API src

Found 128 results.

Quiet City Transport (QCity)

Das Projekt "Quiet City Transport (QCity)" wird vom Umweltbundesamt gefördert und von Stadt Ludwigsburg durchgeführt. The objective of QCITY is to propose a range of measures and solutions that can realistically be integrated both from an economic as well as from a practical point of view in the action plans that the cities (municipalities) will have to produce as a consequence of the EC Noise Directive 2002/49/EC. QCITY starts from the identification of hot spots on existing noise maps from a large number of cities, using the Stockholm score model. Some noise spots are then researched in detail with specific software in order to find the root causes of the problem. Various solutions will be studied for each of the selected hot spots and their effects determined, also by looking at the number of people impacted and the degree of the impact. The entire range of rail transport vehicles, trams, metro, suburban rail and freight, and their associated infrastructure are an integral part of this project, and are treated on the same level as road vehicles (cars, busses, trucks, motorbikes) and their infrastructure. Besides addressing the transport noise problems (at source, propagation and receiver) with conventional technical solutions, QCITY incorporates issues such as traffic control, town planning, architectural features, noise perception issues, intermodal transport, change between transport modes, traffic restrictions, enforcement measures, economic incentive measures, introduction of hybrid vehicles and of new guided public transport vehicles. In a first phase, emphasis will be on noise mapping and on the conceptual design of the considered solution and their potential impact. In the second phase, the most promising solutions will be designed in detail for a specific hot-spot problem selected in each participating city. The solutions will be implemented in situ and validated. Prime Contractor: Acoustic Control ACL AB; Täby; Sweden.

Energy in Minds

Das Projekt "Energy in Minds" wird vom Umweltbundesamt gefördert und von Steinbeis Innovation gGmbH - Steinbeis Innovationszentrum (SIZ) Energie-, Gebäude- und Solartechnik EGS durchgeführt. Das europaweite Förderprojekt hat zum Ziel, den Anteil fossiler Energieträger und den Ausstoß von CO2 in vier europäischen Städten innerhalb von 5 Jahren um 20 Prozent bis 30 Prozent zu senken. Teilnehmer sind Neckarsulm in Deutschland, die Energieregion Weiz-Gleisdorf in Österreich, Falkenberg in Schweden und Zlin in Tschechien. Neben diesen Städten nehmen Gornji Grad in Slowenien und die Region Turin in Italien als Beobachterstädte an dem Projekt teil. Alle Partner sind führend auf dem Gebiet regenerativer Energiesysteme und rationeller Energieverwendung. Maßnahmen: - Sensibilisierung der Bevölkerung für Energiefragen, - Energieagenturen werden eingerichtet bzw. ausgebaut, - ein jährlich stattfindender Energie-Tag' wird eingeführt, - Durchführung von Informationskampagnen, - Energiechecks und Gebäudesanierungen, - Realisierung von Sonnenkollektoren und Photovoltaikanlagen, - alte Heizungsanlagen privater Haushalte werden durch CO2-neutrale Holzpellet-Heizungen ersetzt, - biomassebetriebene Heizkraftwerke sollen die Effizienz bestehender Nahwärmeversorgung verbessern. Projekte der Partnerstädte: Im Rahmen des Projekts werden innovative Energietechnologien getestet, weiterentwickelt, ausgewertet und optimiert. Neckarsulm: Realisierung einer solarbetriebenen Klärschlamm-Trocknungsanlage, - Durchführung eines Feldversuches mit Holzpellet-Stirling Motoren. Weiz-Gleisdorf: Schaffung einer Infrastruktur zur Belieferung mit Pflanzenöl, - Fahrzeugtests mit dem Kraftstoff-Pflanzenöl. Falkenberg: Errichtung von Windturbinen, - Untersuchung passiver Kühlung mit der innovativen PCM-Technik. Zlin: Nutzung von Energie aus der Abfallverbrennung. Ein wichtiger Aspekt während der gesamten Projektdauer ist die Zusammenarbeit, der Erfahrungsaustausch, die Wissensverbreitung aller Partner inner- und außerhalb des Konsortiums. Energy in Minds.' - Visionen: Dieses Forschungsprojekt soll Initiativen anregen, unterstützend wirken, um das Energiebewußtsein der Bevölkerung positiv zu verändern und zu stärken. STZ-EGS ist Initiator und Koordinator der 18 Vertragspartner.

