API src

Found 38 results.

Smart cities with sustainable energy systems (CI-NERGY)

Das Projekt "Smart cities with sustainable energy systems (CI-NERGY)" wird vom Umweltbundesamt gefördert und von Hochschule für Technik Stuttgart, Zentrum für angewandte Forschung an Fachhochschulen, Nachhaltige Energietechnik - zafh.net durchgeführt. The CI-NERGY Marie Curie Initial Training Network (ITN) aims to train young scientists to develop urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. The training will be carried out by a close collaboration of six of the best academic research centres and four leading industrial companies from the energy and software technology sector (Siemens, WienEnergie, EDF/EIFER, and IES). The research fellows will apply their results in two case study cities (Geneva and Vienna), which were chosen for their very ambitious sustainability goals. The CI-NERGY network will be a highly multi-disciplinary coordinated PhD programme on urban energy sustainability, covering the key challenges in cities related to a low carbon future. There is a gap in high level integrated training in the urban energy research field, which is due to the wide range of fragmented disciplines from building physics and energy supply technologies with electrical and thermal engineering up to software engineering and information technology. The CI-NERGY network wide training provided by excellent academic and industry partners from all areas of smart cities will close this gap. The impact of the network training activities will be highly noticeable for energy supply utilities, IT companies, policy makers, urban planners, researchers on sustainable urban energy systems and finally the inhabitants of cities themselves. All sectors mentioned will provide excellent career opportunities for the research fellows, who will gain excellent knowledge of the sectorial requirements by a structured secondment plan.

Ecosystem loss of soil inorganic carbon with agricultural conversion: fate, rate, mechanisms, and path ways (ELSIC)

Das Projekt "Ecosystem loss of soil inorganic carbon with agricultural conversion: fate, rate, mechanisms, and path ways (ELSIC)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Biogeochemie durchgeführt. The goal of this proposed research is to understand effects of agricultural conversions on soil inorganic carbon (SIC) cycle. Mitigating rising atmospheric CO2 is a top priority for human and environmental health. Despite their prevalence and increasing pressure from land-use changes, effect of SIC on climate regulation is thought to be insignificant in the short-term, leading to focused efforts and research on other means of carbon sequestration. The proposed research builds on the fellows previous NSF-funded project, in which large losses of SIC were observed with the land-use changes, and has potential to transform the current understanding of these issues. In this proposal, soil incubations in a factorial design will simulate land use-induced ecosystem changes (soil water flux, acidification, freeze-thaw cycle) to identify mechanisms of SIC transformations. Incubators customized for the field-observed conditions such as drainage, are used to approximate water-carbonate reactions closely, and periodic measurements of inorganic carbon in gas and water fluxes using stable isotopes will determine the potential rates and pathways of fluxes from SIC. Lab and field conditions will be simulated with coupled geochemistry and hydrology codes and the results compared to those from the lab and field to help improve our understanding of SIC processes. The proposal integrates geochemistry and hydrology with original methodologies involving field, lab, and modeled data for predictive understanding of rate, fate, and mechanisms of SIC transformations with land-use changes. The mentor (Dr. S. Trumbore) and the host institute (Max Planck Institute of Biogeochemistry in Jena, Germany) collectively bring expertise in isotopes and biogeochemical modeling, demonstrate excellent research and training track records, and comprise a research setting uniquely adapted to the project and the fellow.

Enhanced plant productivity through control of lifespan (CROPLIFE)

Das Projekt "Enhanced plant productivity through control of lifespan (CROPLIFE)" wird vom Umweltbundesamt gefördert und von Universität Kiel, Zentrale Verwaltung, Referat Forschung durchgeführt. The world-wide demand for primary plant products to be used for food, feed and fuel is increasing dramatically. The foreseen climate changes are expected to have a negative impact on plant productivity in addition. Future agriculture urgently needs new crop plant varieties with enhanced and sustainable productivity. To meet this challenge, CropLife focuses on leaf lifespan as a major determinant of plant productivity and aims to develop new breeding strategies for prolonging leaf photosynthesis and delaying senescence processes. The network focuses on barley and perennial ryegrass, which are excellent models for research and crop development in Europe. The CropLife primary objectives will be addressed in the four work packages. These are: the identification of key factors initiating senescence (1), and proteins regulating leaf lifespan (2), the elucidation of molecular mechanisms of senescence-associated protein degradation and nitrogen remobilization (3), and the analysis of lifespan and exploitation of genetic variation in lifespan in order to breed new varieties with increased productivity (4). CropLife provides cross-sector experience by integrating partners from the public and private sectors. The training programme includes state-of the-art local training activities and network-wide courses, summer schools and workshops. Young researchers will be trained in a range of cutting edge research skills, as well as in complementary skills that will enhance their career prospects. Further benefits will arise from secondments in partner laboratories and cross-sector visits to associated partners from the private sector. To guarantee training at the most advanced level, outstanding scientists in the field will be integrated as visiting researchers. Workshops and a final network conference will provide a platform for dissemination of the network s achievements which are expected to increase the competitiveness of European plant research and agriculture.

