Das Projekt "Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Objective: The ECO2 project sets out to assess the risks associated with the storage of CO2 below the seabed. Carbon Capture and Storage (CCS) is regarded as a key technology for the reduction of CO2 emissions from power plants and other sources at the European and international level. The EU will hence support a selected portfolio of demonstration projects to promote, at industrial scale, the implementation of CCS in Europe. Several of these projects aim to store CO2 below the seabed. However, little is known about the short-term and long-term impacts of CO2 storage on marine ecosystems even though CO2 has been stored sub-seabed in the North Sea (Sleipner) for over 13 years and for one year in the Barents Sea (Snhvit). Against this background, the proposed ECO2 project will assess the likelihood of leakage and impact of leakage on marine ecosystems. In order to do so ECO2 will study a sub-seabed storage site in operation since 1996 (Sleipner, 90 m water depth), a recently opened site (Snhvit, 2008, 330 m water depth), and a potential storage site located in the Polish sector of the Baltic Sea (B3 field site, 80 m water depth) covering the major geological settings to be used for the storage of CO2. Novel monitoring techniques will be applied to detect and quantify the fluxes of formation fluids, natural gas, and CO2 from storage sites and to develop appropriate and effective monitoring strategies. Field work at storage sites will be supported by modelling and laboratory experiments and complemented by process and monitoring studies at natural CO2 seeps that serve as analogues for potential CO2 leaks at storage sites. ECO2 will also investigate the perception of marine CCS in the public and develop effective means to disseminate the project results to stakeholders and policymakers. Finally, a best practice guide for the management of sub-seabed CO2 storage sites will be developed applying the precautionary principle and valuing the costs for monitoring and remediation.
Das Projekt "The Deep Sea & Sub-Seafloor Frontier (DS 3 F)" wird vom Umweltbundesamt gefördert und von Universität Bremen, Dezernat 3 Haushalt und Finanzen, Dritt- und Sondermittel durchgeführt. Objective: The Deep Sea and Sub-Seafloor Frontier project (DS3F) provides a pathway towards sustainable management of oceanic resources on a European scale. It will develop subseafloor sampling strategies for enhanced understanding of deep-sea and subseafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. Subseafloor drilling and sampling provide two key aspects for understanding how deep-sea ecosystems presently function and how they may respond to global change: (a) an inventory of current subsurface processes and biosphere, and their links to surface ecosystems, utilising seafloor observation and baseline studies and (b) a high resolution archive of past variations in environmental conditions and biodiversity. For both aspects, an international effort is needed to maximise progress by sharing knowledge, ideas and technologies, including mission-specific platforms to increase the efficiency, coverage and effectiveness of subseafloor sampling and exploration. The deep biosphere has been discovered only within the past two decades and comprises a major new frontier for biological exploration. We lack fundamental knowledge about biomass distribution, diversity and physiological activity of deep biosphere communities at life s extremes, and their impact on seafloor and deep sea ecosystems. Similarly, the geodynamic processes fuelling biological activity, and how these processes impinge upon the emission of geofuels, hydrocarbon formation and other resources including seafloor ecosystems, need to be understood. This Coordination & Support Action will develop the most efficient use of subseafloor sampling techniques and existing marine infrastructure to study the geosystem, its effects on the deep biosphere and marine ecosystems, and provide a comprehensive white paper and an open access web portal for a sustainable use of the oceans and a Maritime Policy.
Das Projekt "Sub project SP 5: 'pilots in four different sectors' - Covers workpackage WP5.1 paper industry; WP5.2 chemical industry; WP5.3 food industry and WP5.4 textile industry" wird vom Umweltbundesamt gefördert und von Papiertechnische Stiftung München durchgeführt. This proposal responds to balance industrial supply-side and demand-side approaches to managing scarce water resources. In this context we are aiming on: - reducing high quality water consumption and fresh water needs, - mitigating the environmental impacts of both water treatments and effluent discharges, - better management of health and safety risks relating to water use, while - improving product quality and process stability, - reducing water relating costs (intake, treatment, re-use, closed loops, discharge), - increase independency and flexibility, - creating new jobs in Europe when strengthen competitiveness by ensuring world market leadership of European water cleaning technologies. To reach these ambitious goals a new management system including new approaches, tools, methods, and technologies needs to be developed. AquaFit4Use aims at these developments focusing at cross-sectorial issues that concern the major water consuming industries in Europe. Prime Contractor: Nederlandse Centrale Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek; Delft; Nederland.