European Assessment of the Transport Impacts on Climate Change and Ozone Depletion (ATTICA)

Das Projekt "European Assessment of the Transport Impacts on Climate Change and Ozone Depletion (ATTICA)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre Oberpfaffenhofen durchgeführt. The ATTICA consortium offers to provide the European community with a coherent series of assessments of the impact of transport emissions on climate change and ozone depletion. Three assessments will cover the emissions of single transport sectors, viz. of aviation, shipping, and road and rail traffic. Another assessment deals with metrics that allow to describe, quantify, and compare in a fair way the effects of the transport emissions in the atmosphere. Finally, a synthesis of the foregoing assessments will be written that will provide the overview of the impacts of the emissions of all transport sectors on climate change and the ozone layer. For the first time, different modes of transport will be consistently assessed. The consistent assessment allows the interested citizen to estimate in principle their own contribution to environmental problems and to compare it to that of others. Apart from policy and decision makers, the synthesis assessment will help journalists, teachers, and others, to digest the results and to present them in public media, in schools and universities, ensuring wide spread of the results. The assessments and the synthesis report will inform the EU in developing its policy and will strengthen its position in international climate conventions and other international agreements. It will help finding emission reduction and mitigation strategies, and give advice for industry on design of future engines and vehicles, thereby strengthening the European position.

ovative In Situ CO2 Capture Technology for Solid Fuel Gasification (ISCC)

Das Projekt "ovative In Situ CO2 Capture Technology for Solid Fuel Gasification (ISCC)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Fakultät für Energietechnik, Institut für Verfahrenstechnik und Dampfkesselwesen durchgeführt. The project aims to develop a new process facilitating the capture and subsequent sequestration of CO2. This shall be done with a solid sorbent which absorbs the CO2 during the coal gasification process. The sorbent will be regenerated in a separate unit in order to release concentrated (deeper 95 percent CO2). Gaseous products are the CO2 ready for sequestration and H2 which can be used in a gas turbine or, in the future, in a fuel cell. The Solid product is a pre-calcined ash/sorbent mixture which might be used as a feed for the cement industry, thereby considerably reducing the energy consumption and the CO2 emissions of the cement industry.

Standardization of Ice Forces on Offshore Structures Design (STANDICE)

Das Projekt "Standardization of Ice Forces on Offshore Structures Design (STANDICE)" wird vom Umweltbundesamt gefördert und von Dr. J. Schwarz durchgeführt. Objective: During the past six years two RTD-projects have been performed by a consortium of seven European partners to investigate ice forces on marine structures. The aim of this work has been to establish new methods for ice load predictions. The work has been supported by the EC under the projects LOLEIF and STRICE. The data compiled by these projects are of great importance for the future development of offshore wind energy converters, OWECS, in the ice-covered seas of Europe. Because the ice forces on marine structures are internationally heavily disputed the present design codes for OWECS as well as for all marine structures in ice-infested waters are not been considered reliable. Therefore, the main objective of this project is to contribute to the development of an international standard for the design of marine structures such as OWECS against ice loads with special emphasis on European sub-arctic ice conditions.

