API src

Found 97 results.

Related terms

Biogasanlagen im Landkreis Osnabrück

Eine Biogasanlage dient der Erzeugung von Biogas durch Vergärung von Biomasse. In landwirtschaftlichen Biogasanlagen werden meist tierische Exkremente (Gülle, Festmist) und Energiepflanzen als Substrat eingesetzt. In nicht-landwirtschaftlichen Anlagen wird Material aus der Biotonne verwendet. Als Nebenprodukt wird ein als Gärrest bezeichneter Dünger produziert. Bei den meisten Biogasanlagen wird das entstandene Gas vor Ort in einem Blockheizkraftwerk (BHKW) zur Strom- und Wärmeerzeugung genutzt.

Microbial community structure and function in different habitats of subsoils and their role in nutrient mobilization and plant growth (MicroSub)

Whereas a lot of results about the role of microbial communities from topsoils for plant growth and - performance have been published in the last two decades, almost nothing is known about the role of microbes in nutrient mobilization in subsoil systems. Furthermore it is unclear if microbes living below 40 cm in soil can be influenced by agricultural management. Both questions should be addressed in the frame of this project. Therefore in the first phase of the project an overall characterization of microbial communities living in different habitats of subsoils should be characterized by high throughput sequencing. These results will give a first insight into microbes living in deeper soil layers and will form the basis for the development of molecular tools to measure abundance and diversity of microbes involved in nitrogen and phosphorus turnover in the field - as well as in the microcosm experiments. Analyzing samples from the field experiment should clarify temporal and spatial heterogeneity of microbial communities and their activities in subsoils. Furthermore the role of hotspots (drilosphere and rhizosphere) in driving microbial performance should be clarified. Mainly the question how nitrogen is metabolized in subsoils will be addressed. By labeling root exudates as well as earthworm excrements with 13C the role of different carbon amounts and quality in the rhizosphere and drilosphere of subsoils in stimulating microbial communities should be analyzed in the central microcosm experiment, by following the 13C label in the microflora. This approach will help to identify possible major factors steering bacteria fungi and archaea in deeper soil layers.

Sequestration von Veterinärarzneimitteln in Böden - Teilprojekt A3: Veterinärarzneimittel in Böden: Grundlagenforschung zur Risikoanalyse

