API src

Found 3378 results.

Related terms

Chem-Org\PS-DE-2000

Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: keine Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe

Chem-Org\PS-DE-2020

Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe

Chem-Org\PS-DE-2005

Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe

Chem-Org\PS-DE-2010

Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe

Chem-Org\PS-DE-2030

Polystyrol-Polymerisation: GPPS (und HIPS) werden heute hauptsächlich über kontinuierliche Polymerisationsprozesse hergestellt. Bei dem Polymerisationsverfahren in Lösung werden in geringen Mengen Lösungsmittel wie Toluol oder Ethylbenzol hinzugegeben. Das Masseverfahren unterscheidet sich dadurch, dass hierbei kein Lösungsmittel zugesetzt wird. Vielmehr dient Styrol sowohl als Edukt als auch als Lösungsmittel. In der Reaktorsektion wird das monomere Styrol zu Polystyrol umgesetzt. Das Produktgemisch, das die Reaktorsektion verläßt hat eine Polystyrolkonzentration von 70-90 %. Nicht umgesetztes monomeres Styrol und Lösungsmittel werden abgetrennt und wieder dem Reaktionsprozeß zugeführt. An den eigentlichen Polymerisationsschritt schließt sich die Zugabe von Additiven (Farbstoffe, Stabilisatoren) zur Produktschmelze, die Extrusion, die Kühlung des Monomers und die Granulation an. Prozess-Situierung: Bei dem Thermoplast Polystyrol (PS) werden verschiedene Arten an PS unterschieden. GP(general-purpose)PS oder auch Standard- PS ist ein hartes, schmelzbares und transparentes Material. HI(high-impact)PS enthält ca. 3 - 10 % Polybutadien als Gummizusatz. Expandable PS (EPS) ist Ausgangsmaterial für PS-Hartschäume. Die Herstellung geht von PS unter Zugabe von ca. 6 % eines Schäumungsmittels (z.B. Pentan) aus. EPS (Handelsname: Styropor) wird sowohl für die Geräusch- als auch die Kälteisolierung eingesetzt. Es werden aber auch Werbe- und Sportartike (z.B. Schwimmwesten)l aus EPS hergestellt. Extrudierte Polystyrolschäume (XPS) werden aus PS und halogenierten Kohlenwasserstoffen als Treibmittel hergestellt. XPS findelt vor allem als thermisches Isoliermittel Anwendung. Weitere Produkte können durch den Zusatz von Copolymeren bei der Polymerisation von Styrol erhalten werden. In dieser Prozeßeinheit wird die Polymerisation von Styrol zu GPPS bilanziert. Nicht alle betrachteten Literaturquellen geben explizit an welches Polystyrol dort bilanziert wird. Es wird jedoch angenommen, daß das Standard-PS betrachtet wird bzw. die entsprechenden Angaben sich nicht wesentlich von denen für GPPS unterscheiden. Der jährliche Verbrauch an PS betrug 1990 weltweit ca. 6,7 Mio. Tonnen. Davon entfielen ca. 2 Mio. t auf Westeuropa (Ullmann 1992). In (APME 1994) wird für Westeuropa, 1994, eine Produktionsmenge von 1,998 Mio. t PS aufgeführt. In #3 werden Anlagen bilanziert, die ca. 0,70 Mio. t GPPS bzw. ca 0,63. Mio. t HIPS produzieren. Die Bilanzierung der PS-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (APME 1994), #1, #2, #3, (OEKO 1992c) und (Tellus 1992). Aufgrund der unterschiedlichen Datenherkunft kann der Gesamtprozeß weder einem bestimmten Zeitraum noch einer bestimmten Region zugeordnet werden. Die Massenbilanz bezieht sich auf die Produktion in Deutschland Ende der 80er Jahre (#1). Die Energiebilanz gibt Daten Anfang der 80er Jahre aus den USA wieder (#2). Die Emissionswerte beziehen sich sowohl auf die USA (Tellus 1992) als auch auf Westeuropa (OEKO 1992c, #1). Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: - Massenbilanz: Nach #1 werden für die Herstellung einer Tonne Polystyrol (es ist anzunehmen, daß bei BUWAL GPPS bilanziert wird) 974,8 kg monomeres Styrol eingesetzt. Unter „Hilfsstoffe, Zusätze" werden weitere 31,2 kg aufgeführt, die nicht weiter spezifiziert sind. Diese Menge wird hier vernachlässigt. Bei der Polymerisation fällt eine Menge von 5,75 kg an nicht weiter spezifizierten „Nebenausbeuten" sowie 0,09 kg feste Abfälle an. Der Einsatz an Styrol stimmt gut mit den Angaben aus (Tellus 1992) bzw. #3 für die Herstellung von GPPS überein. Dort werden jeweils Werte von 980 kg Styrol und 30 bzw. 33 kg an Kohlenwasserstoffen genannt. Da bei BUWAL die ausführlichsten Angaben vorliegen, werden diese Daten für GEMIS verwendet. Energiebedarf: Die Prozessenergie zur Herstellung einer Tonne PS (Masseverfahren) wird in #2 mit insgesamt ca. 3,7 GJ/t PS beziffert (0,6 GJ elektrische Energie, 1,8 GJ Energieträger und 1,3 GJ Energieinhalt des eingesetzten Dampfs). Bei GEMIS wurde für den Einsatz des Energieträger ein Wirkungsgrad von 85 % zugundegelegt. Die entsprechende Energie wird (wie auch der eingesetzte Dampf) als Prozeaawärme (Industriemix, Summe aus Energieträger und Dampf: 2,8 GJ) bereitgestellt. Bei (Tellus 1992) wird ein fast identischer Energiebedarf von 3,8 GJ/t GPPS bilanziert (Masseverfahren: 2,8 GJ elektrische Energie, 1,0 GJ Energieinhalt des Dampfs). Im Vergleich dazu wird bei (PWMI 1993a) ein wesentlicher geringer Energiebedarf von 1,08 GJ/t GPPS genannt, der sich aus 0,80 GJ elektrischer Energie und 0,28 GJ an Energieträgern zusammensetzt. [Für die Herstellung von HIPS ist nach #3 ein vergleichbarer Energiebedarf, 0,60 GJ elektrische Energie und 0,33 GJ Energieträger, erforderlich]. Da bei #2 die weitaus detailliertesten Angaben vorliegen, wurden diese Werte als Kennziffern verwendet. Prozessbedingte Luftemissionen: Bei der Herstellung von Polystyrol sind prinzipiell Emissionen des monomeren Styrols in Betracht zu ziehen. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polystyrolherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 1 kg VOC/t PS. Wasser: In #3 wird der Wasserbedarf zur Herstellung einer Tonne GPPS mit 1850 kg beziffert, hinzu kommen weitere 169 kg an Dampf.Im Hinblick auf Wasserverunreinigungen ist das Suspensionsverfahren (hauptsächlich für die Herstellung von EPS) relevant, bei dem die Polymerisation in wässrigem Medium durchgeführt wird. Beim Masseverfahren kommt das Produkt nur bei der Extrusion (Kühlung) in Kontakt mit Wasser. Angaben zu Abwasserwerten für das Masseverfahren sind in (Tellus 1992) enthalten. Im behandelten Abwasser wird dort für Benzol ein Wert von 0,048 g/t GPPS und für Phenol ein Wert von 0,56 g/t GPPS angegeben. Aus #1 kann entnommen werden, dass der BSB5-Wert gleich null ist. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 103% Produkt: Kunststoffe

