzhauses 40 Plus erfolgreich um die „Grüne Hausnummer Sachsen-Anhalt“ beworben. Da das Haus aber nicht nur besonders energieeffizient gebaut wurde, sondern auch nachhaltige, ökologische Baustoffe sowie eine innovative Anlagentechnik zum Einsatz kamen, hat die Fachjury per Einzelfallentscheidung beschlossen, der Familie das zusätzliche Prädikat „PLUS“ zu verleihen. Die Wärmeversorgung des Hauses erfolgt über eine Sole-Wasser-Wärmepumpe mit Pufferspeicher. Für frische Luft und ein angenehmes Raumklima mit nur geringen Wärmeverlusten sorgt eine Lüftungsanlage mit Wärmerückgewinnung. Für die Gebäudedämmung hat die Familie auf ökologische Dämmstoffe wie Holzfaserdämmplatten, Wir machen Energiegewinner. Landesenergieagentur Sachsen-Anhalt GmbH Olvenstedter Straße 66 I 39108 Magdeburg I www.lena.sachsen-anhalt.de Pressekontakt: Anja Hochmuth I hochmuth@lena-lsa.de I Tel.: 0391-5067-4045 Glasschaumschotter und Zellulose gesetzt. In naher Zukunft soll ein Elektrofahrzeug über den vor Ort erzeugten Strom geladen werden. Hintergrund zur „Grünen Hausnummer Sachsen-Anhalt“: Der von der Landesenergieagentur Sachsen-Anhalt GmbH (LENA) ins Leben gerufene Auszeichnungswettbewerb um die „Grüne Hausnummer Sachsen-Anhalt“ und die „Grüne Hausnummer Sachsen-Anhalt PLUS“ startete im November 2017 und würdigt private Eigentümerinnen und Eigentümer kleinerer Wohngebäude, die nach dem 1. Dezember 2009 besonders innovativ, energieeffizient, nachhaltig oder wohngesund saniert oder gebaut haben. Alle Teilnehmerinnen und Teilnehmer, die von einer Jury geprüfte Qualitätskriterien erfüllen, erhalten ein individuell angefertigtes Hausnummernschild, das ihr Gebäude als besonders energieeffizient und/oder ökologisch ausweist. Weitere Informationen zum Wettbewerb und zur Bewerbung erhalten Sie unter www.grüne-nummer.de.
Origin | Count |
---|---|
Bund | 75 |
Land | 14 |
Type | Count |
---|---|
Förderprogramm | 55 |
Text | 19 |
Umweltprüfung | 3 |
unbekannt | 10 |
License | Count |
---|---|
geschlossen | 18 |
offen | 56 |
unbekannt | 13 |
Language | Count |
---|---|
Deutsch | 85 |
Englisch | 17 |
Resource type | Count |
---|---|
Archiv | 12 |
Datei | 13 |
Dokument | 20 |
Keine | 55 |
Unbekannt | 1 |
Webdienst | 1 |
Webseite | 14 |
Topic | Count |
---|---|
Boden | 52 |
Lebewesen & Lebensräume | 34 |
Luft | 32 |
Mensch & Umwelt | 87 |
Wasser | 31 |
Weitere | 87 |