Seit kurzem werden ökologisch wirksame Konzentrationen von antibakteriellen Tierarzneimitteln auch im Boden nachgewiesen. Für eine umfassende Analyse des Risikos fehlen jedoch grundlegende Modellvorstellungen. Hierbei ist zu berücksichtigen, dass die Tierarzneimittel i.d.R. mit Wirtschaftsdüngern auf die Böden gelangen. Zwar gibt es Modellvorstellungen zum Umweltverhalten hydrophober Schadstoffe und zur Wirkung von Wirtschaftsdüngern auf die Bodenlebewelt, doch sind diese nur bedingt übertragbar auf die Dynamik der teilweise polaren Tierarzneimittel im Boden und ihre spezifischen Effekte auf Bodenorganismen. Auch die in der Literatur beschriebenen Effekte von zusätzlichen C-Quellen und Co-Solventien auf Bindung, Abbau und Transport sind aufgrund der komplexen Zusammensetzung von Wirtschaftsdüngern nicht direkt auf Tierarzneimittel übertragbar. Effekte der komplexen Wechselwirkungen von Wirtschaftsdüngern auf die Wirkung der Stoffe im Boden sind unseres Wissens überhaupt nicht untersucht. Übergeordnetes Ziel dieser Forschergruppe ist es daher, anhand mindestens zweier unterschiedlicher Zielstoffe (Sulfadiazin und Difloxacin) erstmals aufzuklären, wie unter dem Einfluss von Wirtschaftsdüngern die Wirkung dieser Stoffe im Boden an ihre Dynamik gekoppelt ist. Wir sehen hierbei mehrere offene Fragen in den Bereichen Dynamik (z.B. Abbau und Metabolisierung, Sequestration sowie skalenabhängige Umverteilung), Wirkung (z.B. auf Struktur und Funktion der Mikroorganismen sowie auf Resistenzbildung) und v.a. bezüglich der Mechanismen der raum-zeitlichen Kopplung von Dynamik und Wirkung der Problemstoffe im Boden (von ms bis Jahren und von der Mineraloberfläche bis zum Bodenprofil). Zur Beantwortung dieser Fragen erscheint es uns in der 1. Projektphase notwendig, vorwiegend anhand von Laborversuchen die relevanten Skalen und Prozesse zu identifizieren sowie die Raten zu quantifizieren, welche die Dynamik und Wirkung der Stoffe im Boden allein und unter dem Einfluss tierischer Exkremente steuern. In einer 2. Phase werden die Prozesse gekoppelt und ihre Relevanz in einem gemeinsamen Freilandversuch überprüft. Damit können wir die für das Umweltverhalten der Zielstoffe wesentlichen Steuergrößen und -mechanismen erstmals aufdecken und quantifizieren. Ziel des TP in Bonn ist die Aufklärung der Bindungsstärke und Verfügbarkeit von Tierarzneimitteln in zwei Referenzböden. Um die 'chemische Verfügbarkeit der Substanzen im Boden zu erfassen, wird eine sequentielle Extraktionsmethode für die Analyten entwickelt und auf eine Alterungszeitreihe der Tierantibiotika im Boden angewandt. Die Bindung der Stoffe an Bodenbestandteile (Mineralphasen, org. Substanz, Gülle-DOC) wird mittels batch-Sorptionsversuchen untersucht; dies wird wiederum an frisch kontaminierten und gealterten Proben durchgeführt. Die Ergebnisse werden mit den anderen Projekten der Forschergruppe vernetzt, um auf die 'Bioverfügbarkeit von sorbierten Fraktionen der Tierarzneimittel rückzuschließen.

Rekonstruktion der Terra Preta-Genese mittels molekularer Biomarker und ihrer substanzspezifischen Stabilisotopenverhältnisse

In Amazonien dominieren nährstoffarme Oxisole und Ultisole, die nur schwer nachhaltig nutzbar sind. Innerhalb dieser Bodenlandschaft kommen allerdings aufgrund langandauernder anthropogener Nutzung durch präkolumbische Indianer tiefhumose, nachhaltig bewirtschaftbare Böden vor. Unsere bisherigen Untersuchungen belegen, dass die hohen und stabilen Humusvorräte dieser Böden maßgeblich auf pyrogenen Kohlenstoff zurückzuführen sind. Ungeklärt ist bisher die Herkunft ihrer hohen Nährstoffgehalte (bes. N, P, Ca, Mg). Ziel des vorliegenden Forschungsvorhabens ist es deshalb, durch die kleinräumige Analyse von Biomarkern und ihrer Stabilisotopenverhältnisse sowie von P-Bindungsformen Hinweise auf die Terra Preta-Genese zu bekommen. Insbesondere soll zwischen dem Eintrag menschlicher und tierischer Exkremente sowie zwischen aquatischer und terrestrischer Biomasse unterschieden werden. Von den Ergebnissen der Untersuchungen erwarte ich gezielte Aussagen über die Anreicherung der Terra Preta-Böden mit Nährstoffen sowie die Heterogenität der Eintragspfade.

Analytik und Bildung von Metaboliten von n-Nitroseverbindungen

Die n-Nitrosoverbindungen spielen als exogene carcinogene Noxen in der Umwelt des Menschen eine wichtige Rolle. Die Aufklaerung des Metabolismus dieser Carcinogene ist fuer die Frage der Krebsentstehung von grossem Nutzen. Die Untersuchungen umfassen die Bildung von Metaboliten aus n-Nitrosoverbindungen in vivo mit isolierten Organenzymen von Versuchstieren und anschliessender Isolierung und Identifizierung. In vivo: Die Isolierung und Identifizierung von Metaboliten in den Exkrementen von Ratten nach oraler Gabe.