Chem-Org\Styrol-DE-2000

Herstellung von Styrol aus den Produktionsschritten "Synthese von Ethylbenzol durch Alkylierung von Benzol mit Ethylen" und "direkte Dehydrogenierung von Ethylbenzol zu Styrol". Im allgemeinen kann davon ausgegangen werden, dass beide Produktionsschritte in demselben Werk stattfinden. Die Ethylbenzolsynthese kann nach zwei verschiedenen Verfahrensrouten durchgeführt werden: die bevorzugte Lewis-Säuren-katalysierte (meist AlCl3) Flüssigphasen-Ethylierung und daneben die heterogene mit sauren Trägerkatalysatoren oder auch Lewis-Säuren durchgeführte Gasphasen-Ethylierung. An die katalytische Umsetzung von Benzol mit Ethylen schließt sich eine destillative Aufarbeitung des Produktgemisches an. Dabei wird einerseits nicht umgesetztes Benzol abgetrennt, das wieder als Edukt eingesetzt wird, andererseits erfolgt die Reinigung von Ethylbenzol. Bei der anschließenden direkten Dehydrogenierung wird Styrol durch katalytische Wasserstoffabspaltung von Ethylbenzol erzeugt. Es wird zwischen zwei verschiedenen Verfahren, deren Unterschied in der Art der Wärmezufuhr liegt unterschieden. Bei der adiabatischen Variante wird die Wärme direkt mittels überhitztem Wasserdampf zugeführt. Hingegen wird bei einer isothermen Reaktionsführung die erforderliche Wärme indirekt durch ein Brenngas zur Verfügung gestellt. Auf die Dehydrogenierung in einem Reaktor folgt eine aufwendige Reinigung des Rohstyrols, wobei auch nicht umgesetztes Ethylbenzol zurückgewonnen wird. Die Herstellungskapazität an Ethylbenzol belief sich 1986 weltweit auf ca. 14,2 Mio. Tonnen (Nordamerika 5,9 Mio. t, Westeuropa 3,8 Mio. t). Über 99 % der Ethylbenzolproduktion wird für die Herstellung von Styrol eingesetzt. Die Synthese von Ethylbenzol beruht zu über 96 % auf der Akylierung von Benzol mit Ethylen (Ullmann 1987). Dabei werden wiederum 47 % der Weltproduktion an Benzol für die Synthese von Ethylbenzol verwendet (Weissermel 1994). Die weltweite Produktionskapazität an Styrol betrug 1993 ca. 17 Mio. Tonnnen. Die Verteilung auf die wichtigsten Erzeugermärkte kann der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1994). Styrol wird fast ausschließlich zur Herstellung von Kunststoffen eingesetzt. Dabei entfallen ungefähr 65 % der Styrolproduktion auf die Synthese von Polystyrol. Rohstoff für den zweiten Produktionsschritt der Styrolerzeugung ist Ethylbenzol, wobei 85 % der Produktion über die direkte Dehydrogenierung von Ethylbenzol verläuft. Bei der Dehydrogenierung unterscheidet man zwischen der adiabatischen Dehydrogenierung (über 75 % aller Styrol-Produktionsanlagen) und der isothermen Dehydrogenierung (z. B. BASF mit ca. 7 % der Weltkapazität) (Ullmann 1994). Bei der Bildung der Kennziffern für GEMIS wird allgemein die Herstellung von Styrol bilanziert. Spezielle Daten zu einzelnen Verfahren liegen nicht vor. Die gebildeten Kennziffern beziehen sich auf die Produktion in Westeuropa Ende der 80er Jahre (#1) bzw. Anfang der 90er Jahre (#2). Die Emissionsangaben aus (Tellus 1992) beziehen sich auf die Produktion in den USA in den 80er Jahren. Tabelle 1 Anteil der Erzeugermärkte an der weltweiten Produktionskapazität an Styrol, 1993. Region Anteil in % Nordamerika 35 Westeuropa 27 Japan 16 Korea 7 Fernost 5 Osteuropa 5 Südamerika 4 Mittlerer Osten 1 Allokation: keine Genese der Daten: Massenbilanz - Für die Herstellung einer Tonne Styrol werden als Rohstoffe 815 kg Benzol und 300 kg Ethylen benötigt. Dabei fallen an Nebenausbeuten (u. a. Toluol) ca. 65 kg an, die in GEMIS nicht weiter bilanziert werden. Weiterhin entstehen 0,43 kg feste Produktionsabfälle [nach #1, die Werte wurden von 974,8 kg auf 1000 kg Styrol umgerechnet]. Energiebedarf: Nach #2 werden für die Herstellung von 1 t Styrol 0,334 GJ an elektrischer Energie und 4,872 GJ an Energieträgern benötigt. Als Gesamtsumme ergibt sich ein Wert von ca. 5,2 GJ. Prozessbedingte Luftemissionen: In (#3 werden die prozeßbedingten VOC-Emissionen bei der Ethylbenzol- und der Styrolherstellung abgeschätzt. Daraus ergibt sich für den Gesamtprozeß (Ethylbenzolherstellung und Weiterverarbeitung zu Styrol) der Styrolherstellung ein Wert von ca. 0,90 kg VOC/t Styrol [dieser Angabe wurde ein Einsatz von 1,077 t Ethylbenzol für die Herstellung einer Tonne Styrol zugrundegelegt (Tellus 1992)]. Aus den Angaben bei (Tellus 1992) wurde für Benzol ein Emissionswert von 0,96 kg/t Styrol berechnet. In (Tellus 1992) werden Daten aus der Primärquelle „U.S. EPA, Toxic Air Pollutant Emission Factors, 1988“ verwendet. Wasser: In #2 wird der Wasserbedarf zur Herstellung einer Tonne Styrol mit 166 kg beziffert, hinzu kommen weitere 1922 kg an Dampf. Für die Abwasserkennziffern BSB5, CSB und TOC stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Aus #1 kann entnommen werden, daß der BSB5-Wert gleich null ist. An Parametern nach Maßnahmen zur Abwasserbehandlung werden bei (Tellus 1992) eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Phenol 0,00087 kg/t Styrol und Zink 0,000010 kg/t Styrol als nutzerdefinierte Emissionen genannt. In (Tellus 1992) werden dabei Werte aus „U.S. EPA, Contractors Engineering Report, 1981“ verwendet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 123% Produkt: Grundstoffe-Chemie

