Das Projekt "Das Energiewende-Szenario 2020 - Ausstieg aus der Atomenergie, Einstieg in Klimaschutz und nachhaltige Entwicklung, Hydrogen and Fuel Cell Technologies for Road Transport (HyTRAN)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Volvo Technology Corporation, Energy Conversion and Physics.Two innovative integrated Fuel Cell Systems for automotive application will be developed within specific Technological Platforms (TPs): TP1 POWERTRAIN: development of a system for traction power by an 80 kW direct hydrogen PEM fuel cell system implemented on a passenger car. TP2 APU: development of 5 kW Auxiliary Power Unit for both light-duty and heavy-duty vehicles, including microstructured diesel oil steam reformer, clean-up reactors, an innovative reformate hydrogen stack and balance of plant components. These objectives will be reached via R&TD activities that will address the most critical technical bottlenecks which currently hamper wide market penetration of PEM fuel cell systems for road transport, while accounting some of the key market and policy drivers and barriers. Particularly, the following innovative components will be developed: A 80 kW direct hydrogen stack with strong weight and volume reduction, increased efficiency, durability and start-up time, with innovative MEAs embodying sealing layers (7-layers MEAs); A 5 kW reformate stack, including innovative electrocatalyst and MEA elements tolerant to very high CO concentrations and low-resisitivity bipolar plates; A highly efficient, clean and compact micro-structured diesel steam reformer and gas purification unit; Variable displacement compressors with reduced noise level; Innovative humidification/dehumidification apparatus; Heat exchanger and radiator customised for the different applications; Specific targets for both platforms will be achieved via a system approach leading to development and validation of the concepts (POWERTRAIN: in a passenger car; APU: dynamic test validation in bench) with high well-to-wheel efficiency (low fuel consumption), easy and optimised packaging and on-board integration.
Das Projekt "POLYCITY - europäische Energieforschung für Kommunen" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Hochschule für Technik Stuttgart, Zentrum für angewandte Forschung an Fachhochschulen, Nachhaltige Energietechnik - zafh.net.Die Projektgebiete liegen in Deutschland, Italien und Spanien. Deutschland: Scharnhauser Park: In Ostfildern am südlichen Rand von Stuttgart entsteht auf einem ehemaligen amerikanischen Militärgelände der Stadtteil Scharnhauser Park für rund 10.000 Bewohner und mit etwa 2.500 Arbeitsplätzen. Zu rund 80 Prozent soll der Energiebedarf aus erneuerbarer Energie gedeckt werden. Kern des Energiekonzeptes für den Stadtteil ist ein Biomasse-Blockheizkraftwerk mit 1 MW elektrischer und 6 MW thermischer Leistung. Die Anlage wird optimiert, eine Ist-Analyse ist bereits erstellt worden. Mit der im Sommer ungenutzten Wärmeenergie soll künftig Kälte für die Klimatisierung von Gewerbebauten erzeugt werden. Neben der ganzjährigen Nutzung erneuerbarer Energien für die Kraft-Wärme-Kältekopplung ist auch Energiespeicherung (zentral und dezentral) und ein kommunales Energiemanagementsystem auf der Basis modernster Informationstechnologien vorgesehen. Das zafh.net liefert Know-how der simulationsgestützten Regelung von Anlagen und setzt betriebsbegleitende Simulationen ein. In Echtzeit soll aus den klimatischen Randbedingungen der optimale Betriebszustand berechnet und mit den real gemessenen Werten verglichen werden. Als Basis ist ein Geoinformationssystem entwickelt worden, mit dem die Energiedaten der Gebäude erfasst und ausgewertet werden können. Die Gebäude unterliegen einem hohen Dämmstandard (25 Prozent