API src

Found 128 results.

Energy in Minds

Das europaweite Förderprojekt hat zum Ziel, den Anteil fossiler Energieträger und den Ausstoß von CO2 in vier europäischen Städten innerhalb von 5 Jahren um 20 Prozent bis 30 Prozent zu senken. Teilnehmer sind Neckarsulm in Deutschland, die Energieregion Weiz-Gleisdorf in Österreich, Falkenberg in Schweden und Zlin in Tschechien. Neben diesen Städten nehmen Gornji Grad in Slowenien und die Region Turin in Italien als Beobachterstädte an dem Projekt teil. Alle Partner sind führend auf dem Gebiet regenerativer Energiesysteme und rationeller Energieverwendung. Maßnahmen: - Sensibilisierung der Bevölkerung für Energiefragen, - Energieagenturen werden eingerichtet bzw. ausgebaut, - ein jährlich stattfindender Energie-Tag' wird eingeführt, - Durchführung von Informationskampagnen, - Energiechecks und Gebäudesanierungen, - Realisierung von Sonnenkollektoren und Photovoltaikanlagen, - alte Heizungsanlagen privater Haushalte werden durch CO2-neutrale Holzpellet-Heizungen ersetzt, - biomassebetriebene Heizkraftwerke sollen die Effizienz bestehender Nahwärmeversorgung verbessern. Projekte der Partnerstädte: Im Rahmen des Projekts werden innovative Energietechnologien getestet, weiterentwickelt, ausgewertet und optimiert. Neckarsulm: Realisierung einer solarbetriebenen Klärschlamm-Trocknungsanlage, - Durchführung eines Feldversuches mit Holzpellet-Stirling Motoren. Weiz-Gleisdorf: Schaffung einer Infrastruktur zur Belieferung mit Pflanzenöl, - Fahrzeugtests mit dem Kraftstoff-Pflanzenöl. Falkenberg: Errichtung von Windturbinen, - Untersuchung passiver Kühlung mit der innovativen PCM-Technik. Zlin: Nutzung von Energie aus der Abfallverbrennung. Ein wichtiger Aspekt während der gesamten Projektdauer ist die Zusammenarbeit, der Erfahrungsaustausch, die Wissensverbreitung aller Partner inner- und außerhalb des Konsortiums. Energy in Minds.' - Visionen: Dieses Forschungsprojekt soll Initiativen anregen, unterstützend wirken, um das Energiebewußtsein der Bevölkerung positiv zu verändern und zu stärken. STZ-EGS ist Initiator und Koordinator der 18 Vertragspartner.

NextGenCell - The next generation of stationary fuel cells (NEXTGENCELL)

Objective: Designed as a joint EU and US collaborative effort in the framework of the EU-US Cooperation Agreement on fuel cells, NextGenCell aims to bring domestic fuel cell microCHP (1-5kWel) next step towards commercialisation. In FP5 Vaillant, Plug Power, and othe r European partners have demonstrated low temperature PEM fuel cell microCHP systems. Three major hurdles were identified: 1. Costs must be reduced significantly, 2. Reliability must be improved via system simplification, 3. System temperature must be increased. High Temperature (HT) PEM MEA technology at 160-180 C has the potential to overcome those hurdles. R&D on MEA, Fuel Cell System, components development and integration will lead to a developed and tested 1-5kW HT PEM fuel cell prototype microCH P system with modular design for global markets. Specific objectives relevant to TP 6.1 at production volumes are: 1. Total system costs less than 400 EUR/kW: - Significant system simplification (no CO clean-up and water management) - Increase mechanical stability of MEA - Reduction of system costs (e.g. of Balance of Plant, fuel processor, maintenance/recycling) and low cost bi-directional inverter development 2. Modular system design: - modular system design for different market applications (CHP and future tri-generation) - Increase electrical efficiency up to 35Prozent with 85Prozent total efficiency 3. Durability greater than 40.000 hours: - MEA Development with more stable cathode material and corrosion -resistant cathodes 4. Electronic control systems for optimal heat and power management and reduced costs; - CHP hydraulics concept Development (system scalability 1-5kW) - Embedded controller with 70Prozent less cost - microCHP Controls optimisation in a Virtual Power Plant. The team is based on strong industrial and scientifically partnership, includes a SME and participants from Acceding Country Bulgaria and Slovenia as one of the new member states. Five participants have expressed to join the Joint Technology Platform (JTI).