Chem-Org\Styrol-DE-2010

Herstellung von Styrol aus den Produktionsschritten "Synthese von Ethylbenzol durch Alkylierung von Benzol mit Ethylen" und "direkte Dehydrogenierung von Ethylbenzol zu Styrol". Im allgemeinen kann davon ausgegangen werden, dass beide Produktionsschritte in demselben Werk stattfinden. Die Ethylbenzolsynthese kann nach zwei verschiedenen Verfahrensrouten durchgeführt werden: die bevorzugte Lewis-Säuren-katalysierte (meist AlCl3) Flüssigphasen-Ethylierung und daneben die heterogene mit sauren Trägerkatalysatoren oder auch Lewis-Säuren durchgeführte Gasphasen-Ethylierung. An die katalytische Umsetzung von Benzol mit Ethylen schließt sich eine destillative Aufarbeitung des Produktgemisches an. Dabei wird einerseits nicht umgesetztes Benzol abgetrennt, das wieder als Edukt eingesetzt wird, andererseits erfolgt die Reinigung von Ethylbenzol. Bei der anschließenden direkten Dehydrogenierung wird Styrol durch katalytische Wasserstoffabspaltung von Ethylbenzol erzeugt. Es wird zwischen zwei verschiedenen Verfahren, deren Unterschied in der Art der Wärmezufuhr liegt unterschieden. Bei der adiabatischen Variante wird die Wärme direkt mittels überhitztem Wasserdampf zugeführt. Hingegen wird bei einer isothermen Reaktionsführung die erforderliche Wärme indirekt durch ein Brenngas zur Verfügung gestellt. Auf die Dehydrogenierung in einem Reaktor folgt eine aufwendige Reinigung des Rohstyrols, wobei auch nicht umgesetztes Ethylbenzol zurückgewonnen wird. Die Herstellungskapazität an Ethylbenzol belief sich 1986 weltweit auf ca. 14,2 Mio. Tonnen (Nordamerika 5,9 Mio. t, Westeuropa 3,8 Mio. t). Über 99 % der Ethylbenzolproduktion wird für die Herstellung von Styrol eingesetzt. Die Synthese von Ethylbenzol beruht zu über 96 % auf der Akylierung von Benzol mit Ethylen (Ullmann 1987). Dabei werden wiederum 47 % der Weltproduktion an Benzol für die Synthese von Ethylbenzol verwendet (Weissermel 1994). Die weltweite Produktionskapazität an Styrol betrug 1993 ca. 17 Mio. Tonnnen. Die Verteilung auf die wichtigsten Erzeugermärkte kann der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1994). Styrol wird fast ausschließlich zur Herstellung von Kunststoffen eingesetzt. Dabei entfallen ungefähr 65 % der Styrolproduktion auf die Synthese von Polystyrol. Rohstoff für den zweiten Produktionsschritt der Styrolerzeugung ist Ethylbenzol, wobei 85 % der Produktion über die direkte Dehydrogenierung von Ethylbenzol verläuft. Bei der Dehydrogenierung unterscheidet man zwischen der adiabatischen Dehydrogenierung (über 75 % aller Styrol-Produktionsanlagen) und der isothermen Dehydrogenierung (z. B. BASF mit ca. 7 % der Weltkapazität) (Ullmann 1994). Bei der Bildung der Kennziffern für GEMIS wird allgemein die Herstellung von Styrol bilanziert. Spezielle Daten zu einzelnen Verfahren liegen nicht vor. Die gebildeten Kennziffern beziehen sich auf die Produktion in Westeuropa Ende der 80er Jahre (#1) bzw. Anfang der 90er Jahre (#2). Die Emissionsangaben aus (Tellus 1992) beziehen sich auf die Produktion in den USA in den 80er Jahren. Tabelle 1 Anteil der Erzeugermärkte an der weltweiten Produktionskapazität an Styrol, 1993. Region Anteil in % Nordamerika 35 Westeuropa 27 Japan 16 Korea 7 Fernost 5 Osteuropa 5 Südamerika 4 Mittlerer Osten 1 Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: Massenbilanz - Für die Herstellung einer Tonne Styrol werden als Rohstoffe 815 kg Benzol und 300 kg Ethylen benötigt. Dabei fallen an Nebenausbeuten (u. a. Toluol) ca. 65 kg an, die in GEMIS nicht weiter bilanziert werden. Weiterhin entstehen 0,43 kg feste Produktionsabfälle [nach #1, die Werte wurden von 974,8 kg auf 1000 kg Styrol umgerechnet]. Energiebedarf: Nach #2 werden für die Herstellung von 1 t Styrol 0,334 GJ an elektrischer Energie und 4,872 GJ an Energieträgern benötigt. Als Gesamtsumme ergibt sich ein Wert von ca. 5,2 GJ. Prozessbedingte Luftemissionen: In (#3 werden die prozeßbedingten VOC-Emissionen bei der Ethylbenzol- und der Styrolherstellung abgeschätzt. Daraus ergibt sich für den Gesamtprozeß (Ethylbenzolherstellung und Weiterverarbeitung zu Styrol) der Styrolherstellung ein Wert von ca. 0,90 kg VOC/t Styrol [dieser Angabe wurde ein Einsatz von 1,077 t Ethylbenzol für die Herstellung einer Tonne Styrol zugrundegelegt (Tellus 1992)]. Aus den Angaben bei (Tellus 1992) wurde für Benzol ein Emissionswert von 0,96 kg/t Styrol berechnet. In (Tellus 1992) werden Daten aus der Primärquelle „U.S. EPA, Toxic Air Pollutant Emission Factors, 1988“ verwendet. Wasser: In #2 wird der Wasserbedarf zur Herstellung einer Tonne Styrol mit 166 kg beziffert, hinzu kommen weitere 1922 kg an Dampf. Für die Abwasserkennziffern BSB5, CSB und TOC stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Aus #1 kann entnommen werden, daß der BSB5-Wert gleich null ist. An Parametern nach Maßnahmen zur Abwasserbehandlung werden bei (Tellus 1992) eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Phenol 0,00087 kg/t Styrol und Zink 0,000010 kg/t Styrol als nutzerdefinierte Emissionen genannt. In (Tellus 1992) werden dabei Werte aus „U.S. EPA, Contractors Engineering Report, 1981“ verwendet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 123% Produkt: Grundstoffe-Chemie