Agrarstrukturerhebung

Kern der Agrarstrukturerhebung bildet das Grundprogramm mit den Angaben der Bodennutzungshaupterhebung, der Erhebung über die Viehbestände und der Arbeitskräfteerhebung in der Landwirtschaft. Das Ergänzungsprogramm umfasst einige, vor allem für die betriebsstatistischen Erhebungen wichtige Merkmale (Gewinnermittlung und Umsatzbesteuerung, sozialökonomische Verhältnisse, Anfall und Aufbringung tierischer Exkremente, Lagerkapazität bei Gülle, Eigentums- und Pachtverhältnisse an der LF, außerbetriebliche Erwerbs- und Unterhaltsquellen, Einkommenskombinationen, Umweltleistungen).

Field parameters and biochemical soil properties from NEP 1, NEP 2, NEP 3, Nördlingen, southern Germany

Soil physical-biogeochemical analyses were carried out on profiles NEP1, NEP2 and NEP3. Soil TC and TN were determined by CNS analysis, and total organic carbon (TOC) was determined by the difference between total inorganic carbon (TIC) and TC. Carbonate (CaCO₃) content was measured volumetrically using a Calcimeter and on air-dried, sieved (< 2 mm) and ground (ball mill) samples. The pH-values were measured on samples of profiles NEP1, NEP2, NEP3, which had less than 2% CaCO₃ content. Stable isotope ratios of δ¹³C and δ¹⁵N were analysed for the differentiation of C3 and C4 plants and the cultivation of legumes. The analyses were performed on air-dried, sieved (< 2mm) and ground (ball mill) samples. For ¹³C analysis, the soil samples were decarbonised with 10% HCl. In the field, separate samples were collected for the NEP1 and NEP2 profiles (28 samples in total) for analysis of urease activity and microbial biomass carbon (Cmic). Samples were stored at -18°C. Urease activity (enzyme analysis) is used to provide information on the input of urea and animal excrement. The mutual relationship between urease and Cmic was used to show and understand the past and present input of urea into the soil.

