Das Projekt "Fate and effect of wastewater-borne manufactured nanomaterials in aquatic ecosystems (FENOMENO)" wird vom Umweltbundesamt gefördert und von Universität Siegen, Department Analytische Chemie durchgeführt. FENOMENO is an integrative projeto aiming at an understanding of the impact of end-of-life manufactured nanomaterials (MNMs) on the environment. Even though MNMs are mostly removed during wastwaer treatment (WWT), the remaining MNM levels in the effluents are sgnificant and MNMs may show an incresed toxicity for aquatic organisms due to their modification during the WWT. With innovative analytical approaches we will study the fate and effects of wastewater-borne MNMs in an aquatic ecosystem, develop the basis for robust evaluation systems, and design analytical sensor systems for quantitative nanoparticle detection using biochemical markers and Daphnia and fish as sensors. We will use cutting edge approaches to analyse and monitor the biological impact of TiO2 and Ag MNMs on different trophic levels within a relevant food chain (algae-Daphnia-fish) at different levels, from behavioural to biochemical, from laboratory to complementary field studies.
Das Projekt "IMproved Phosphorus Resource efficiency in Organic agriculture Via recycling and Enhanced biological mobilization (IMPROVE-P)" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Kulturpflanzenwissenschaften (340), Fachgebiet Düngung und Bodenstoffhaushalt (340i) durchgeführt. Phosphorus (P) is one essential element for plant, which can neither be produced synthetically nor substituted by any other element. In organic farming, long term P management is one of the most important management challenges, as high soluble P fertilizers derived from fossil sources are not allowed and their use does not meet the basic ideas of closing nutrient cycles by effective management measures. Organic farming systems rely on the efficient use and recycling of available resources. Currently, some mineral nutrients like phosphorus (P) are used only once to produce food. Subsequently, they are lost due to poor recycling of organic wastes back to farmland. There is an urgent need to improve the recycling of P from urban areas and the food industry, back to cropland. However, the traditional application of some of these waste products in agriculture is facing increasing concerns about pollutants (heavy metal, xenobiotics) and protection of soils and environment. There are many technological alternatives to recycle and clean the phosphorus already available, affecting P bio-availability and pollutants content. The different options will be evaluated from an agronomical and ecological point of view in the frame of this project.