Chem-Org\Styrol-DE-2005

Herstellung von Styrol aus den Produktionsschritten "Synthese von Ethylbenzol durch Alkylierung von Benzol mit Ethylen" und "direkte Dehydrogenierung von Ethylbenzol zu Styrol". Im allgemeinen kann davon ausgegangen werden, dass beide Produktionsschritte in demselben Werk stattfinden. Die Ethylbenzolsynthese kann nach zwei verschiedenen Verfahrensrouten durchgeführt werden: die bevorzugte Lewis-Säuren-katalysierte (meist AlCl3) Flüssigphasen-Ethylierung und daneben die heterogene mit sauren Trägerkatalysatoren oder auch Lewis-Säuren durchgeführte Gasphasen-Ethylierung. An die katalytische Umsetzung von Benzol mit Ethylen schließt sich eine destillative Aufarbeitung des Produktgemisches an. Dabei wird einerseits nicht umgesetztes Benzol abgetrennt, das wieder als Edukt eingesetzt wird, andererseits erfolgt die Reinigung von Ethylbenzol. Bei der anschließenden direkten Dehydrogenierung wird Styrol durch katalytische Wasserstoffabspaltung von Ethylbenzol erzeugt. Es wird zwischen zwei verschiedenen Verfahren, deren Unterschied in der Art der Wärmezufuhr liegt unterschieden. Bei der adiabatischen Variante wird die Wärme direkt mittels überhitztem Wasserdampf zugeführt. Hingegen wird bei einer isothermen Reaktionsführung die erforderliche Wärme indirekt durch ein Brenngas zur Verfügung gestellt. Auf die Dehydrogenierung in einem Reaktor folgt eine aufwendige Reinigung des Rohstyrols, wobei auch nicht umgesetztes Ethylbenzol zurückgewonnen wird. Die Herstellungskapazität an Ethylbenzol belief sich 1986 weltweit auf ca. 14,2 Mio. Tonnen (Nordamerika 5,9 Mio. t, Westeuropa 3,8 Mio. t). Über 99 % der Ethylbenzolproduktion wird für die Herstellung von Styrol eingesetzt. Die Synthese von Ethylbenzol beruht zu über 96 % auf der Akylierung von Benzol mit Ethylen (Ullmann 1987). Dabei werden wiederum 47 % der Weltproduktion an Benzol für die Synthese von Ethylbenzol verwendet (Weissermel 1994). Die weltweite Produktionskapazität an Styrol betrug 1993 ca. 17 Mio. Tonnnen. Die Verteilung auf die wichtigsten Erzeugermärkte kann der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1994). Styrol wird fast ausschließlich zur Herstellung von Kunststoffen eingesetzt. Dabei entfallen ungefähr 65 % der Styrolproduktion auf die Synthese von Polystyrol. Rohstoff für den zweiten Produktionsschritt der Styrolerzeugung ist Ethylbenzol, wobei 85 % der Produktion über die direkte Dehydrogenierung von Ethylbenzol verläuft. Bei der Dehydrogenierung unterscheidet man zwischen der adiabatischen Dehydrogenierung (über 75 % aller Styrol-Produktionsanlagen) und der isothermen Dehydrogenierung (z. B. BASF mit ca. 7 % der Weltkapazität) (Ullmann 1994). Bei der Bildung der Kennziffern für GEMIS wird allgemein die Herstellung von Styrol bilanziert. Spezielle Daten zu einzelnen Verfahren liegen nicht vor. Die gebildeten Kennziffern beziehen sich auf die Produktion in Westeuropa Ende der 80er Jahre (#1) bzw. Anfang der 90er Jahre (#2). Die Emissionsangaben aus (Tellus 1992) beziehen sich auf die Produktion in den USA in den 80er Jahren. Tabelle 1 Anteil der Erzeugermärkte an der weltweiten Produktionskapazität an Styrol, 1993. Region Anteil in % Nordamerika 35 Westeuropa 27 Japan 16 Korea 7 Fernost 5 Osteuropa 5 Südamerika 4 Mittlerer Osten 1 Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: Massenbilanz - Für die Herstellung einer Tonne Styrol werden als Rohstoffe 815 kg Benzol und 300 kg Ethylen benötigt. Dabei fallen an Nebenausbeuten (u. a. Toluol) ca. 65 kg an, die in GEMIS nicht weiter bilanziert werden. Weiterhin entstehen 0,43 kg feste Produktionsabfälle [nach #1, die Werte wurden von 974,8 kg auf 1000 kg Styrol umgerechnet]. Energiebedarf: Nach #2 werden für die Herstellung von 1 t Styrol 0,334 GJ an elektrischer Energie und 4,872 GJ an Energieträgern benötigt. Als Gesamtsumme ergibt sich ein Wert von ca. 5,2 GJ. Prozessbedingte Luftemissionen: In (#3 werden die prozeßbedingten VOC-Emissionen bei der Ethylbenzol- und der Styrolherstellung abgeschätzt. Daraus ergibt sich für den Gesamtprozeß (Ethylbenzolherstellung und Weiterverarbeitung zu Styrol) der Styrolherstellung ein Wert von ca. 0,90 kg VOC/t Styrol [dieser Angabe wurde ein Einsatz von 1,077 t Ethylbenzol für die Herstellung einer Tonne Styrol zugrundegelegt (Tellus 1992)]. Aus den Angaben bei (Tellus 1992) wurde für Benzol ein Emissionswert von 0,96 kg/t Styrol berechnet. In (Tellus 1992) werden Daten aus der Primärquelle „U.S. EPA, Toxic Air Pollutant Emission Factors, 1988“ verwendet. Wasser: In #2 wird der Wasserbedarf zur Herstellung einer Tonne Styrol mit 166 kg beziffert, hinzu kommen weitere 1922 kg an Dampf. Für die Abwasserkennziffern BSB5, CSB und TOC stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Aus #1 kann entnommen werden, daß der BSB5-Wert gleich null ist. An Parametern nach Maßnahmen zur Abwasserbehandlung werden bei (Tellus 1992) eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Phenol 0,00087 kg/t Styrol und Zink 0,000010 kg/t Styrol als nutzerdefinierte Emissionen genannt. In (Tellus 1992) werden dabei Werte aus „U.S. EPA, Contractors Engineering Report, 1981“ verwendet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 123% Produkt: Grundstoffe-Chemie