ClaerEnergy

Entsorgung von Regen- und Abwasser 2001

Durch Niederschläge und Abwässer aus privaten Haushalten, öffentlichen Einrichtungen, Industrie und Gewerbe und Abflüssen von öffentlichem Straßenland fallen in Berlin große Mengen Regen- und Abwasser an, die abgeleitet und ggf. gereinigt werden müssen. In den Klärwerken wurden 2003 pro Tag rund 690.000 m 3 Abwasser aus Haushalten, Gewerbe und Industrie, öffentlichen Einrichtungen sowie Regenwasser aus Berlin und dem Umland behandelt. Diese Menge entspricht gut 8 m 3 /s und damit einem Drittel des Abflusses der Spree bei mittlerer Wasserführung. Mit dem in Berlin anfallenden Abwasser könnte der Große Wannsee in einer Woche gefüllt werden. Zur Abwasserableitung steht ein von den Berliner Wasserbetrieben unterhaltenes Kanalnetz von insgesamt 9.228 km Länge mit 226.000 Anschlussleitungen zur Verfügung. Es wurde nach zwei verschiedenen Systemen, dem Misch- und dem Trennsystem , angelegt und besteht aus 4.100 km Schmutzwasser-, 1.894 km Mischwasser-, 3.166 km Regenwasser- und 68 km Sonderkanälen, sowie zahlreichen Sonderbauwerken wie Regenüberläufe, Regenbecken und Dükeranlagen. Das dort gesammelte Abwasser wird mit Hilfe von 146 Pumpwerken über ein 1.100 km langes Abwasserdruckrohrnetz den Klärwerken zugeführt. Die Mischwasserkanalisation entstand 1873 nach einem Entwurf von James Hobrecht und entwässerte das damalige Berlin. Die bis 1920 selbständigen Städte und Gemeinden um Berlin legten ihre Kanalisation dagegen hauptsächlich nach dem Trennsystem an. Nach der Eingemeindung wurden die Anlagen zum heutigen System zusammengefasst. Die Entwässerungsgebiete sind nach Flussläufen und Schifffahrtskanälen ausgerichtet und folgen den unterschiedlichen Höhenverhältnissen. Die Grenzen der Entwässerungsgebiete verlaufen unabhängig von den Stadtbezirksgrenzen. Etwa drei Viertel der kanalisierten Gebiete in Berlin werden nach dem Trennsystem und ein Viertel nach dem Mischsystem entwässert. Trennsystem Im Trennsystem werden Schmutzwasser und Regenwasser in zwei voneinander getrennten Kanalisationsnetzen abgeleitet. In den Schmutzwasserkanälen gelangt das häusliche, gewerbliche und industrielle Abwasser zu den Pumpwerken. Von hier wird es über Druckrohrleitungen zu den Klärwerken , Ruhleben, Münchehofe, Schönerlinde, Waßmannsdorf, Wansdorf und Stahnsdorf geleitet. Das gereinigte Abwasser der Klärwerke wird in die Gewässer eingeleitet. Die Klärwerke Marienfelde und Adlershof sind seit 1990 stillgelegt, das Klärwerk Falkenberg ging 2003 außer Betrieb. Die Regenwasserkanäle nehmen Niederschläge von versiegelten Flächen sowie Kühlwasser aus Betrieben und Wasser aus Entwässerungsgräben auf und leiten dieses direkt in kleinere oder größere Oberflächengewässer. Sehr große Stadtflächen entwässern in zum Teil sehr kleine Aufnahmegewässer. Insgesamt werden durch das Trennentwässerungssystem rund 37 Mio. m 3 Regenwasser pro Jahr in die Gewässer eingeleitet. Zur Reinigung des Regenwassers dienen Regenbecken und Retentionsbodenfilter an den Haupteinleitungsstellen. Bis zum Januar 2003 konnten 21 Anlagen zur Regenwasserreinigung in Betrieb genommen werden. Weiterhin existieren am Innenstadtrand einige Gebiete, die, ursprünglich mit Mischkanalisation ausgestattet, nachträglich mit einer Regenwasserkanalisation versehen wurden (modifiziertes Mischsystem). Das Regenwasser wird dort in die Regenüberlaufkanäle der Mischkanalisation eingeleitet. Mischsystem Dieses System gibt es im alten Stadtkern von Berlin und im Gebiet des inneren S-Bahnringes. In der