Das Projekt "Enhanced Energy Efficiency and Comfort by Smart Light Transmittance Control (EELICON)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Silicatforschung (ISC) durchgeführt. EELICON is concerned with an innovative switchable light transmittance technology developed previously in projects co-funded by the EU Framework Programmes. The core of this development are mechanically flexible and light-weight electrochromic (EC) film devices based on a conductive polymer nanocomposite technology with a unique property profile far beyond the current state-of-the art, opening the possibility to retrofit existing windows with a electrically dimmable plastic film. According to life cycle assessment studies, considerable energy savings may result when such films are included in appliance doors, automotive sunroofs, and architectural glazing, and the comfort is significantly enhanced. The development has been driven to the pilot-line production stage, however, the decisive step from research to innovation could not yet be accomplished for a number of technical and economic reasons. To overcome this gap, EELICON will tackle existing drawbacks by removing equipment limitations, automating processes, and establishing a high-throughput prototype production for a cost-effective high performance EC film technology in Europe. The ambitious goal will be approached by joining efforts of European and overseas players to integrate nanotechnology, materials, and production know-how, i.e., specific expertise of European SMEs. Relevant IP is available for exploitation. The project comprises a pilot-line, a validation, and a prototyping phase (incl. business planning) and fully complies with the objectives of NMP Activity 4.4 - Integration and call NMP.2013.4.0-3 - From research to innovation: Previously obtained research results are used by industry, the European paradox is relieved, valley of death is overcome by following three pillars of development eventually resulting in creation of new businesses in Europe. The project is characterised by strong industrial/SME participation. 8 out of 13 partners are industrials, 6 of which being SMEs with leading roles.
Das Projekt "Multi-source Energy Storage System Integrated in Buildings (MESSIB)" wird vom Umweltbundesamt gefördert und von BASF SE durchgeführt. The overall objective of MESSIB is the development, evaluation and demonstration of an affordable multi-source energy storage system (MESS) integrated in building, based on new materials, technologies and control systems, for significant reduction of its energy consumption and active management of the building energy demand. This new concept will reduce and manage smartly the electrical energy required from the grid favouring the wider use of renewable energy sources . It will reduce raw material use for thermal performance and improve the indoor environment, the quality and security of energy supply at building and district level, including Cultural Heritage buildings. Furthermore, a significant reduction of the energy unit cost for end-users will be achieved. MESS is composed by two thermal and two electrical storage systems, integrated with the building installations and a control system to manage the building energy demand. The MESSIB basic principles are: - Rational use of thermal energy for primary energy savings and for increasing the indoor comfort. - Improvement of electrical energy storage in combination with RES to shift the demand with the production and to optimise the use of low cost off peak power from the grid. - Integration of the technologies in the building. Each of the technologies developed in the project will be integrated with conventional installations optimizing their functionality. - An active control system will manage the profile of use of each storage system and their interactions. This will contribute to the intelligent management of building energy demand and to ensure its security, quality and reliability. Prime Contractor: Acciona Infraestructuras S.A.; Alcobendas; Spanien (ES).
Das Projekt "Innovative catalytic technologies & materials for next gas to liquid processes (NEXT-GTL)" wird vom Umweltbundesamt gefördert und von BASF SE durchgeführt. The project addresses from one site the most critical and costly step to produce liquid fuel from natural gas using conventional routes, e.g. the stage of syngas production, and from the other side explores alternative routes to convert natural gas to liquid transportable products. The general objective is to explore novel and innovative (precompetitive) routes for transformation of natural gas to liquid products, particularly suited for remote areas to facilitate the transport. The aim is an integrated multi-disciplinary approach to develop in a long term vision the next-stage catalysts and related precompetitive technologies for gas to liquid conversion, in fully consistence with the indications of the call. For this reason, we have excluded to consider as part of the project catalytic technologies, such as FT synthesis and hydrocracking. In addition, we have excluded to investigate coal to liquid, both due to environmental impact of the use of coal, and to focus R&D. We have thus focused the project on three cluster lines: 1. new, not conventional routes for catalytic syngas formation from natural gas which include steps of separation by membrane and eventual reuse of byproducts; 2. direct catalytic conversion of methane to methanol/DME; 3. direct catalytic conversion of methane to aromatics under non-oxidative conditions followed by upgrading of the products by alkylation with ethane/propane. Prime Contractor: INSTM - Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali; Firenze; Italien (IT).
