API src

Found 6 results.

New Aero Engine Core Concepts (NEWAC)

Das Projekt "New Aero Engine Core Concepts (NEWAC)" wird vom Umweltbundesamt gefördert und von Rolls-Royce Deutschland Ltd & Co KG durchgeführt. NEWAC will provide a step change for low emission engines by introducing new innovative core configurations to strongly reduce CO2 and NOx emissions. This breakthrough will be achieved by developing and validating new core configurations using heat management (intercooler, cooling air cooler, recuperator), improved combustion, active systems and improved core components. NEWAC will design and manufacture these innovative components and perform model, rig and core tests to validate the critical technologies. The NEWAC core configurations include an Inter-cooled Recuperative Aero engine (IRA) operating at low overall pressure ratio (OPR), an inter-cooled core configuration operating at high OPR, an active core and a flow controlled core operating at medium OPR. NEWAC will complement past and existing EC projects in the field, e.g. EEFAE in FP5 and VITAL in FP6. The main result will be fully validated new technologies enabling a 6Prozent reduction in CO2 emissions and a further 16Prozent reduction in NOx relative to ICAO-LTO cycle. Most importantly, the project will address the challenges involved in delivering these benefits simultaneously. NEWAC will deliver together with EEFAE (-11Prozent CO2, -60Prozent NOx), national programs and expected results of VITAL, the overall CO2 reduction of 20Prozent and the NOx reduction close to 80Prozent at a technology readiness level of 5, contributing to the attainment of the ACARE targets. NEWAC will achieve this technology breakthrough by integrating 41 actors from the European leading engine manufacturers, the engine-industry supply chain, key European research institutes and SMEs with specific expertise. The advance and benefits that NEWAC will bring to Europe in terms of more efficient and environmental-friendly air transport will be disseminated widely to all stakeholders. Furthermore a training programme will ensure the transfer of expertise and knowledge to the wider research community and especially to the new member states of the EU.

Main Annulus Gas Path Interactions (MAGPI)

Das Projekt "Main Annulus Gas Path Interactions (MAGPI)" wird vom Umweltbundesamt gefördert und von Rolls-Royce Deutschland Ltd & Co KG durchgeführt. In a modern aero engine, up to 20Prozent of the main annulus flow is bled off to perform cooling and sealing functions. The vicinity of these bleed ports and flow sinks is characterised by complex unsteady swirling flows, which are not fully understood. Even the most up-to-date numerical tools have difficulties predicting the behaviour of the secondary flow system when interacting with the main annulus. The project addresses interactions between main gas path and secondary flow systems in commercial gas turbines in response to Research Activity AERO-2005-1.3.1.2a Concepts and technologies for improving engine thermal efficiency and reducing secondary air losses. Experiments are planned on turbine disc rim and compressor manifold cavity heat transfer, hot gas ingestion, and spoiling effects of cooling air flow and their impact on turbine and compressor performance, as well as a reduction of secondary air losses. The experimental data will be used for better understanding of the complex flow phenomena and improvements of platform and cavity design. Furthermore, the industrial partners will validate their design tools with these test data and improve their prediction capability of secondary flow systems when interacting with the main gas path. The expected results are a reduction of cooling and sealing airflow rates, improvements of the turbine and compressor efficiency and increase of the safety margin of the engine components by better cooling. Expected technical results are: - Knowledge of the interaction phenomena and its effect on cavity heat transfer, spoiling and performance, - Experimental results for validation of improved numerical tools for secondary flow systems, - Optimised design methods and CFD best practice guidelines. The targeted outcome will contribute to the ACARE goal of reduced CO2 emissions via reduced fuel burn of 2Prozent to improve the environment and strengthening the competitiveness of European gas turbine manufacturers.