Mischwasserkanalisation werden häusliches, gewerbliches und industrielles Schmutzwasser sowie Regenwasser gemeinsam in einem Kanal gesammelt und zur nächsten Pumpstation geleitet. Von hier aus nimmt das Mischwasser in der Regel den gleichen Weg wie das Schmutzwasser der Trennkanalisation. Im Mischsystem befinden sich Regenentlastungsanlagen, Regenüberläufe, Entwässerungskanäle, Stauraumkanäle und Regenbecken, die bei Niederschlägen das Mischwasser speichern und zeitverzögert dem Klärwerk zuleiten. Ausnahmen gibt es bei starkem Regen. Wenn das Wasser eine bestimmte Höhe in der Kanalisation erreicht, oder wenn die Pumpwerke das anfallende Wasser nicht mehr bewältigen können, fließt das Mischwasser, das bei Starkregen überwiegend aus Regenwasser besteht (ca 1:9), über die Regenüberlaufkanäle ungereinigt in die Gewässer. An den ca. 530 Regenüberläufen gelangten im Jahr 2000 ca. 2,8 Mio m 3 Mischwasser in die Gewässer. Die Überlaufhäufigkeiten und eingeleiteten Mengen schwanken in Abhängigkeit von der Häufigkeit der Starkniederschläge. Außerdem existieren an den Pumpwerken meist Notauslässe , über die bei technischen Defekten das Mischwasser in die Vorfluter abgeleitet wird. Von den 74 Notauslässen führen 35 zur Spree, 13 zur Havel und 18 zum Teltowkanal; 5 führen zu stehenden Oberflächengewässern und 3 Notauslässe führen über Schmutzwasserkanäle zu anderen Pumpwerken Die Notauslasstätigkeit ist ebenfalls von Jahr zu Jahr sehr unterschiedlich. Im Schnitt kann von einer Menge von 20 000 m 3 pro Jahr ausgegangen werden. An den wichtigsten Stellen des Mischsystems und in unmittelbarer Nähe von großen Pumpwerken wurden Rückhaltebecken errichtet. Bei kurzen Starkregenfällen sind sie in der Lage, das übergelaufene Mischwasser vollständig aufzufangen. In den Becken setzen sich Schlamm- und Schwebstoffe ab. Gebiete ohne Kanalisation Trotz erheblicher Anstrengungen der Berliner Wasserbetriebe sind noch nicht alle Siedlungsgebiete an die Schmutzwasserkanalisation angeschlossen. In den bebauten, aber nicht kanalisierten Siedlungsbebieten Berlins wird das Schmutzwasser in abflusslosen Sammelbehältern gesammelt und durch zugelassene Abfuhrunternehmen über die Klärwerke entsorgt. Die Abwasserentsorgung in den Kleingärten erfolgt auf die gleiche Weise. Das Regenwasser versickert in den Gebieten ohne Regenkanalisation in den Untergrund. Das Regenwasser aus der Trennkanalisation ist durch Staub, Luftschadstoffe, Abrieb der Straßendecke und der Autoreifen, Ölverluste, Laub, Exkremente von Tieren, Streugut im Winter usw. stark verunreinigt . Besonders in kleinen stehenden Gewässern und Kanälen mit relativ geringem Wasservolumen kommt es nach stärkeren Regenfällen immer wieder zu Fischsterben. Verantwortlich hierfür sind Zehrungsprozesse durch den sofort einsetzenden Abbau der eingeschwemmten Stoffe und dem damit verbundenen Sauerstoffverbrauch. Zur Dokumentation der Entwässerungssituation wurde eine getrennte Karte erarbeitet, die die Einzugsgebiete der Regenwasserkanalisation zeigt. (02.09.2). In dieser Karte ist jeder baulich genutzten und an die Regenwasserkanalisation angeschlossenen Fläche das Gewässer zugeordnet, in das das Regenwasser abgeleitet wird. Um die Belastung der Gewässer durch verunreinigtes Regenwasser im Gebiet des Trennsystems zu reduzieren, sind Regenwasserreinigungsanlagen (bis 2004, 21) errichtet worden. So z.B. am Tegeler See, am Hohenzollernkanal, an der Unterhavel, am Teltowkanal, am Biesdorfer Baggersee und an der Grunewaldseenkette. Weitere sind in Planung bzw. bereits im Bau.