Catenary Interface Monitoring Coherent sensing technology for electrical railway infrastructure and rolling stock for interoperable cross boundary transportation (CATIEMON)

Objective: In a deregulated EU rail market monitoring of the vehicle and infrastructure interface is mandatory for enhanced availability of operation reducing costs. Especially when a rolling stock is crossing boundaries between independent infrastructure grids, cond ition monitoring becomes crucial. A monitoring tool on OCLs overhead contact lines - for infrastructure managers is needed for an separate measurement of contact force and surface condition of the vehicle current strip. The rolling stock operator needs a complementary device to measure not only the vertical contact force, but moreover the friction force, in order to analyse the vehicle and OCL interface condition. In SMITS a monitoring system for contact force on the interface current collector lt;- gt; c ontact wire has been developed. A sensor technology has been started to explore showing the potential for an extended range of rail monitoring tools. An innovative coherent sensor technology approach shall be investigated and two independent monitoring too ls for vehicle and infrastructure be developed. These shall be validated at new rail tracks specified for TSI interoperable cross boundary transportation: the Ltschberg Basis Tunnel, CH and the HSL Zuid high speed line, NL, both ready for operation in 2007 . Demonstration tests in operation will be performed along the Korridor X infrastructure passing through different countries rail networks. The outcome of the project will enable managers to specify driving conditions for the usage of their infrastructure to avoid excessive wear improving availability. Complementary rolling stock operators can monitor OCL condition giving them an informative argument in case of damage. Condition-dependent user fees as well as threat of penalty will force vehicle and infrast ructure managers to maintain the vehicle and infrastructure interface on a superior level of availability. The operational costs will be reduced and availability of transportation capacity enhanced.

Environmental risk assessment of pharmaceuticals (ERAPHARM)

The overall objective of ERAP harm is to improve and complement existing knowledge and procedures for the environmental risk assessment (ERA) of human and veterinary pharmaceuticals. Based on EU regulatory frameworks on the ERA of pharmaceuticals and on the outcome of previous projects ERAP harm will address the following aspects: It will investigate previously unstudied major routes leading to exposure of the terrestrial and aquatic environment and subsequent fate of pharmaceuticals in surface water and sediment. Factors and processes affecting the behavior of pharmaceuticals in the environment will be studied on the laboratory, semi-field and fieldscale. A scenario-based exposure assessment system will be developed for predicting concentrations of pharmaceuticals in soils, surface waters and sediments and leaching to groundwater. It will be investigated if environmentally relevant concentrations of pharmaceuticals pose a risk to aquatic and terrestrial organisms. Pharmaceuticals and selected transformation products will be screened using in vitro and low complexity bioanalytical tests in order to provide a first hazard characterization and to target higher tier testing. Higher tier test methods will be improved and applied for detecting the effects of long-term, low-level exposure to pharmaceuticals on aquatic and terrestrial invertebrates and fish. It will be evaluated if information on pharmaco- and toxicodynamics in mammalian species can be used to predict effects of pharmaceuticals on environmental organisms. Moreover, the effects of antibiotics on microbial communities will be studied with a main focus on the spread of genetically encoded resistance. Based on the developed approaches recommendations will be provided on how to improve the ERA procedures for pharmaceuticals. A guidance document will be compiled that will be made available to regulators, industry and the scientific community.

Realising Reliable, Durable Energy Efficient and Cost Effective SOFC Systems (Real-SOFC), Realising Reliable, Durable, Energy Efficient and Cost Effective SOFC Systems (REAL-SOFC)