Predictive methods for combined cycle fatigue in Gas Turbine Blades (PREMECCY)

Das Projekt "Predictive methods for combined cycle fatigue in Gas Turbine Blades (PREMECCY)" wird vom Umweltbundesamt gefördert und von Rolls-Royce Deutschland Ltd & Co KG durchgeführt. The modern gas turbine is a complex machine, the design and development of which takes many months and costs Millions. The European gas turbine manufacturing industry is under pressure to minimise the resources required to bring a new design to market, due to global competitive pressure and increasing customer expectations. Accurate design and prediction tools are keys to success in this process. The PREMECCY project identifies the field of rotor blade Combined Cycle Fatigue (CCF) as an area where there are shortcomings in the existing industry standard design and prediction tools and thus where significant benefits can be achieved. Rotor blade CCF accounts for up to 40Prozent of the total number of issues that arise during an engine development programme and a similar proportion of in-service problems. These issues cost the industry Millions in both maintenance and redesign costs. The primary objective of the PREMECCY project is to develop new and improved CCF prediction methods for use in the design process. These will halve the number of development and in-service CCF problems thereby reducing the time and cost required to develop a new engine and reducing the operating costs once in service. They will also enable the design of lighter, more efficient blades, reducing engine sfc. In order to develop the new prediction methods the project will first generate high quality material test data. Advanced specimens and testing mechanically, geometrically and environmentally representative of operating conditions will be used to verify the enhanced methodology. All industrial partners are in a position to exploit the resulting methodologies within their existing design processes. The 15 strong consortium includes 9 major European gas turbine manufacturers, 1 specialist SME and 5 world-class research facilities. The complimentary expertise and experience of the consortium represents an optimised resource with which to achieve the project's challenging objectives. Prime Contractor: Rolls-Royce Plc; London; United Kongdom.

Global and regional Earth-system monitoring using satellite and in-situ data (GEMS)

Das Projekt "Global and regional Earth-system monitoring using satellite and in-situ data (GEMS)" wird vom Umweltbundesamt gefördert und von European Centre for Medium Range Weather Forecasts (ECMWF) durchgeführt. GEMS is developing comprehensive monitoring and forecasting systems for trace atmospheric constituents important for climate and air quality. The systems will provide the basis for value-added data and information services to be developed as part of Europe's Global Monitoring for Environment and Security (GMES) initiative. These services will: - provide global data in support of conventions and protocols on climate change, depletion of stratospheric ozone and long-range transport of atmospheric pollution; - provide information in support of development and implementation of European environmental policy; - address areas of key uncertainty in climate forcing identified by the Intergovernmental Panel on Climate Change (IPCC); - provide improved operational air-quality forecasts and a means for assessing the impact of climate variability and change on regional air quality; - provide improved monitoring and forecasting of UV radiation and solar-energy resources; - support downstream services for end-users; - complement the weather and climate services provided by the European Meteorological Infrastructure. GEMS builds on the global weather forecasting system operated by the European Centre for Medium-Range Weather Forecasts. ECMWF and its partners in the project have added a capability for analysing and modelling the distributions of key greenhouse gases, chemically reactive gases and aerosols. The resulting integrated system is capable of assimilating a wide range of observational meteorological data, associated ocean-wave and land-surface data, and the increasing amount of remotely sensed data on atmospheric trace constituents that has been provided by satellites in recent years. Ground-, aircraft- and balloon-based constituent measurements are used for validation. The system is being run to reconstruct global conditions day-by-day over the past five years, and routine daily running provides real-time monitoring and forecasts of conditions for several days ahead. The broad-scale air-quality products of the global system are complemented by products from an ensemble of finer-resolution forecasts generated by ten regional air-quality models that have been adapted to run over a common European domain. These regional models use common meteorological driving conditions from ECMWF's operational weather forecasts and take lateral boundary values of trace constituents from the global GEMS system. This ensemble system is run daily, and is also being used in studies of particular events from the extreme year of 2003.

Prevention, information and early warning pre-operational services to support the management of risks (PREVIEW)