Entsorgung von Regen- und Abwasser 2017

Durch Niederschläge und Abwässer aus privaten Haushalten, öffentlichen Einrichtungen, Industrie und Gewerbe und Abflüssen von öffentlichem Straßenland fallen in Berlin große Mengen Regen- und Abwasser an, die abgeleitet und ggf. gereinigt werden müssen. In den Klärwerken wurden 2017 pro Tag rund 717.000 m 3 Abwasser aus Haushalten, Gewerbe und Industrie, öffentlichen Einrichtungen sowie Regenwasser aus Berlin und dem Umland behandelt. Diese Menge entspricht gut 8 m 3 /s und damit etwa 15 % des Abflusses der Unterhavel unterhalb Berlins bei mittlerer Wasserführung. Mit dem in Berlin anfallenden Abwasser könnte der Große Wannsee in drei Wochen gefüllt werden. Zur Abwasserableitung steht ein von den Berliner Wasserbetrieben (BWB) unterhaltenes Kanalnetz von insgesamt 9.725 km Länge zur Verfügung. Es wurde nach zwei verschiedenen Systemen, dem Misch- und dem Trennsystem , angelegt und besteht aus 4.403 km Schmutzwasser-, 1.928 km Mischwasser-, und 3.324 km Regenwasserkanälen sowie zahlreichen Sonderkanälen und Sonderbauwerken wie Regenüberläufen, Regenbecken und Dükeranlagen. Das dort gesammelte Abwasser wird mit Hilfe von 163 Pumpwerken über ein 1.183 km langes Abwasserdruckrohrnetz den Klärwerken zugeführt (Abgeordnetenhaus Berlin 2015). Die Mischwasserkanalisation entstand 1873 nach einem Entwurf von James Hobrecht und entwässerte das gesamte Stadtgebiet des damaligen Berlins. Die bis 1920 selbständigen Städte und Gemeinden um Berlin legten ihre Kanalisation dagegen hauptsächlich nach dem Trennsystem an. Nach der Eingemeindung wurden die Anlagen zum heutigen System zusammengefasst. Die Entwässerungsgebiete sind nach Flussläufen und Schifffahrtskanälen ausgerichtet und folgen den unterschiedlichen Höhenverhältnissen. Die Grenzen der Entwässerungsgebiete verlaufen unabhängig von den Stadtbezirksgrenzen. Etwa vier Fünftel der kanalisierten Gebiete in Berlin werden nach dem Trennsystem und ein Fünftel nach dem Mischsystem entwässert. Trennsystem Im Trennsystem werden Schmutzwasser und Regenwasser in zwei voneinander getrennten Kanalisationsnetzen abgeleitet. In den Schmutzwasserkanälen gelangt das häusliche, gewerbliche und industrielle Abwasser zu den Pumpwerken. Von hier wird es über Druckrohrleitungen zu den Klärwerken Ruhleben, Münchehofe, Schönerlinde, Waßmannsdorf, Wansdorf und Stahnsdorf geleitet. Das gereinigte Abwasser der Klärwerke wird in die Gewässer eingeleitet. An den Pumpwerken existieren zumeist Notauslässe , über die bei technischen Defekten das Abwasser in die Vorfluter abgeleitet wird. Von den 72 Notauslässen führen 26 zur Spree, 2 zur Dahme, 19 zur Havel und 18 zum Teltowkanal; 5 führen zu stehenden Oberflächengewässern und 2 Notauslässe führen über Schmutzwasserkanäle zu anderen Pumpwerken. Die Notauslasstätigkeit ist von Jahr zu Jahr sehr unterschiedlich. Die Regenwasserkanäle nehmen Niederschläge von versiegelten Flächen sowie Kühlwasser aus Betrieben und Wasser aus Entwässerungsgräben auf und leiten dieses direkt in kleinere oder größere Oberflächengewässer. Sehr große Stadtflächen entwässern in zum Teil sehr kleine Aufnahmegewässer. Insgesamt werden durch das Trennentwässerungssystem rund 48 Mio. m 3 Regenwasser pro Jahr in die Gewässer eingeleitet (SenStadtUm 2013). Das Regenwasser aus der Trennkanalisation ist durch Staub, Luftschadstoffe, Abrieb der Straßendecke und der Autoreifen, Ölverluste, Laub, Exkremente von Tieren, Streugut im Winter usw. stark verunreinigt . Besonders in kleinen stehenden Gewässern und Kanälen mit relativ geringem Wasservolumen kommt es nach stärkeren Regenfällen immer wieder zu Fischsterben. Verantwortlich hierfür sind Zehrungsprozesse durch den sofort einsetzenden Abbau der eingeschwemmten organischen Stoffe und dem damit verbundenen Sauerstoffverbrauch. Um die Belastung