unter den in der Wärmeschutzverordnung 1995 geforderten Werten). Bei den im Projekt neu dazukommenden Wohn- und Gewerbebauten wird der Transmissionswärmeverlust um weitere 20-30 Prozent gesenkt. Die ersten Wohnbauten wurden im Herbst 2005 vom Siedlungswerk Stuttgart erstellt. Mit Argon gefüllte Fenster mit erhöhter Rahmendämmungund Kunststoff-Abstandhaltern erreichen einen Gesamt-Wärmedurchgangskoeffizienten von 1,1 W m-2 K-1. In diesem ersten Bauabschnitt sind reine Abluftanlagen ohne Wärmerückgewinnung installiert worden, in späteren Bauabschnitten sollen Anlagen mit Wärmerückgewinnung einer Vergleichsanalyseunterzogen werden. Die Gebäudedichtigkeit wird mit Blower-Door-Tests experimentell untersucht. Der Energiestandard wird bei allen Bauten dokumentiert. Messgeräte für die Fernauslese und Auswertung (Smartbox) sind bereits installiert. ImGewerbegebiet wird im März 2006 ein erstes Demoprojekt zur innovativen Gebäudetechnologie (Heizung, Lüftung, Klima) mit etwa 4.000 m2 Nutzfläche erstellt. In der Ausführungsplanung enthalten sind: thermische Kühlung, Erdreichwärmetauscher, Betonkernaktivierung (zur Kühlung) ein Unterflurkonvektions-Heiz- und Kühlsystem, ein Tageslicht-Lenksystem. Nicht nur das Biomassekraftwerk liefert Strom, sondern auch gebäudeintegrierte PV-Anlagen. Ziel ist eine Leistung von insgesamt 70 kWp. Zudem wird die kinetische Energie des Wassers genutzt: Das aus den Hochbehältern ins Netz abfließende Trinkwasser treibt eine 80-kW-Entspannungsturbine an.
Das Projekt "Energy in Minds" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Steinbeis Innovation gGmbH - Steinbeis Innovationszentrum (SIZ) Energie-, Gebäude- und Solartechnik EGS.Das europaweite Förderprojekt hat zum Ziel, den Anteil fossiler Energieträger und den Ausstoß von CO2 in vier europäischen Städten innerhalb von 5 Jahren um 20 Prozent bis 30 Prozent zu senken. Teilnehmer sind Neckarsulm in Deutschland, die Energieregion Weiz-Gleisdorf in Österreich, Falkenberg in Schweden und Zlin in Tschechien. Neben diesen Städten nehmen Gornji Grad in Slowenien und die Region Turin in Italien als Beobachterstädte an dem Projekt teil. Alle Partner sind führend auf dem Gebiet regenerativer Energiesysteme und rationeller Energieverwendung. Maßnahmen: - Sensibilisierung der Bevölkerung für Energiefragen, - Energieagenturen werden eingerichtet bzw. ausgebaut, - ein jährlich stattfindender Energie-Tag' wird eingeführt, - Durchführung von Informationskampagnen, - Energiechecks und Gebäudesanierungen, - Realisierung von Sonnenkollektoren und Photovoltaikanlagen, - alte Heizungsanlagen privater Haushalte werden durch CO2-neutrale Holzpellet-Heizungen ersetzt, - biomassebetriebene Heizkraftwerke sollen die Effizienz bestehender Nahwärmeversorgung verbessern. Projekte der Partnerstädte: Im Rahmen des Projekts werden innovative Energietechnologien getestet, weiterentwickelt, ausgewertet und optimiert. Neckarsulm: Realisierung einer solarbetriebenen Klärschlamm-Trocknungsanlage, - Durchführung eines Feldversuches mit Holzpellet-Stirling Motoren. Weiz-Gleisdorf: Schaffung einer Infrastruktur zur Belieferung mit Pflanzenöl, - Fahrzeugtests mit dem Kraftstoff-Pflanzenöl. Falkenberg: Errichtung von Windturbinen, - Untersuchung passiver Kühlung mit der innovativen PCM-Technik. Zlin: Nutzung von Energie aus der Abfallverbrennung. Ein wichtiger Aspekt während der gesamten Projektdauer ist die Zusammenarbeit, der Erfahrungsaustausch, die Wissensverbreitung aller Partner inner- und außerhalb des Konsortiums. Energy in Minds.' - Visionen: Dieses Forschungsprojekt soll Initiativen anregen, unterstützend wirken, um das Energiebewußtsein der Bevölkerung positiv zu verändern und zu stärken. STZ-EGS ist Initiator und Koordinator der 18 Vertragspartner.