Das Projekt "NETwork for GREEN growth Indicators (NETGREEN)" wird vom Umweltbundesamt gefördert und von Ecologic Institut gemeinnützige GmbH durchgeführt. Policy-makers aiming to accelerate the shift to a green economy have to balance different objectives that, in practice, might contradict or reinforce each other. A good knowledge of these different aspects as well as their interrelations is therefore crucial for developing and implementing effective policies for the transition to a green economy. Many international organisations, research institutions, and non-profit groups have developed indicators and support tools designed to measure progress made on building a green economy. NETGREEN will take stock of this fragmented body of work and enable policy-makers, practitioners and researchers in different fields to engage in a meaningful discussion on the details and the broader issue of how to measure green growth. NETGREEN's main impact lies not only in collecting but structuring the information on the indicators and tools, including sustainable development indicators and complements to GDP, using an open-access, searchable web-based database and comprehensive meta-data that allows the users to quickly identify suitable metrics, understand their strengths and weaknesses, and learn how to optimally use them for their policy and research objectives. NETGREEN's stocktaking exercise produces complete, easily searchable information, which facilitates comparison and contextualisation of the data. The website will become a vital medium for this discussion, and the focal point for existing and new networks of policy-makers and researchers. In addition, NETGREEN will organise a series of workshops to build and further develop this community, and to disseminate the work to the diverse user groups of the project's results. The workshops will include policy-oriented workshops on specific topics (thematic workshops on policies), and expert workshops on methodological questions (indicator typology, database and website design). Smaller workshops targeted to key audiences will promote the building-up of the user- community.
Das Projekt "Costs of Natural Hazards (ConHaz)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Ökonomie durchgeführt. Objective: Cost assessments of damages of natural hazards supply crucial information to policy development in the fields of natural hazard management and adaptation planning to climate change. There exists significant diversity in methodological approaches and terminology in cost assessments of different natural hazards and in different impacted sectors. ConHaz provides insight into cost assessment methods, which is needed for an integrated planning and overall budgeting, and to prioritise policies. To strengthen the role of cost assessments in natural hazard management and adaptation planning, existing approaches and best practices as well as knowledge gaps are identified. ConHaz has three key objectives. The first objective is to compile state-of-the-art methods and terminology as used in European case studies, taking a comprehensive perspective on the costs of natural that includes droughts, floods, storms, and alpine hazards. ConHaz also considers various impacted economic sectors such as housing, industry and transport, and non-economic sectors such as health and nature. It will consider single and multi-hazards, leading to direct, indirect and intangible costs. ConHaz moreover looks at costs and benefits of risk-prevention and emergency response policies. The second objective of ConHaz is to evaluate the compiled methods. The analysis addresses theoretical issues, such as the principal assumptions that underlie economic valuation of damage types, as well as practical issues, such as the qualifications needed for data collection and quality assurance. ConHaz also looks at the reliability of the end result by considering the accuracy of cost predictions and best-practice-methods of validation. A central issue of the evaluation is to compare available methods with end-user needs. The third objective of ConHaz is to synthesize the results and give recommendations according to current best practice as well as to resulting research needs.
Das Projekt "Smart monitoring of historic structures (SMOOHS)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Otto-Graf-Institut, Materialprüfungsanstalt durchgeführt. Objective: Historic structures are often of extraordinary architecture, design or material. The conservation of such structures for next European generations is one of the main future tasks. To conserve historic structures it is more and more required to understand the deterioration processes mainly caused by the environment. In certain cases continuous monitoring systems have been installed to obtain information about the deterioration processes. However, most of these monitoring systems were just weather or air pollution data acquisition systems and use only basic models for data analysis. The real influence of the environment to the structure or the structural material is often unaccounted for. That means that the structural resistance is just calculated from the measurements and not determined by sufficient sensors. Another aspect is the fact that most monitoring systems require cabling, which is neither aesthetically appealing nor in some cases applicable due to the needed fastening techniques. The proposed project aims at the development of competitive tools for practitioners which goes beyond the mere accumulation of data. Smart monitoring systems using wireless sensor networks, new miniature sensor technologies (e.g. MEMS) for minimally invasive installation as well as smart data processing will be developed. It will provide help in the sense of warnings (e.g. increase of damaging factors) and recommendations for action (e.g. ventilation or heating on/off, etc.) using data fusion and interpretation that is implemented within the monitoring system. The development will consist of small smart wireless and robust sensors and networks, with sensors for monitoring of e.g. temperature, humidity, air velocity, strain and crack opening, acoustic emissions, vibration, inclination, chemical attack, ambient and UV light, with built-in deterioration and material models, data pre-processing, and alarm functions to inform responsible persons about changes of the object status.