Das Projekt "Prevention, information and early warning pre-operational services to support the management of risks (PREVIEW)" wird vom Umweltbundesamt gefördert und von INFOTERRA France SAS durchgeführt. PREVIEW (PREVention, Information and Early Warning) ist ein integriertes Projekt im 6. EU-Forschungsrahmenprogramm mit 58 Partnern aus 15 Nationen. Das Projekt zielt auf die Entwicklung neuer oder verbesserter Informationsdienste für das Risikomanagement zur Unterstützung der europäischer Zivilschutzeinheiten sowie lokaler und regionaler Behörden unter Anwendung modernster Technologie im Bereich der Fernerkundung. Risiken resultieren aus den direkten Auswirkungen atmosphärischer Ereignisse (z. B. Stürme, Starkregen, Unwetter), deren hydrologischer Konsequenzen (z. B. Überschwemmungen, Sturzfluten) oder aus geophysikalischen Ereignissen (z. B. Erdbeben, Erdrutsche, Lawinen, Vulkantätigkeit). Weitere Risiken ergeben sich aus industriellen Aktivitäten (technologische Risiken). Ausgehend von einer exakten Ermittlung der Nutzerbedürfnisse werden neue satellitengestützte Informationstechnologien entwickelt und für ein zukünftiges Risikomanagement auf europäischer, regionaler und lokaler Ebene bereitgestellt (Informationsdienste für die Bestandskartierung, die Risikokartierung, das Risikomonitoring, die Risikovorhersage und -abwehr sowie die Schadenspotenzialermittlung). Grundlage bilden dabei u. a. Projekte des 5. Forschungsrahmenprogramms, wie das Projekt RISK-EOS, an dessen Bearbeitung das IÖR beteiligt war. Die durch die am Projekt beteiligten Endnutzer insbesondere die Zivilschutzeinheiten, festgelegte Priorität liegt bei den Risiken Hochwasser, Feuer, Stürme sowie Erdbeben. Das IÖR ist im Themenfeld des Risikos Hochwasser im Projektbaustein Short Range Plain Flood Laboratory tätig. Dieser Projektbaustein befasst sich mit der Vorhersage von Flutereignissen sowie deren Ausbreitung, welche durch Starkregen verursacht werden. Das Vorhersageintervall liegt zwischen 0-3 Tagen. Das IÖR ermittelt insbesondere die exakten Anforderungen der Planung und der Entscheidungsträger (Wasserwirtschaftsämter, Landratsämter, Gemeinden) für eine operationelle Hochwasservorhersage. Ferner werden historische Hochwasserereignisse analysiert und die Flächennutzungsentwicklung bewertet. Untersuchungsraum für großräumige Analysen ist das gesamte Einzugsgebiet der oberen Donau im Freistaat Bayern. Detaillierte Untersuchungen erfolgen für kleinere Einzugsgebiete, z. B. der Iller. Die im Projekt zu entwickelnden Produkte sind: - Hochauflösendes 1 bis 3-tägige Wettervorhersagemodell einschließlich Unsicherheitsbewertung, - Kurzzeit-Pegelvorhersagemodell einschließlich Unsicherheitsbewertung, - Aktuelle Landnutzungskartierung als Input für die hydrologische Modellierung und die Hochwasserrisikobewertung, - Hochwasserrisikokartierung und Schadenspotentialanalyse, - Hochwasserinformationssystem. Das IÖR leistet wichtige Grundlagen zur Entwicklung der Produkte sowie zu deren Implementierung in der Praxis. Ferner erfolgt eine theoretische Abhandlung zum Umgang mit Unsicherheiten in der Rechts- und Planungspraxis.

Novel innovative competitive effective tilt rotor integrated project (NICE-TRIP)

Das Projekt "Novel innovative competitive effective tilt rotor integrated project (NICE-TRIP)" wird vom Umweltbundesamt gefördert und von VERTAIR durchgeführt. Objective: This proposal has been prepared in the framework of a research and development roadmap defined by the European rotorcraft community that aims to develop a civil tilt-rotor aircraft. A key target of the road map is a flying demonstrator in the 2010 decade. NICETRIP specifically addresses the acquisition of new knowledge and technology validation concerning tilt-rotor. The main project objectives are: - To validate the European civil tilt-rotor concept based on the ERICA architecture; - To validate critical technologies and systems through the development, integration and testing of components of a tilt-rotor aircraft on full-scale dedicated rigs; - To acquire new knowledge on tilt-rotor through the development and testing of several wind tunnel models, including a large-scale full-span powered model; - To investigate and evaluate the introduction of tilt-rotors in the European Air Traffic Management System; - To assess the sustainability of the tilt-rotor product with respect to social and environmental issue s and to define the path towards a future tilt-rotor flying demonstrator. Project NICETRIP is fully relevant to the strategic objective 1.3.2.1: - Integration of technologies towards the future tilt-rotor aircraft, of the work programme of call 3 of the Thematic Priority Aeronautics and Space. The organisation and resources proposed to achieve the project objectives include a 54-month work plan made of 7 work packages and a consortium of 31 participants, fully representing the span of needed capabilities.

1