Das Projekt "Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft des Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei.The objective of EFORWOOD is to develop a quantitative decision support tool for Sustainability Impact Assessment of the European Forestry-Wood Chain (FWC) and subsets thereof (e.g. regional), covering forestry, industrial manufacturing, consumption and recycling. The objective will be achieved by:a) defining economic, environmental and social sustainability indicators ,b) developing a tool for Sustainability Impact Assessment by integrating a set of models ,c) supplying the tool with real data, aggregated as needed and appropriate,d) testing the tool in a stepwise procedure allowing adjustments to be made according to the experiences gained,e) applying the tool to assess the sustainability of the present European FWC (and subsets thereof) as well the impacts of potential major changes based on scenarios,f) making the adapted versions of the tool available to stakeholder groupings (industrial, political and others).The multi-functionality of the FWC is taken into account by using indicators to assess the sustainability of production processes and by including in the analysis the various products and services of the FWC. Wide stakeholder consultations will be used throughout the process to reach the objective. EFORWOOD will contribute to EU policies connected to the FWC, especially to the Sustainable Development Strategy. It will provide policy-makers, forest owners, the related industries and other stakeholders with a tool to strengthen the forest-based sector's contribution towards a more sustainable Europe, thereby also improving its competitiveness. To achieve this, EFORWOOD gathers a consortium of highest-class experts, including the most representative forest-based sector confederations.EFORWOOD addresses with a high degree of relevance the objectives set out in the 3rd call for proposals addressing Thematic Sub-priority 1.1.6.3 Global Change and Ecosystems, topic V.2.1. Forestry/wood chain for Sustainable Development. Prime Contractor: Stiftelsen Skogsbrukets Forskningsinstitut, Skogforsk; Uppsala; Sweden.
Das Projekt "NextGenCell - The next generation of stationary fuel cells (NEXTGENCELL)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Vaillant GmbH.Objective: Designed as a joint EU and US collaborative effort in the framework of the EU-US Cooperation Agreement on fuel cells, NextGenCell aims to bring domestic fuel cell microCHP (1-5kWel) next step towards commercialisation. In FP5 Vaillant, Plug Power, and othe r European partners have demonstrated low temperature PEM fuel cell microCHP systems. Three major hurdles were identified: 1. Costs must be reduced significantly, 2. Reliability must be improved via system simplification, 3. System temperature must be increased. High Temperature (HT) PEM MEA technology at 160-180 C has the potential to overcome those hurdles. R&D on MEA, Fuel Cell System, components development and integration will lead to a developed and tested 1-5kW HT PEM fuel cell prototype microCH P system with modular design for global markets. Specific objectives relevant to TP 6.1 at production volumes are: 1. Total system costs less than 400 EUR/kW: - Significant system simplification (no CO clean-up and water management) - Increase mechanical stability of MEA - Reduction of system costs (e.g. of Balance of Plant, fuel processor, maintenance/recycling) and low cost bi-directional inverter development 2. Modular system design: - modular system design for different market applications (CHP and future tri-generation) - Increase electrical efficiency up to 35Prozent with 85Prozent total efficiency 3. Durability greater than 40.000 hours: - MEA Development with more stable cathode material and corrosion -resistant cathodes 4. Electronic control systems for optimal heat and power management and reduced costs; - CHP hydraulics concept Development (system scalability 1-5kW) - Embedded controller with 70Prozent less cost - microCHP Controls optimisation in a Virtual Power Plant. The team is based on strong industrial and scientifically partnership, includes a SME and participants from Acceding Country Bulgaria and Slovenia as one of the new member states. Five participants have expressed to join the Joint Technology Platform (JTI).