Das Projekt "MOFs as catalysts and adsorbents: Discovery and engineering of materials for industrial applications (MACADEMIA)" wird vom Umweltbundesamt gefördert und von BASF SE durchgeführt. A major challenge facing European industry involves the development of more specific, energy saving processes with less environmental impact. The recent development of Metal Organic Frameworks (MOFs) may prove a major milestone in achieving these goals. MACADEMIA project is an extension to FP6 STREP (DeSANNS) which highlighted some MOF materials for CO2 capture and storage. It will expand and continue this work on a much larger scale. BASF and TOTAL companies, major industrial partners, complement each othe... Prime Contractor: Total S.A.; Courbevoie; France.
Das Projekt "Nanostructured Surface Acitivated ultra-thin Oxygen Transport Membrane (NASA-OTM)" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK), IEK-1: Werkstoffsynthese und Herstellungsverfahren durchgeführt. The main objective of the proposed project is the development and industry-driven evaluation of highly stable and highly oxygen-permeable nano-structured oxygen transport membrane (OTM) assemblies with infinite selectivity for oxygen separation from air. The new approach proposed to reach this objective is the development of ultra thin membrane layers by e.g. CVD, PVD or Sol-Gel techniques with catalytic activation of the surfaces. This approach is supposed to make available highly stable membrane materials, which are currently out of discussion as the oxygen permeation measured on thick membranes is too low. Sufficiently high oxygen fluxes shall be obtained by: (i) ultra thin membrane layers on porous supports to minimize diffusion barriers; (ii) catalytic surface activation to overcome slow surface exchange/reaction kinetics; and (iii) thin-film nano-structuring, generating new diffusion paths through the grain boundaries in a nano-crystalline matrix. The membrane development is supported by thermo-mechanical modelling as well as atomistic modelling of transport properties. The produced oxygen is provided to Oxyfuel power plants or chemical processes such as oxidative coupling of methane (OCM) to higher hydrocarbons or HCN synthesis, which will contribute in a way to the mitigation of CO2 emissions. Oxyfuel power plants combust fuels using pure oxygen forming primarily CO2 and H2O making it much easier and cheaper to capture the CO2 than by using air. The major advantages of OTM are significantly lower efficiency losses than conventional technologies and the in principle infinite oxygen selectivity. OCM produces higher hydrocarbons directly without forming CO2 and HCN synthesis can be improved by process intensification resulting in energy and subsequent CO2 savings.
Das Projekt "Nanomaterials for harvesting sub-band-gap photons via upconversion to increase solar cell efficiencies (NANOSPEC)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V., Zentralverwaltung durchgeführt.
Das Projekt "Novel Concepts, Methods, and Technologies for the Production of Portable, EasytoUse Devices for the Measurement and Analysis of Airborne Engineered Nanoparticles in Workplace Air (NANODEVICE)" wird vom Umweltbundesamt gefördert und von Institut für Umwelt & Energie, Technik & Analytik e.V. durchgeführt. Due to their unique properties, engineered nanoparticles (ENP) are now used for a myriad of novel applications with great economic and technological importance. However, some of these properties, especially their surface reactivity, have raised health concerns, which have prompted scientists, regulators, and industry to seek consensus protocols for the safe production and use of the different forms of ENP. There is currently a shortage of field-worthy, cost-effective ways - especially in real time - for reliable assessment of exposure levels to ENP in workplace air. In addition to the problems with the size distribution, a major uncertainty in the safety assessment of airborne ENP arises from the lack of knowledge of their physical and chemical properties, and the levels of exposure. A special challenge of ENP monitoring is to separate ubiquitous background nanoparticles from different sources from the ENP. Here the main project goal is to develop innovative concepts and reliable methods for characterizing ENP in workplace air with novel, portable and easy-to-use devices suitable for workplaces. Additional research objectives are - identification of relevant physico-chemical properties and metrics of airborne ENP; establishment of reference materials; - exploring the association between physico-chemical and toxicological properties of ENP; - analyzing industrial processes as a source of ENP in workplace air; - developing methods for calibration and testing of the novel devices in real and simulated exposure situations; and - dissemination of the research results to promote the safe use of ENP through guidance, standards and education, implementing of safety objectives in ENP production and handling, and promotion of safety related collaborations through an international nanosafety platform. Prime Contractor: Tyoeterveyslaitos; Helsinki; Finland.