Das Projekt "New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe (MATRIX)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Objective: Across Europe, people suffer losses not just from single hazards, but also from multiple events in combination. In both their occurrence and their consequences, different hazards are often causally related. Classes of interactions include triggered events, cascade effects, and rapid increases of vulnerability during successive hazards. Effective and efficient risk reduction, therefore, often needs to rest on a place-based synoptic view. MATRIX will tackle multiple natural hazards and risks in a common theoretical framework. It will integrate new methods for multi-type assessment, accounting for risk comparability, cascading hazards, and time-dependent vulnerability. MATRIX will identify the conditions under which the synoptic view provides significantly different and better results or potentially worse results than established methods for single-type hazard and risk analysis. Three test cases (Naples, Cologne and the French West Indies), and a virtual city will provide MATRIX with all characteristic multi-hazard and multi-risk scenarios. The MATRIX IT-architecture for performing, analysing and visualising relevant scenarios will generate tools to support cost-effective mitigation and adaptation in multi-risk environments. MATRIX will build extensively on the most recent research on single hazard and risk methodologies carried out (or ongoing) in many national and international research projects, particularly those supported by DG Research of the European Commission. The MATRIX consortium draws together a wide range of expertise related to many of the most important hazards for Europe (earthquakes, landslides, volcanic eruptions, tsunamis, wildfires, winter storms, and both fluvial and coastal floods), as well as expertise on risk governance and decision-making. With ten leading research institutions (nine European and one Canadian), we also include end-user partners: from industry, and from the European National Platforms for Disaster Reduction.
Das Projekt "Silicon kerf loss recycling (SIKELOR)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Dresden-Roßendorf e.V., Institut für Sicherheitsforschung durchgeführt. Solar energy direct conversion to electricity is expanding rapidly to satisfy the demand for renewable energy. The most efficient commercial photovoltaic solar cells are based on silicon. While the reuse of feedstock is a severe concern of the photovoltaic industry, up to 50% of the valuable resource is lost into sawdust during wafering. Presently, the majority of silicon ingots are sliced in thin wafers by LAS (loose abrasive sawing) using slurry of abrasive silicon carbide particles. The silicon carbide is not separable from the silicon dust in an economical way. The newer FAS (fixed abrasive sawing) uses diamond particles fixed to the cutting wire. It is expected that FAS will replace LAS almost completely by 2020 for poly/mono-crystalline wafering. The intention of the proposed project is to recycle the FAS loss aiming at a sustainable solution. The main problem is the large surface to volume ratio of micron size silicon particles in the kerf loss, leading to formation of SiO2 having a detrimental effect on the crystallisation. The compaction process developed by GARBO meets the requirements of a reasonable crucible-loading factor. Overheating the silicon melt locally in combination with optimised electromagnetic stirring provides the means to remove SiO2. The technology developed by GARBO removes the organic binding agents, leaving about 200 ppm wt diamond particle contamination. If untreated, the carbon level is above the solubility limit. Formation of silicon carbide and precipitation during crystallisation is to be expected. The electromagnetic mixing, in combination with the effective means to separate electrically non-conducting silicon carbide and remaining SiO2 particles from the silicon melt by Leenov-Kolin forces and the control of the solidification front, is the proposed route to produce the solar grade multi-crystalline silicon blocks cast in commercial size in a unified process.