Hydrogen for clean urban transport in Europe (HyFleet:CUTE)

Das Projekt "Hydrogen for clean urban transport in Europe (HyFleet:CUTE)" wird vom Umweltbundesamt gefördert und von Mercedes-Benz Group AG durchgeführt. Im Projekt HyFLEET:CUTE wurde 47 Busse in 10 Städten auf drei Kontinenten eingesetzt (Amsterdam, Barcelona, Berlin, Hamburg, London, Luxemburg, Madrid, Perth, Peking und Reykjavik). Das Projekt zielte darauf ab, Antriebskonzepte für Stadtbusse zu demonstrieren und weiterzuentwickeln, die Wasserstoff als Kraftstoff nutzen. Ferner wurden die damit einhergehenden Produktions- und Verteilungspfade für nachhaltig erzeugten Wasserstoff erprobt. Durch die Entwicklung verbrauchsoptimierter Wasserstoffbusse hat das Projekt dazu beigetragen, den Energieverbrauch im Transportsektor zu reduzieren und zu diversifizieren. Obendrein konnte es Wege einer sauberen, effizienten und sicheren Wasserstoffversorgung und -verteilung vermitteln. Von den eingesetzten Bussen besaßen 33 einen Elektromotor, der mit Strom aus einer Brennstoffzelle angetrieben wurde. Die anderen 14 Busse hatten einen Verbrennungsmotor, der an den Kraftstoff Wasserstoff angepasst war. Im Laufe des Projekts wurde ferner ein neuer Brennstoffzellen-Hybrid-Bus entwickelt, getestet und im Alltagsbetrieb demonstriert. Weiteres Kernelement des Projektes war die Optimierung der bestehenden Wasserstoff-Infrastrukturen, die aus dem Vorläuferprojekt CUTE stammten, sowie die Entwicklung und Erprobung neuer Anlagen und Versorgungskonzepte. Der Wasserstoff wurde an den einzelnen Standorten auf verschiedene Weise bereitgestellt: in manchen Städten durch Herstellung direkt an der Tankstelle ('on site) mittels Elektrolyse oder Reformierung, in anderen Städten per Lkw aus externer Produktion. So konnten verschiedene Pfade der Produktion und Verteilung bewertet werden. HyFLEET:CUTE umfasste außerdem den Betrieb von zwei stationären Brennstoffzellen, die an der Tankstelle in Berlin elektrischen Strom und Wärme bereitstellten. In HyFLEET:CUTE haben 31 Partner aus Politik, Industrie und Wissenschaft kooperiert, um die Entwicklung der Wasserstofftechnologie voranzubringen. Das Projekt war auch Teil der Initiative 'Wasserstoff für Mobilität (Hydrogen for Transport), die alle verkehrsbezogenen Demonstrationsvorhaben der Europäischen Kommission in diesem Bereich beraten und koordiniert hat. Die Aufgaben von PLANET PLANET war für die Bewertung der Leistungsfähigkeit der Wasserstoff-Tankstellen verantwortlich und konnte so an die erfolgreichen Arbeiten im Vorgängerprojekt CUTE anschließen. Zu den wichtigsten Indikatoren, die aus den täglichen Betriebsdaten der 10 Standorte zu ermitteln waren, gehörten Wirkungsgrade und Verfügbarkeiten. Daraus wurden die 'kritischen Komponenten ermittelt, die z.B. an mehreren Standorten bzw. wiederholt zu Ausfallzeiten führten. In Zusammenarbeit mit den Projektpartnern wurden Maßnahmen zur Optimierung entwickelt und Empfehlungen für zukünftige Systeme abgeleitet. PLANET leitete ferner die weltweiten Aktivitäten für Aus- und Weiterbildung. Ziel war es, die Ergebnisse und Erfahrungen aus HyFLEET:CUTE an potentielle Nutzergruppen weitezugeben. usw.