Objective: The aim of the proposed Integrated Project is to solve the persisting generic problems with planar Solid Oxide Fuel Cells (SOFC) in a concerted action of the European fuel cell industry and research institutions. Main topics addressed include decreased ageing, cost effective materials, low cost components and manufacturing processes, highest electricity generation efficiency in pressurised operation and waste heat utilisation. In close co-operation between industry and research institutions the following steps are accomplished: *improved understanding of ageing in planar SOFC stacks considering all modes of operation, including pressurised, long-term testing over 10.000 hrs., thermal cycling up to 100 cycles, and the influences of fuel composition; these results will flow into *adaptation of materials and protective coatings in order to reduce ageing to well below 0,5Prozent/1000 hrs., introduction of requirements from pressurised operation to materials and cell development; the modified materials then are used in *manufacturing of improved components under commercial conditions and subsequent characterisation in long- term and cycling tests. Two proofs-of-concept including laboratory equipment tests will address * the pressurised operation of stacks coupled with gas turbines (including pressurised stack development in the 5 and 50 kW range) and *the utilisation of the high-value waste heat for industrial processes , namely sorption cooling. The project addresses the topics of Life Cycle Analysis as an essential tool for assessing the environmental impact and recycling of the materials used, industrial standardisation as a means of lowering costs, and training and dissemination as a tool of human resource management and gender equality. The structure of the project is similar to the U.S. American SECA programme targeted at decisive cost reductions in SOFC systems.

Simulating land-use processes - an interactive e-tool for SIA (e-LUP)

The objective is to train in the use of sustainablility impact and policy assessment in EU and Russia, especially in issues concerning forests, agricultural landscapes, water environments and built-up areas through the development of an innovative and interactive e-tool for multiple end users. This freeware product will be based on simulations of advanced dynamic models, incorporated into a multimedia presentation in parallel English/Russian. The e-tool will be developed base on case studies on Eurasian sites from Holland to Siberia, and within an infrastructure of Universities, research organisations, administrations, student groups within this large area. The project has four distinct phases (i) case studies on ecosystem biogeochemistry, pollution effects, biodiversity, eco-technosystems, multifunctional agriculture, sustainable building etc., (ii) feeding dynamic models and incorporating them into an interactive visualization software, (iii) combining simulations, text, videos and graphics into a e-textbook written by 30-40 experts, (iv) testing of the e-tool/e-textbook by policy makers (including EC staff) and stakeholders. Prime Contractor: Helsingin Yliopisto; Helsinki; Finland.

Reduktion des Verkehrslärms in städtischen Ballungsregionen

SILENCE ist ein integriertes Projekt im 6. EU Rahmenprogramm und basiert auf einer Kooperation von 45 Partnern aus den Bereichen Straßen- und Schienenverkehr sowie Städteplanung. Ziel ist die Entwicklung eines integrierten Systems von Methoden und Technologien für eine effiziente Reduktion der Belastung durch Verkehrslärm unter Berücksichtigung von Individualverkehr (Straße), Massentransport (Straße und Schiene) und Städteplanung. Teilprojekte: A Lärmwirkung B Computersimulation C Wechselwirkung Reifen-Straße D Schallemission Straßenfahrzeuge E Schallemission Schienenfahrzeuge F Oberflächen von Straßen G Schieneninfrastruktur H Verkehrslenkung Straßenverkehr I Städteplanung J Migration der Projektergebnisse in die Anwendung. Das gesamte Projektbudget beträgt 15.8 Millionen Euro bei einer EU-Förderung von 8.9 Millionen Euro. Die DB AG ist an den Teilprojekten E und G beteiligt mit den Schwerpunkten: 1. Reduktion des von der Schiene abgestrahlten, - Luftschalls 2. Reduktion der Luftschallemission von, - Güterwagenrädern.

Sustainable energy management systems (SEMS)

Objective: The aim of this project is to turn 4 core communities (Germany, Austria, Luxemburg, Poland) with clearly defined system borders and 14 - 20.000 inhabitants each into CONCERTO communities. A mix of different EE and RES demonstrations (including refurbishment of old buildings, eco-buildings and polygeneration, all underpinned with complete business plans) will allow to avoid about 300 GWh/yr end energy from fossil sources, thus avoiding 94.000 tons CO2/yr, and saving 22.9 mio Euro/yr of disbursements for extra-communal electricity and heat deliveries. The application of the Decentralised Energy Management System (DEMS) will allow for local and inter-communal operation, monitoring and control of energy consumption, storage and generation units and grids, including DSM and LCP, thereby exploring a EE potential of at least 5Prozent. The target in RES coverage for 2010 is of resp. 39 to 62Prozent of the then remaining electricity and heat demand. EnerMAS, a low-threshold version of the European environmental management system.