Chem-Org\Styrol-DE-2030

Herstellung von Styrol aus den Produktionsschritten "Synthese von Ethylbenzol durch Alkylierung von Benzol mit Ethylen" und "direkte Dehydrogenierung von Ethylbenzol zu Styrol". Im allgemeinen kann davon ausgegangen werden, dass beide Produktionsschritte in demselben Werk stattfinden. Die Ethylbenzolsynthese kann nach zwei verschiedenen Verfahrensrouten durchgeführt werden: die bevorzugte Lewis-Säuren-katalysierte (meist AlCl3) Flüssigphasen-Ethylierung und daneben die heterogene mit sauren Trägerkatalysatoren oder auch Lewis-Säuren durchgeführte Gasphasen-Ethylierung. An die katalytische Umsetzung von Benzol mit Ethylen schließt sich eine destillative Aufarbeitung des Produktgemisches an. Dabei wird einerseits nicht umgesetztes Benzol abgetrennt, das wieder als Edukt eingesetzt wird, andererseits erfolgt die Reinigung von Ethylbenzol. Bei der anschließenden direkten Dehydrogenierung wird Styrol durch katalytische Wasserstoffabspaltung von Ethylbenzol erzeugt. Es wird zwischen zwei verschiedenen Verfahren, deren Unterschied in der Art der Wärmezufuhr liegt unterschieden. Bei der adiabatischen Variante wird die Wärme direkt mittels überhitztem Wasserdampf zugeführt. Hingegen wird bei einer isothermen Reaktionsführung die erforderliche Wärme indirekt durch ein Brenngas zur Verfügung gestellt. Auf die Dehydrogenierung in einem Reaktor folgt eine aufwendige Reinigung des Rohstyrols, wobei auch nicht umgesetztes Ethylbenzol zurückgewonnen wird. Die Herstellungskapazität an Ethylbenzol belief sich 1986 weltweit auf ca. 14,2 Mio. Tonnen (Nordamerika 5,9 Mio. t, Westeuropa 3,8 Mio. t). Über 99 % der Ethylbenzolproduktion wird für die Herstellung von Styrol eingesetzt. Die Synthese von Ethylbenzol beruht zu über 96 % auf der Akylierung von Benzol mit Ethylen (Ullmann 1987). Dabei werden wiederum 47 % der Weltproduktion an Benzol für die Synthese von Ethylbenzol verwendet (Weissermel 1994). Die weltweite Produktionskapazität an Styrol betrug 1993 ca. 17 Mio. Tonnnen. Die Verteilung auf die wichtigsten Erzeugermärkte kann der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1994). Styrol wird fast ausschließlich zur Herstellung von Kunststoffen eingesetzt. Dabei entfallen ungefähr 65 % der Styrolproduktion auf die Synthese von Polystyrol. Rohstoff für den zweiten Produktionsschritt der Styrolerzeugung ist Ethylbenzol, wobei 85 % der Produktion über die direkte Dehydrogenierung von Ethylbenzol verläuft. Bei der Dehydrogenierung unterscheidet man zwischen der adiabatischen Dehydrogenierung (über 75 % aller Styrol-Produktionsanlagen) und der isothermen Dehydrogenierung (z. B. BASF mit ca. 7 % der Weltkapazität) (Ullmann 1994). Bei der Bildung der Kennziffern für GEMIS wird allgemein die Herstellung von Styrol bilanziert. Spezielle Daten zu einzelnen Verfahren liegen nicht vor. Die gebildeten Kennziffern beziehen sich auf die Produktion in Westeuropa Ende der 80er Jahre (#1) bzw. Anfang der 90er Jahre (#2). Die Emissionsangaben aus (Tellus 1992) beziehen sich auf die Produktion in den USA in den 80er Jahren. Tabelle 1 Anteil der Erzeugermärkte an der weltweiten Produktionskapazität an Styrol, 1993. Region Anteil in % Nordamerika 35 Westeuropa 27 Japan 16 Korea 7 Fernost 5 Osteuropa 5 Südamerika 4 Mittlerer Osten 1 Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: Massenbilanz - Für die Herstellung einer Tonne Styrol werden als Rohstoffe 815 kg Benzol und 300 kg Ethylen benötigt. Dabei fallen an Nebenausbeuten (u. a. Toluol) ca. 65 kg an, die in GEMIS nicht weiter bilanziert werden. Weiterhin entstehen 0,43 kg feste Produktionsabfälle [nach #1, die Werte wurden von 974,8 kg auf 1000 kg Styrol umgerechnet]. Energiebedarf: Nach #2 werden für die Herstellung von 1 t Styrol 0,334 GJ an elektrischer Energie und 4,872 GJ an Energieträgern benötigt. Als Gesamtsumme ergibt sich ein Wert von ca. 5,2 GJ. Prozessbedingte Luftemissionen: In (#3 werden die prozeßbedingten VOC-Emissionen bei der Ethylbenzol- und der Styrolherstellung abgeschätzt. Daraus ergibt sich für den Gesamtprozeß (Ethylbenzolherstellung und Weiterverarbeitung zu Styrol) der Styrolherstellung ein Wert von ca. 0,90 kg VOC/t Styrol [dieser Angabe wurde ein Einsatz von 1,077 t Ethylbenzol für die Herstellung einer Tonne Styrol zugrundegelegt (Tellus 1992)]. Aus den Angaben bei (Tellus 1992) wurde für Benzol ein Emissionswert von 0,96 kg/t Styrol berechnet. In (Tellus 1992) werden Daten aus der Primärquelle „U.S. EPA, Toxic Air Pollutant Emission Factors, 1988“ verwendet. Wasser: In #2 wird der Wasserbedarf zur Herstellung einer Tonne Styrol mit 166 kg beziffert, hinzu kommen weitere 1922 kg an Dampf. Für die Abwasserkennziffern BSB5, CSB und TOC stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Aus #1 kann entnommen werden, daß der BSB5-Wert gleich null ist. An Parametern nach Maßnahmen zur Abwasserbehandlung werden bei (Tellus 1992) eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Phenol 0,00087 kg/t Styrol und Zink 0,000010 kg/t Styrol als nutzerdefinierte Emissionen genannt. In (Tellus 1992) werden dabei Werte aus „U.S. EPA, Contractors Engineering Report, 1981“ verwendet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 123% Produkt: Grundstoffe-Chemie