Das Projekt "MESoR - Management and Exploitation of Solar Resource Knowledge" wird/wurde gefördert durch: European Commission, Directorate D - New and Renewable Energy Sources, Energy Efficiency & Innovation / Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung.Knowledge of the solar energy resource has been generated over the past years within several European and national projects. Large steps forward have been made for the benefit of research, renewable energy industry, policy making and the environment. Nevertheless, these multiple efforts have led to a fragmentation and uncoordinated access: different sources of information and solar radiation products are now available, but uncertainty about their quality remains. At the same time, communities of users lack common understanding how to exploit the developed knowledge. The project MESoR aims at removing the uncertainty and improving the management of the solar energy resource knowledge. The results of past and present large-scale initiatives in Europe, will be integrated, standardised and disseminated in a harmonised way to facilitate their effective exploitation by stakeholders. This coordination action will contribute to preparation of the future roadmap for R&D and strengthening the European position in the international field. The project includes activities in user guidance (benchmarking of models and data sets; handbook; best practices), unification of access to information (use of advanced information technologies; offering one-stop-access to several databases), connecting to other initiatives (INSPIRE of the EU, POWER of the NASA, SHC and PVPS of the IEA, GMES/GEO) and to related scientific communities (energy, meteorology, geography, medicine, ecology), and dissemination (stakeholders involvement, future R&D, communication).
Das Projekt "High density power electronics for FC- and ICE-Hybrid Electric Vehicle Powertrains (HOPE)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Siemens AG.Objective: The project HOPE is addressing power electronics. It is based on previous EU research projects like the recently finished FW5 HIMRATE (high-temperature power modules), FW5 PROCURE (high-temperature passive components), and MEDEA+ HOTCAR (high-temperature control electronics) and other EU and national research projects. The general objectives of HOPE are: Cost reduction; meet reliability requirements; reduction of volume and weight. This is a necessity to bring the FC- and ICE-hybrid vehicles to success. WP1 defines specifications common to OEM for FC- and ICE-hybrid vehicle drive systems; Identification of common key parameters (power, voltage, size) that allows consequent standardisation; developing a scalability matrix for power electronic building blocks PEBBs. The power ranges will be much higher than those of e.g. HIMRATE and will go beyond 100 kW electric power. WP2 works out one reference mission profile, which will be taken as the basis for the very extensive reliability tests planned. WP3 is investigating key technologies for PEBBs in every respect: materials, components (active Si- and SiC switches, passive devices, sensors), new solders and alternative joinings, cooling, and EMI shielding. In WP4 three PEBBs will be developed: HDPM (high density power module) which is based on double side liquid cooling of the power semiconductor devices; IML (power mechatronics module), which is based on a lead-frame technology; and SiC-PEBB inverter (silicon carbide semiconductor JFET devices instead of Si devices). WP5 develops a control unit for high-temperature control electronics for the SiC-PEBBs. Finally WP6 works on integrating the new technologies invented in HOPE into powertrain systems and carries out a benchmark tests. All the results achieved in HOPE will be discussed intensively with the proposed Integrated Project HYSIS where the integration work will take place. It is clear from the start that many innovations are necessary to meet the overall goal.