der Gewässer zu reduzieren, werden an den Haupteinleitungsstellen Regenbecken und Retentionsbodenfilter zur Reinigung des Regenwassers errichtet. Bis 2018 konnten 24 Anlagen zur Regenwasserreinigung von den Wasserbetrieben in Betrieb genommen werden, außerdem wurden mehr als 10 weitere Anlagen an den Autobahnen errichtet. Weiterhin existieren am Innenstadtrand einige Gebiete, die, ursprünglich mit Mischkanalisation ausgestattet, nachträglich mit einer Regenwasserkanalisation versehen wurden (modifiziertes Mischsystem). Das Regenwasser wird dort in die Regenüberlaufkanäle der Mischkanalisation eingeleitet. Mischsystem Dieses System entwässert nahezu vollständig die alten Stadtkerne von Berlin und Spandau sowie das Gebiet des Inneren S-Bahnringes. In der Mischwasserkanalisation werden häusliches, gewerbliches und industrielles Schmutzwasser sowie Regenwasser gemeinsam in einem Kanal gesammelt und zur nächsten Pumpstation geleitet. Von hier aus nimmt das Mischwasser in der Regel den gleichen Weg wie das Schmutzwasser der Trennkanalisation. Im Mischsystem befinden sich neben Regenentlastungsanlagen auch Stauraumkanäle und Regenüberlaufbecken, die bei Niederschlägen das Mischwasser speichern und zeitverzögert dem Klärwerk zuleiten. 2017 waren 18 solcher Anlagen in Betrieb. Bei kurzen Starkregenfällen sind sie in der Lage, das übergelaufene Mischwasser vollständig aufzufangen. Ausnahmen gibt es bei länger anhaltenden, intensiven Regenereignissen. Wenn das Wasser dann eine bestimmte Höhe in der Kanalisation erreicht, oder wenn die Pumpwerke das anfallende Wasser nicht mehr bewältigen können, fließt das Mischwasser, das bei Starkregen überwiegend aus Regenwasser besteht (Verhältnis Schmutz- zu Regenwasser ca. 1:9), über die Regenüberlaufkanäle ungereinigt in die Gewässer. Mischwasserüberläufe sind witterungsabhängig. Die Jahresauswertungen zeigen, wie stark Mischwasserüberläufe schwanken. In dem Zeitraum 2007 bis 2017 schwankte die Anzahl der Tage mit registriertem Mischwasserüberlauf zwischen 33 und 60 Tagen pro Jahr und die Überlaufmenge zwischen 2,1 und 7,5 Mio. m 3 pro Jahr. Bei der Bewertung der Tage mit registriertem Mischwasserüberlauf ist zu beachten, dass Regenereignisse häufig lokal auftreten und daher Mischwasserüberläufe räumlich und zeitlich begrenzt sind. Um die Umweltziele nach Wasserrahmenrichtlinie zu erreichen sowie die Auflagen der wasserbehördlichen Erlaubnis für die Einleitung von Mischwasser in die Berliner Gewässer zu erfüllen, besteht ein Bauprogramm der BWB und des Senates zur Schaffung von insgesamt 300.000 m 3 Stauraumkapazität (bisher gibt es etwa 235.000 m 3 Speichervolumen) bis zum Jahr 2024 in der innerstädtischen Mischkanalisation. Dies wird Überlaufhäufigkeiten und –mengen von Mischwasser in das Berliner Gewässernetz deutlich verringern. Gebiete ohne Regenwasserkanalisation In den Außenbereichen der Stadt existieren Gebiete mit Schmutzwasserkanalisation, die aber nicht regenwasserkanalisiert sind. Das Regenwasser versickert in diesen Gebieten in den Untergrund. Gebiete ohne Schmutzwasserkanalisation Trotz erheblicher Anstrengungen der Berliner Wasserbetriebe sind noch nicht alle Siedlungsgebiete an die Schmutzwasserkanalisation angeschlossen. In den bebauten, aber nicht kanalisierten Siedlungsbebieten Berlins wird das Schmutzwasser in abflusslosen Sammelbehältern gesammelt und durch zugelassene Abfuhrunternehmen über die Klärwerke entsorgt. Zur Dokumentation der Entwässerungssituation hinsichtlich der Ableitung von Regenwasser in die Gewässer wurde eine getrennte Karte erarbeitet, die die Einzugsgebiete der Regenwasserkanalisation zeigt (02.09.2). In dieser Karte ist jeder baulich genutzten und an die Regenwasserkanalisation angeschlossenen Fläche das Gewässer zugeordnet, in das das Regenwasser abgeleitet wird.

1 2 3 4 58 9 10