Das Projekt "Boosting Life Cycle Assessment Use in European Small and Medium-sized Enterprises: Serving Needs of Innovative Key Sectors with Smart Methods and Tools (LCA TO GO)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung durchgeführt. Objective: 'LCA to go' develops sectoral methods and tools for bio-based plastics, industrial machinery, electronics, renewable energy, sensors and smart textiles. These sectors have been chosen, as the manufacturers show a high interest in making clear the environmental benefits of their products to customers ('Green industries') and in prioritizing so they can reduce their environmental impacts. This is particularly the case for SMEs. Free webtools ('apps') will serve dedicated needs of these sectors, addressing the specifics of the technologies and implementing parameterised models, such as calculators for energy-break-even-point of photovoltaics, Product Carbon Footprints (PCF) based on technology parameters of printed circuit boards, and Key Environmental Performance Indicators (KEPIs) for smart textiles. Selected Product Category Rules will be developed to provide a robust LCA guidance for SMEs. Practically, the project website will provide an exchange of scientifically validated data templates, to assist SMEs to pass the right questions to their suppliers. Carbon Footprints are a perfect entry point for SMEs to LCA strategies. Thus, implementation of an SME-compatible PCF methodology is a key element of the project. The approaches will be tested in 7 sectoral case studies, involving suppliers, end-product manufacturers and engineering companies. Inter-linkages between the sectors (on a technical and data level) will be thoroughly addressed. A broad dissemination campaign includes a mentoring programme for 100 SMEs, which will act as showcases for others, boosting use of LCA approaches among European SMEs at large. RTD and dissemination activities will be complemented by policy recommendations and liaison with standardisation activities. The web-tools, being compatible with ILCD data and other external sources, will be made available as open source software, to be adapted to other sectors. The project will have a direct impact on sectors representing nearly 500,000 SMEs.
Das Projekt "SOLUTIONS for present and future emerging pollutants in land and water resource management" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Wirkungsorientierte Analytik durchgeführt. WP T3 Effect-directed analysis (EDA) - WP T4 Effect-based tools (EBT) - P T5 Ecological Assessment Tools (EA) - Leitung Task T5.1: Using in situ biomarkers and bioassays in a weight of evidence approach (WOE) for the detection of pollutant mixture effects on individual and population levels - WP C1 Danube River Basin case study - Leitung: Effect based screening. Reliable methods for a harmonized European environmental risk assessment have still to be improved. For this purpose, required regulatory measures by the competent authorities are more difficult, or often impossible. A consistent risk assessment is in need for solutions in the fields of prioritisation of present pollutants, abatement of future emerging toxicants, ecotoxicological data for these substances and tools for further management approaches. The 7th EU RTD Framework Programme project SOLUTIONS (Solutions for present and emerging pollutants in land and water resource management) started recently to address these particular topics with a consortium of 39 partners and under the coordination of the Helmholtz Centre of Environmental Research in Leipzig (Germany). Within the Water Framework Directive (WFD) a huge amount of data on the chemical and ecological status of surface water and ground water were collected and are more and more available. This includes property and emission data of substances liable to registration according to the European Chemical Directive REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals), agricultural plant protection products and pharmaceuticals as well as naturally occurring substances. Furthermore, a large number of effects on water organisms driven by pollutants are proofed due to monitoring activities. The main challenge is the linkage of the occurrence of chemicals with the ecological status of surface waters represented by effects on organism and population level. On the one hand the identification of major stressors in aquatic systems is needed. On the other hand knowledge about the molecular mode of action of these chemicals at the sites of action, level of cells and organs, and resulting impacts for organisms and populations is of elementary importance. For this purpose, world leading groups in trace analysis of emerging contaminants, transformation product identification and prediction, effect-based tools (EBTs; endocrine disruption, mutagenicity, adaptive stress response, in vitro and in vivo models, high-throughput microbial gene profiling, toxicogenomics), effect-directed analysis (EDA), exposure modelling, trait-based approaches and ecological modelling, risk assessment of mixtures, abatement options and science-policy interaction will contribute to this project. These efforts will result in tools which facilitate the necessary management approaches for the protection of European waters in according to the terms of the WFD. (abridged text)
Origin | Count |
---|---|
Bund | 492 |
Type | Count |
---|---|
Förderprogramm | 492 |
License | Count |
---|---|
open | 492 |
Language | Count |
---|---|
Deutsch | 492 |
Englisch | 486 |
Resource type | Count |
---|---|
Keine | 368 |
Webseite | 124 |
Topic | Count |
---|---|
Boden | 442 |
Lebewesen & Lebensräume | 457 |
Luft | 379 |
Mensch & Umwelt | 492 |
Wasser | 431 |
Weitere | 492 |