Das Projekt "Evaluating the Delivery Of Participatory Environmental Governance using an Evidence-based Research Design (EDGE)" wird vom Umweltbundesamt gefördert und von Universität Lüneburg, Institut für Umweltkommunikation durchgeführt. Participation of citizens and stakeholders in environmental governance is widely believed to enhance environmental policy outcomes. This instrumental claim has, however, been challenged both on theoretical grounds and due to a lack of reliable evidence. Numerous single case studies are available, providing a rich, but scattered and yet un-tapped source of data. EDGE aims to drastically improve the state of scientific knowledge on whether and under what conditions participation actually improves policy delivery in environmental governance. Based on one coherent analytical framework, EDGE will use an evidence-based approach, combining secondary (meta-analysis of previously published case studies - case survey) with primary research (comparative case studies and field experimentation): 1. Case survey (case meta-analysis): Published case studies from Europe and North America will be reviewed and systematically compared, employing and further developing the case survey method. A sample of c.200 cases will be precisely coded based on a theoretical framework that provides context, process and outcome variables. Results will be analysed with probabilistic (statistical) and set-theoretic (QCA) methods. The case survey is a highly suitable, yet rarely employed comparative method for rigorous aggregation of case based knowledge. It draws on the richness of the case material while allowing for much wider generalisation than can single cases. EDGE will conduct the hitherto largest and most rigorous case survey in governance research. Primary research will be conducted in the area of water governance as a key area of environmental governance in which participation is explicitly encouraged. The implementation of the European Water Framework Directive (Was-serrahmenrichtlinie) (WFD) of 2000 and of the EU Floods Directive (Hochwasserrisikomanagement-Richtlinie) of 2007 provides a unique opportunity to assess completed governance processes and their outcomes (2001-2009) as well as upcoming governance processes (2013-2015), the latter via field experimentation. 2. Comparative case studies: A sample of around two dozen cases of regional WFD implementation (production of River Basin Management Plans and Programmes of Measures as well as the implementation of measures) in selected European countries will be studied, applying the same analytical scheme as used in the case survey. 3. Field experimentation: In close collaboration with water managers, another set of cases of regional implementation of the EU Floods Directive will be subject to random selection of more or less participatory procedures. EDGE will thus perform one of the first field experiments in governance research. Given the instrumental rationale for participatory governance, this subject lends itself outstandingly to be tested with randomized field experimentation. (Abridged text)
Das Projekt "Towards an Improved Representation of Meteorological Processes in Models of Mineral Dust Emission (Desert Storms - DESERTSTORMS)" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung durchgeführt. Dieses Projekt wird in enger Zusammenarbeit mit der Universität Leeds (siehe http://www.see.leeds.ac.uk/research/icas/research-themes/atmosphere/groups/dust-storms/research-projects/desert-storms/ ) durchgeführt. Es zielt darauf ab, die Behandlung der Emission von Mineralstaub von natürlichen Böden in Erdsystemmodellen zu verbessern. Staub beeinflusst Wetter und Klima auf signifikante Weise durch Auswirkungen auf Strahlung, Wolkenmikrophysik, atmosphärische Chemie und den Kohlenstoffkreislauf durch Düngung von Ökosystemen. Quantitative Abschätzungen von Staubemission und -deposition sind immer noch hochgradig unsicher. Dies ist zu einem erheblichen Teil durch die stark nicht-lineare Abhängigkeit der Emission von Spitzenwinden zu erklären, welche in Modellen und Analysedaten oft unterschätzt werden.
Das Hauptziel dieses Projektes ist es daher, neue Ansätze zu erforschen, wie man wichtige meteorologische Prozesse wie das Heruntermischen von Impuls aus nächtlichen Low-level Jets, konvektive Cold Pools und kleinskalige Staubteufel in Modellen verbessern kann.
Um dies zu erreichen unternehmen wir (A) eine detaillierte Analyse von Beobachtungen wie z.B. Stationsdaten, Messungen von Feldkampagnen, Analysedaten und neuen Satellitenprodukten, (B) einen umfangreichen Vergleich zwischen Simulationsergebnissen von einer ganzen Reihe von globalen und regionalen Staubmodellen und (C) ausgedehnte eigene Studien mit regionalen und Large-Eddy Modellen in realistischen und idealisierten Set-ups, um Effekte von Auflösung und Modellphysik zu erkunden. Im Gegensatz zu vorangegangenen Studien werden alle Evaluierungen auf Prozessniveau durchgeführt, indem spezifische meteorologische Phänomene getrennt betrachtet werden. Daraus entstehen konkrete Leitlinien für optimale Modellkonfigurationen und neue Parameterisierungen, die aus gitterskaligen Größen Wahrscheinlichkeiten der Überschreitung von Windschwellwerten ableiten. Die bisherigen Ergebnisse haben unser quantitatives Verständnis des globalen Staubzykluses erheblich verbessert und werden somit Unsicherheiten in Vorhersagen von Klima, Wetter und Auswirkungen auf den Mensch reduzieren.
Das Projekt "Designing new technical Wastewater Treatment Solutions targeted for organic Micropollutant Biodegradation, by Understanding enzymatic Pathways and Assessing Detoxification (ATHENE)" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Gewässerkunde durchgeführt. The identification of degradation pathways relevant for organic micropollutants in biological wastewater treatment processes is currently a major gap, preventing a profound evaluation of the capability of biological wastewater treatment. By elucidating the responsible enzymatic reactions of mixed microbial populations this project will cover this gap and thereby allow finding technical solutions that harness the true potential of biological processes for an enhanced biodegradation and detoxification. Due to the multi-disciplinary approach Athene will have impact on the fields of biological wastewater treatment, analytical and environmental chemistry, microbiology in wastewater treatment, water and potable water reuse, biotechnology and (eco)toxicity. The multi-disciplinary approach of the project requires the involvement of co-investigators experienced in process engineering, environmental microbiology and ecotoxicology. Athene will go far beyond state-of-the-art in the following fields: a) efficiency in chemical analysis and structure identification of transformation products at environmental relevant concentrations; b) identification of enzymatic pathways relevant for micropollutant degradation in biological wastewater treatment; c) designing innovative technical solutions to maximize biodegradation of micropollutants; d) map and model the relevant enzymatic pathways for environmental concentration levels. Furthermore, designing biological wastewater treatment processes by understanding enzymatic pathways relevant for organic micropollutants removal represents a paradigm shift for municipal wastewater treatment. In the context of the actual scientific and political discussion about the relevance of trace organics in the aquatic environment and in drinking water, this topic is deemed as highly innovative: for its potential of proposing new technical options as well as for the gain in understanding compound persistency. Finally enzymatic reactions as well as the treatment schemes will be assessed for their capability to reduce toxicological effects, another crucial innovative approach for designing wastewater treatment in future.Hence, the success of the high risk project is based on its interdisciplinary approach, i.e. combining expertise in the fields of analytical chemistry, process engineering, microbial enzymology and ecotoxicology.