Chem-Org\Styrol-DE-2020

Herstellung von Styrol aus den Produktionsschritten "Synthese von Ethylbenzol durch Alkylierung von Benzol mit Ethylen" und "direkte Dehydrogenierung von Ethylbenzol zu Styrol". Im allgemeinen kann davon ausgegangen werden, dass beide Produktionsschritte in demselben Werk stattfinden. Die Ethylbenzolsynthese kann nach zwei verschiedenen Verfahrensrouten durchgeführt werden: die bevorzugte Lewis-Säuren-katalysierte (meist AlCl3) Flüssigphasen-Ethylierung und daneben die heterogene mit sauren Trägerkatalysatoren oder auch Lewis-Säuren durchgeführte Gasphasen-Ethylierung. An die katalytische Umsetzung von Benzol mit Ethylen schließt sich eine destillative Aufarbeitung des Produktgemisches an. Dabei wird einerseits nicht umgesetztes Benzol abgetrennt, das wieder als Edukt eingesetzt wird, andererseits erfolgt die Reinigung von Ethylbenzol. Bei der anschließenden direkten Dehydrogenierung wird Styrol durch katalytische Wasserstoffabspaltung von Ethylbenzol erzeugt. Es wird zwischen zwei verschiedenen Verfahren, deren Unterschied in der Art der Wärmezufuhr liegt unterschieden. Bei der adiabatischen Variante wird die Wärme direkt mittels überhitztem Wasserdampf zugeführt. Hingegen wird bei einer isothermen Reaktionsführung die erforderliche Wärme indirekt durch ein Brenngas zur Verfügung gestellt. Auf die Dehydrogenierung in einem Reaktor folgt eine aufwendige Reinigung des Rohstyrols, wobei auch nicht umgesetztes Ethylbenzol zurückgewonnen wird. Die Herstellungskapazität an Ethylbenzol belief sich 1986 weltweit auf ca. 14,2 Mio. Tonnen (Nordamerika 5,9 Mio. t, Westeuropa 3,8 Mio. t). Über 99 % der Ethylbenzolproduktion wird für die Herstellung von Styrol eingesetzt. Die Synthese von Ethylbenzol beruht zu über 96 % auf der Akylierung von Benzol mit Ethylen (Ullmann 1987). Dabei werden wiederum 47 % der Weltproduktion an Benzol für die Synthese von Ethylbenzol verwendet (Weissermel 1994). Die weltweite Produktionskapazität an Styrol betrug 1993 ca. 17 Mio. Tonnnen. Die Verteilung auf die wichtigsten Erzeugermärkte kann der nachfolgenden Tabelle 1 entnommen werden (Ullmann 1994). Styrol wird fast ausschließlich zur Herstellung von Kunststoffen eingesetzt. Dabei entfallen ungefähr 65 % der Styrolproduktion auf die Synthese von Polystyrol. Rohstoff für den zweiten Produktionsschritt der Styrolerzeugung ist Ethylbenzol, wobei 85 % der Produktion über die direkte Dehydrogenierung von Ethylbenzol verläuft. Bei der Dehydrogenierung unterscheidet man zwischen der adiabatischen Dehydrogenierung (über 75 % aller Styrol-Produktionsanlagen) und der isothermen Dehydrogenierung (z. B. BASF mit ca. 