High density power electronics for FC- and ICE-Hybrid Electric Vehicle Powertrains (HOPE)

Das Projekt "High density power electronics for FC- and ICE-Hybrid Electric Vehicle Powertrains (HOPE)" wird vom Umweltbundesamt gefördert und von Siemens AG durchgeführt. Objective: The project HOPE is addressing power electronics. It is based on previous EU research projects like the recently finished FW5 HIMRATE (high-temperature power modules), FW5 PROCURE (high-temperature passive components), and MEDEA+ HOTCAR (high-temperature control electronics) and other EU and national research projects. The general objectives of HOPE are: Cost reduction; meet reliability requirements; reduction of volume and weight. This is a necessity to bring the FC- and ICE-hybrid vehicles to success. WP1 defines specifications common to OEM for FC- and ICE-hybrid vehicle drive systems; Identification of common key parameters (power, voltage, size) that allows consequent standardisation; developing a scalability matrix for power electronic building blocks PEBBs. The power ranges will be much higher than those of e.g. HIMRATE and will go beyond 100 kW electric power. WP2 works out one reference mission profile, which will be taken as the basis for the very extensive reliability tests planned. WP3 is investigating key technologies for PEBBs in every respect: materials, components (active Si- and SiC switches, passive devices, sensors), new solders and alternative joinings, cooling, and EMI shielding. In WP4 three PEBBs will be developed: HDPM (high density power module) which is based on double side liquid cooling of the power semiconductor devices; IML (power mechatronics module), which is based on a lead-frame technology; and SiC-PEBB inverter (silicon carbide semiconductor JFET devices instead of Si devices). WP5 develops a control unit for high-temperature control electronics for the SiC-PEBBs. Finally WP6 works on integrating the new technologies invented in HOPE into powertrain systems and carries out a benchmark tests. All the results achieved in HOPE will be discussed intensively with the proposed Integrated Project HYSIS where the integration work will take place. It is clear from the start that many innovations are necessary to meet the overall goal.

CO2SINK - In-situ Labor zur Untersuchung der Speicherung von Kohlendioxid unter der Erde

Das Projekt "CO2SINK - In-situ Labor zur Untersuchung der Speicherung von Kohlendioxid unter der Erde" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Ketzin ist eine Stadt westlich von Berlin im Land Brandenburg. In ihrer Nähe wurde seit 1960 Erdgas aus Sibirien in unterirdischen Sandsteinschichten zwischengelagert. Diese Erdgasspeicherung wurde vor kurzem eingestellt. Hier soll ein Forschungs- und Entwicklungsprojekt eingerichtet werden, bei dem das Treibhausgas Kohlendioxid (CO2 ) im Untergrund gelagert werden soll. Das Projekt wird vom GeoForschungsZentrum Potsdam koordiniert und von der Europäischen Union mit 8.7 Millionen Euro gefördert. Das Projekt soll helfen, das wissenschaftliche Verständnis der geologischen Speicherung von CO2 weiter zu entwickeln und die im Untergrund ablaufenden Prozesse der CO2 Injektion praktisch zu erforschen. Zunächst werden geologisch-geophysikalisch-geochemische Voruntersuchungen des Standortes und des vorgesehenen Speicherhorizontes sowie eine umfassende Risikoabschätzung vorgenommen um sicherzustellen, dass die Speicherung auch gefahrlos durchgeführt werden kann. Die erforderlichen Bewilligungen des zuständigen Bergamtes, der örtlichen Gemeinde und das Einverständnis der betroffenen Anwohner müssen dazu eingeholt werden. Die künftige Nutzung des Geländes ist Teil eines behördlich bereits genehmigten Bebauungsplans, der auch andere Vorhaben zur Nutzung regenerativer Energie aus Wind, Sonne und Biomasse einschließt. Das CO2 SINK Projekt erlaubt die Weiterverwendung vorhandener Gasspeicher-Infrastrukturen. Geplant ist die unterirdische Injektion von jährlich mehreren 10,000 Tonnen an reinem CO2 für zunächst zwei bis drei Jahre. Das CO2 soll dabei vorwiegend aus regenerativen Biomasse-Energierohstoffen gewonnen werden. Dieses ermöglicht im Prinzip, CO2 aus der Atmosphäre zu entziehen und damit die Treibhausgaskonzentration zu verringern. Unterirdische Erdgasspeicher und geologische Speicher für CO2 in salinen Grundwasserleitern (Aquifere) haben zwei gemeinsame Merkmale: Sie bestehen aus Gestein mit großem Porenraum wie z.B. Sandstein, das von abdichtenden Tonschichten überdeckt ist. Im Untergrundspeicher Ketzin wurde das Erdgas in einer Sandsteinschicht zwischen 250 und 400 Meter Tiefe unter der Erde gelagert. Aus Erkundungsbohrungen und seismischen Messungen weiß man, dass es dort aber noch mindestens eine weitere gut geeignete Speicherschicht in größerer Tiefe gibt. Diese ist rund 80 Meter mächtig und liegt auf einer geologischen Kuppe, die sich bis ungefähr 600 Meter unter der Erdoberfläche aufwölbt. Die Sandsteinschicht fällt nach allen Seiten auf etwa 700 Meter ab und ist von abdichtenden Gips- und Tonschichten überlagert. Um den Untergrund und die bei der CO2 Speicherung darin ablaufenden Prozesse verstehen zu können, ist im Projekt CO2SINK eine umfassende Reihe von wissenschaftlichen Untersuchungen geplant. Usw.