Integrated small scale solar heating and cooling systems for a sustainable air-conditioning of buildings (SOLERA)

Objective: The project aims to develop highly integrated solar heating and cooling systems for small and medium capacity applications which are easily installed and economically and socially sustainable. The envisioned applications are residential houses, small office buildings and hotels. The goal is to use the excess solar heat in summer to power a thermally driven cooling process in order to provide cooling for air-conditioning. In the heating season the solar system is used to provide direct heating. The proposed project therefore aims to demonstrate the technical feasibility, reliability and cost effectiveness of these systems, specially conceived as integrated systems to be offered on the market as complete packages which will make better use of the available solar radiation as present systems.

POLYCITY - europäische Energieforschung für Kommunen

Die Projektgebiete liegen in Deutschland, Italien und Spanien. Deutschland: Scharnhauser Park: In Ostfildern am südlichen Rand von Stuttgart entsteht auf einem ehemaligen amerikanischen Militärgelände der Stadtteil Scharnhauser Park für rund 10.000 Bewohner und mit etwa 2.500 Arbeitsplätzen. Zu rund 80 Prozent soll der Energiebedarf aus erneuerbarer Energie gedeckt werden. Kern des Energiekonzeptes für den Stadtteil ist ein Biomasse-Blockheizkraftwerk mit 1 MW elektrischer und 6 MW thermischer Leistung. Die Anlage wird optimiert, eine Ist-Analyse ist bereits erstellt worden. Mit der im Sommer ungenutzten Wärmeenergie soll künftig Kälte für die Klimatisierung von Gewerbebauten erzeugt werden. Neben der ganzjährigen Nutzung erneuerbarer Energien für die Kraft-Wärme-Kältekopplung ist auch Energiespeicherung (zentral und dezentral) und ein kommunales Energiemanagementsystem auf der Basis modernster Informationstechnologien vorgesehen. Das zafh.net liefert Know-how der simulationsgestützten Regelung von Anlagen und setzt betriebsbegleitende Simulationen ein. In Echtzeit soll aus den klimatischen Randbedingungen der optimale Betriebszustand berechnet und mit den real gemessenen Werten verglichen werden. Als Basis ist ein Geoinformationssystem entwickelt worden, mit dem die Energiedaten der Gebäude erfasst und ausgewertet werden können. Die Gebäude unterliegen einem hohen Dämmstandard (25 Prozent unter den in der Wärmeschutzverordnung 1995 geforderten Werten). Bei den im Projekt neu dazukommenden Wohn- und Gewerbebauten wird der Transmissionswärmeverlust um weitere 20-30 Prozent gesenkt. Die ersten Wohnbauten wurden im Herbst 2005 vom Siedlungswerk Stuttgart erstellt. Mit Argon gefüllte Fenster mit erhöhter Rahmendämmungund Kunststoff-Abstandhaltern erreichen einen Gesamt-Wärmedurchgangskoeffizienten von 1,1 W m-2 K-1. In diesem ersten Bauabschnitt sind reine Abluftanlagen ohne Wärmerückgewinnung installiert worden, in späteren Bauabschnitten sollen Anlagen mit Wärmerückgewinnung einer Vergleichsanalyseunterzogen werden. Die Gebäudedichtigkeit wird mit Blower-Door-Tests experimentell untersucht. Der Energiestandard wird bei allen Bauten dokumentiert. Messgeräte für die Fernauslese und Auswertung (Smartbox) sind bereits installiert. ImGewerbegebiet wird im März 2006 ein erstes Demoprojekt zur innovativen Gebäudetechnologie (Heizung, Lüftung, Klima) mit etwa 4.000 m2 Nutzfläche erstellt. In der Ausführungsplanung enthalten sind: thermische Kühlung, Erdreichwärmetauscher, Betonkernaktivierung (zur Kühlung) ein Unterflurkonvektions-Heiz- und Kühlsystem, ein Tageslicht-Lenksystem. Nicht nur das Biomassekraftwerk liefert Strom, sondern auch gebäudeintegrierte PV-Anlagen. Ziel ist eine Leistung von insgesamt 70 kWp. Zudem wird die kinetische Energie des Wassers genutzt: Das aus den Hochbehältern ins Netz abfließende Trinkwasser treibt eine 80-kW-Entspannungsturbine an.

1 2 3 4 511 12 13