7 % der Weltkapazität) (Ullmann 1994). Bei der Bildung der Kennziffern für GEMIS wird allgemein die Herstellung von Styrol bilanziert. Spezielle Daten zu einzelnen Verfahren liegen nicht vor. Die gebildeten Kennziffern beziehen sich auf die Produktion in Westeuropa Ende der 80er Jahre (#1) bzw. Anfang der 90er Jahre (#2). Die Emissionsangaben aus (Tellus 1992) beziehen sich auf die Produktion in den USA in den 80er Jahren. Tabelle 1 Anteil der Erzeugermärkte an der weltweiten Produktionskapazität an Styrol, 1993. Region Anteil in % Nordamerika 35 Westeuropa 27 Japan 16 Korea 7 Fernost 5 Osteuropa 5 Südamerika 4 Mittlerer Osten 1 Allokation: hier keine, aber in Vorketten (energetisch) Genese der Daten: Massenbilanz - Für die Herstellung einer Tonne Styrol werden als Rohstoffe 815 kg Benzol und 300 kg Ethylen benötigt. Dabei fallen an Nebenausbeuten (u. a. Toluol) ca. 65 kg an, die in GEMIS nicht weiter bilanziert werden. Weiterhin entstehen 0,43 kg feste Produktionsabfälle [nach #1, die Werte wurden von 974,8 kg auf 1000 kg Styrol umgerechnet]. Energiebedarf: Nach #2 werden für die Herstellung von 1 t Styrol 0,334 GJ an elektrischer Energie und 4,872 GJ an Energieträgern benötigt. Als Gesamtsumme ergibt sich ein Wert von ca. 5,2 GJ. Prozessbedingte Luftemissionen: In (#3 werden die prozeßbedingten VOC-Emissionen bei der Ethylbenzol- und der Styrolherstellung abgeschätzt. Daraus ergibt sich für den Gesamtprozeß (Ethylbenzolherstellung und Weiterverarbeitung zu Styrol) der Styrolherstellung ein Wert von ca. 0,90 kg VOC/t Styrol [dieser Angabe wurde ein Einsatz von 1,077 t Ethylbenzol für die Herstellung einer Tonne Styrol zugrundegelegt (Tellus 1992)]. Aus den Angaben bei (Tellus 1992) wurde für Benzol ein Emissionswert von 0,96 kg/t Styrol berechnet. In (Tellus 1992) werden Daten aus der Primärquelle „U.S. EPA, Toxic Air Pollutant Emission Factors, 1988“ verwendet. Wasser: In #2 wird der Wasserbedarf zur Herstellung einer Tonne Styrol mit 166 kg beziffert, hinzu kommen weitere 1922 kg an Dampf. Für die Abwasserkennziffern BSB5, CSB und TOC stehen bei (Tellus 1992) nur Angaben zu Rohabwasserwerten zur Verfügung. Aus #1 kann entnommen werden, daß der BSB5-Wert gleich null ist. An Parametern nach Maßnahmen zur Abwasserbehandlung werden bei (Tellus 1992) eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Phenol 0,00087 kg/t Styrol und Zink 0,000010 kg/t Styrol als nutzerdefinierte Emissionen genannt. In (Tellus 1992) werden dabei Werte aus „U.S. EPA, Contractors Engineering Report, 1981“ verwendet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 123% Produkt: Grundstoffe-Chemie

1 2 3 4 5336 337 338