Demonstration of a sustainable CHP concept using residues from olive oil production (OLIVEPOWER)

Das Projekt "Demonstration of a sustainable CHP concept using residues from olive oil production (OLIVEPOWER)" wird vom Umweltbundesamt gefördert und von New Energy Biomasse Hellas GmbH durchgeführt. Objective: The project focuses on the demonstration of an innovative and sustainable CHP concept using residues from olive oil production (olive wastes) as fuel. A first plant based on the new concept will be realised in Greece. The main objective of the project is to demonstrate a closed cycle concept able to reduce landfill problems and emissions and to promote the use of renewable electricity production in Southern Europe. The project will be based on an approach integrating the whole chain (fuel logistics and preparation, energy production, by-product utilisation). An optimised fuel logistic concept will guarantee for a secured fuel supply over the whole year. The fuel will not only be dewatered and dried but also a marketable by-product will be produced. By this means a better fuel quality can be achieved and solid wastes as well as waste- water can be omitted. The development and design of the combustion unit focuses on a technology tailored to the special characteristics of the olive waste.

Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain

Das Projekt "Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Department für Biologie, Zentrum Holzwirtschaft des Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei durchgeführt. The objective of EFORWOOD is to develop a quantitative decision support tool for Sustainability Impact Assessment of the European Forestry-Wood Chain (FWC) and subsets thereof (e.g. regional), covering forestry, industrial manufacturing, consumption and recycling. The objective will be achieved by:a) defining economic, environmental and social sustainability indicators ,b) developing a tool for Sustainability Impact Assessment by integrating a set of models ,c) supplying the tool with real data, aggregated as needed and appropriate,d) testing the tool in a stepwise procedure allowing adjustments to be made according to the experiences gained,e) applying the tool to assess the sustainability of the present European FWC (and subsets thereof) as well the impacts of potential major changes based on scenarios,f) making the adapted versions of the tool available to stakeholder groupings (industrial, political and others).The multi-functionality of the FWC is taken into account by using indicators to assess the sustainability of production processes and by including in the analysis the various products and services of the FWC. Wide stakeholder consultations will be used throughout the process to reach the objective. EFORWOOD will contribute to EU policies connected to the FWC, especially to the Sustainable Development Strategy. It will provide policy-makers, forest owners, the related industries and other stakeholders with a tool to strengthen the forest-based sector's contribution towards a more sustainable Europe, thereby also improving its competitiveness. To achieve this, EFORWOOD gathers a consortium of highest-class experts, including the most representative forest-based sector confederations.EFORWOOD addresses with a high degree of relevance the objectives set out in the 3rd call for proposals addressing Thematic Sub-priority 1.1.6.3 Global Change and Ecosystems, topic V.2.1. Forestry/wood chain for Sustainable Development. Prime Contractor: Stiftelsen Skogsbrukets Forskningsinstitut, Skogforsk; Uppsala; Sweden.

1 2 3 4 511 12 13