Das Projekt "Advanced High Volume Affordable Lightweighting for Future Electric Vehicles (ALIVE)" wird vom Umweltbundesamt gefördert und von Volkswagen AG durchgeführt. Innovative Gusstechnologien für Fahrwerkstrukturen, Composite Gusstechnologie für Mulitmaterial-Fahrwerkstrukturen, Kontruktionsrichtlinien für Mulimaterialverbindungen, Fügetechnologien.
Das Projekt "Development of Nanotechnology-based High-performance Opaque & Transparent Insulation Systems for Energy-efficient Buildings (NANOINSULATE)" wird vom Umweltbundesamt gefördert und von BASF SE durchgeführt. NANOINSULATE will develop durable, robust, cost-effective opaque and transparent vacuum insulation panels (VIPs) incorporating new nanotechnology-based core materials (nanofoams, aerogels, aerogel composites) and high-barrier films that are up to four times more energy efficient than current solutions. These new systems will provide product lifetimes in excess of 50 years suitable for a variety of new-build and retrofit building applications. Initial building simulations based on the anticipated final properties of the VIPs indicate reductions in heating demand of up to 74Prozent and CO2 emissions of up to 46Prozent for Madrid, Spain and up to 61Prozent and 55Prozent respectively for Stuttgart, Germany for a building renovation which reduces the U-value of the walls and roof from 2.0 W m-2 K-1 to 0.2 W m-2 K-1. This reduction could be achieved with NANOINSULATE products that are only 25 mm thick, giving a cost-effective renovation without the need of changing all the reveals and ledges. Similarly, significant reductions in U-values of transparent VIPs (3 W m-2 K-1 to 0.5 W m-2 K-1) are shown by substituting double glazed units in existing building stock. Six industrial & four research based partners from seven EU countries will come together to engineer novel solutions capable of being mass produced. Target final manufacturing costs for insulation board (production rates above 5 million m2/year) are less than 7 m-2 for a U-value of 0.2 W m-2 K-1. NANOINSULATE will demonstrate its developments at construction sites across Europe. A Lifecycle Assessment, together with a safety and service-life costing analysis, will be undertaken to prove economic viability. NANOINSULATE demonstrates strong relevance to the objectives and expected impacts of both the specific call text of the Public-Private Partnership Energy-efficient Buildings topic New nanotechnology-based high performance insulation systems for energy efficiency within the 2010 NMP Work Programme and the wider NMP & Energy Thematic Priorities. Prime Contractor: Kingsplan Research and Developments Ltd.; Kingscourt; Irland.
Das Projekt "Nanotechnologie-basierte intelligente Multi-Sensorsysteme mit selektiver Vorkonzentration für die Kontrole der Innenluftqualität" wird vom Umweltbundesamt gefördert und von Universität des Saarlandes, Fachrichtung 7.4 Mechatronik, Lehrstuhl für Messtechnik durchgeführt. SENSIndoor aims at the development of novel nanotechnology based intelligent sensor systems for selective monitoring of Volatile Organic Compounds (VOC) for demand controlled ventilation in indoor environments. Greatly reduced energy consumption without adverse health effects caused by the Sick Building Syndrome requires optimized ventilation schemes adapted to specific application scenarios like offices, hospitals, schools, nurseries or private homes. - SENSIndoor will measure the quality of indoor air. - SENSIndoor will develop smart, energy efficient ventilation systems. - SENSIndoor will bring forth demand controlled ventilation - the key for energy efficient buildings. - SENSIndoor will develop novel nanotechnology-based microsensor systems for room specific ventilation.
Origin | Count |
---|---|
Bund | 59 |
Type | Count |
---|---|
Förderprogramm | 59 |
License | Count |
---|---|
open | 59 |
Language | Count |
---|---|
Deutsch | 59 |
Englisch | 56 |
Resource type | Count |
---|---|
Keine | 29 |
Webseite | 30 |
Topic | Count |
---|---|
Boden | 46 |
Lebewesen & Lebensräume | 50 |
Luft | 49 |
Mensch & Umwelt | 59 |
Wasser | 32 |
Weitere | 59 |