Das Projekt "Catenary Interface Monitoring Coherent sensing technology for electrical railway infrastructure and rolling stock for interoperable cross boundary transportation (CATIEMON)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Siemens AG.Objective: In a deregulated EU rail market monitoring of the vehicle and infrastructure interface is mandatory for enhanced availability of operation reducing costs. Especially when a rolling stock is crossing boundaries between independent infrastructure grids, cond ition monitoring becomes crucial. A monitoring tool on OCLs overhead contact lines - for infrastructure managers is needed for an separate measurement of contact force and surface condition of the vehicle current strip. The rolling stock operator needs a complementary device to measure not only the vertical contact force, but moreover the friction force, in order to analyse the vehicle and OCL interface condition. In SMITS a monitoring system for contact force on the interface current collector lt;- gt; c ontact wire has been developed. A sensor technology has been started to explore showing the potential for an extended range of rail monitoring tools. An innovative coherent sensor technology approach shall be investigated and two independent monitoring too ls for vehicle and infrastructure be developed. These shall be validated at new rail tracks specified for TSI interoperable cross boundary transportation: the Ltschberg Basis Tunnel, CH and the HSL Zuid high speed line, NL, both ready for operation in 2007 . Demonstration tests in operation will be performed along the Korridor X infrastructure passing through different countries rail networks. The outcome of the project will enable managers to specify driving conditions for the usage of their infrastructure to avoid excessive wear improving availability. Complementary rolling stock operators can monitor OCL condition giving them an informative argument in case of damage. Condition-dependent user fees as well as threat of penalty will force vehicle and infrast ructure managers to maintain the vehicle and infrastructure interface on a superior level of availability. The operational costs will be reduced and availability of transportation capacity enhanced.
Das Projekt "SUCCESS - successful travel awareness campaigns and mobility management strategies (MAX)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Forschungsgesellschaft Mobilität - Austrian Mobility Research, FGM-AMOR, Gemeinnützige GmbH.Objective: Mobility Management (MM) and Travel Awareness (TA) have many advantages as soft policy strategies: they are flexible, adaptable, rapid to implement and offer value-for-money. Many sustainable transport research projects have covered MM and TA, but in isolated projects, limited to larger cities and pilot demonstrations. SUCCESS now offers the chance to link these two areas and exploit their synergies, based on its research areas: A Innovative Approaches in TA B Behaviour Change Models and Prospective Assessment C Quality Management and MM For Smaller Cities D Integrating Planning and MM. They will be linked via horizontal WPs: WP 1 State-of-the-art analysis WP 2 Conceptualisation and specification of research activities WP 3 Monitoring investigations and implementation WP 4 Compiling results WP 5 Dissemination and WP 0 Project Management, Quality Control and Evaluation run in parallel for the duration of the project. Organising the work in this way will deliver excellent results.
Das Projekt "Integration of Renewable Energy Sources and Distributed Generation into the European Electricity Grid (IRED)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Universität Kassel, Institut für Solare Energieversorgungstechnik e.V, Standort Kassel.Objective: Background: There are seven projects running which are supported by the European Commission under FP5 dealing with the integration of Renewable Energy Sources (RES) and Distributed Generation (DG). This cluster represents a total budget of about 35 million? More than 100 participating institutions from research, industry and the utility sector are contributing. Proposed Actions: The subject of the proposed CA is to extend the existing cluster activities in such a way that a real European added value by mobilising research will be obtained as a major contribution to the ERA. This extension will be realized by the inclusion of forthcoming projects supported by FP6 by national and regional activities. 1. A systematic exchange of information by improving links to relevant research, to regulatory bodies and to policies and schemes on the European, the national, the regional and the international level. 2. Set-up of strategic actions such as trans-national co-operation, the organization and a co-ordination of common initiatives on standards, testing procedures and the establishment of common education. 3. Identification of the highest priority research topics in the field of integration and formation of appropriate realization schemes. a) The establishment of an expert-group covering important cross-cutting areas such as power-quality, ICT/IST, laboratory experiments est.) The formation of a group of contact persons to national, regional and international policy). Set-up of a full data- and information-exchange system with links to national, regional and international information systems).
Origin | Count |
---|---|
Bund | 128 |
Wissenschaft | 4 |
Type | Count |
---|---|
Förderprogramm | 128 |
License | Count |
---|---|
offen | 128 |
Language | Count |
---|---|
Deutsch | 15 |
Englisch | 126 |
Resource type | Count |
---|---|
Keine | 67 |
Webseite | 61 |
Topic | Count |
---|---|
Boden | 95 |
Lebewesen & Lebensräume | 126 |
Luft | 92 |
Mensch & Umwelt | 128 |
Wasser | 118 |
Weitere | 128 |