Interdisciplinary Modelling of Climate Change in Coastal Western Antarctica - Network for Staff Exchange and Training (IMCONET)

Das Projekt "Interdisciplinary Modelling of Climate Change in Coastal Western Antarctica - Network for Staff Exchange and Training (IMCONET)" wird vom Umweltbundesamt gefördert und von Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung e.V. in der Helmholtz-Gemeinschaft (AWI) durchgeführt. The proposed European-US and South American network IMet will advance climate and (eco-) system change research at the Western Antarctic Peninsula (WAP), a region of recent rapid aerial warming. WAP glaciers tribute to global sea level rise, and functioning and services of coastal ecosystems are massively threatened by the fast regional warming. Data sets from recent interdisciplinary European-South American field work within ESF-IMCOAST (PolarCLIMATE April 2010-March 2013) and from the Jubany scientific core programme at King George Island (KGI) will be nected and cross-validated with southern stations on WAP: the US Palmer and the British Rothera station. Links with both stations and program leaders (Ducklow, CU, New York, US (formerly at MBL Woods Hole,US); and Meredith, NERC-BAS, Cambridge, UK) have been established in IMCOAST. IMet objectives are A) to develop predictive climate change and ecosystem models for the whole WAP coastal environment based on existing data sets and data exchange policies, B) transfer of knowledge between partner countries to enhance collaboration with high quality long-term measuring programs at all 3 stations, to fill present measuring gaps. This will solidify the basis for the prediction of climate change effects in the South. The proposed sortium sists of 16 institutional partners across 10 countries with 85 travelling scientists. Ten partners already collaborate successfully as EU and associated teams in ESF-IMCOAST, and IMet will be coordinated by the same PI (Abele, AWI). Whereas ESRs are seded mostly for longer training and collaboration periods, exchange of ERs will also foster joint teaching in the partner countries and collaboration in future science projects. The cept of IMet is to strengthen European engagement in Antarctic climate change research, as complementing approach to the major EU focus in the Arctic. It will sustain ongoing European Antarctic research in a future network with competent South American partners.

Solutions for adapted forest management strategies under the threat of climate change - learning from a climate gradient from Germany over Italy to South Africa (CLIMATE-FIT FORESTS)

Das Projekt "Solutions for adapted forest management strategies under the threat of climate change - learning from a climate gradient from Germany over Italy to South Africa (CLIMATE-FIT FORESTS)" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Lehrstuhl für Waldwachstumskunde durchgeführt. Forests play an important role in carbon fixation and in providing CO2 neutral raw materials. Due to predicted climate changes it is important to know to what extent European forests will be impacted by climate change, how best to mitigate these potential changes through adaptive forest management strategies, maintain current carbon fixation rates and minimize carbon emissions by forest operations. By utilizing the unique temperature and moisture gradient along a north-south orientation from Germany / Switzerland to Italy and South Africa, and with South Africas warmer climate and arid conditions, it is potentially possible to simulate future predicted climatic conditions in Europe. This methodology will also allow observations of the characteristics and behavior of close-to-nature forests versus plantation forests as found in each of the partner countries under climate change conditions. As deliverable, existing management tools will be adapted and improved to be able to provide predictions for suitable management strategies under climate changes conditions.

Network for Habitat Monitoring by Airborne-supported Field work An innovative and effective process in implementation of the Habitat Directive (CHANGEHABITATS 2)

Das Projekt "Network for Habitat Monitoring by Airborne-supported Field work An innovative and effective process in implementation of the Habitat Directive (CHANGEHABITATS 2)" wird vom Umweltbundesamt gefördert und von Technische Universität Bergakademie Freiberg, Institut für Biowissenschaften, Arbeitsgruppe Biologie,Ökologie durchgeführt. The aim of CHANGEHABITATS 2 is the initiation of a long lasting intersectoral and international network in the field of environmental monitoring between industry and academia. Its aim is to develop operable, time and cost effective procedures, and (software) solutions for monitoring habitats using innovative airborne data acquisition techniques. Within the project two complementary data acquisition methods which are currently becoming established in the market will be concentrated on: airborne laser scanning and airborne hyperspectral imagery. These methods will be evaluated and their potential for manual and automatic derivation of habitat parameters - an unsolved problem so far - will be investigated for selected sites. Added value of the developed methods beyond habitat mapping will be explored, e.g. for river basin management. These aims will be achieved by tight integration of data producers, data processors and end users, building the network both from industry and academia. The project will support EU s NATURA2000 Directive, which prescribes repeated monitoring of over 50 million ha of habitat sites in Europe. The complexity and importance of habitat monitoring by airborne techniques will ensure close cooperation within the network beyond the project duration. Cost savings in an order of up to 3.4 Billion Euros at European level could be achieved by reducing expensive and laborious field work for habitat mapping by automated analysis of airborne sensed data, which is cheaper in acquisition and more homogeneous than subjective perception during the field work. The contributing SMEs will gain economic benefits and clear competitive advantages. For device manufacturers a new market for data acquisition devices will be opened, and for service providers faster and more accurate habitat mapping will result in enlarged project execution capacity, supporting national and regional administrative bodies in their environmental protection duties.

Isotope forensics meets biogeochemistry - linking sources and sinks of organic contaminants by compound specific isotope investigation (CSI:ENVIRONMENT)

Das Projekt "Isotope forensics meets biogeochemistry - linking sources and sinks of organic contaminants by compound specific isotope investigation (CSI:ENVIRONMENT)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Isotopenbiogeochemie durchgeführt. The initial training network CSI: ENVIRONMENT aims at training 16 young scientists in the discipline of compound-specific isotope analysis (CSIA) for environmental and forensic investigations. Linking sources and sinks of organic contaminants is a major challenge in contemporary environmental science. Chemicals can be released to the environment when leaving their field of application, intended or accidentally. It is a challenge to relate the origin of spills, transport and subsequent distribution in the environment and to analyse potential sinks and elimination pathways at a local, regional and global scale. This network brings together international experts in the field of isotope chemistry and related fields for training the next generation of young scientists in the field of environmental forensics using stable isotope techniques. Isotope analysis offers a unique opportunity to obtain information of sources, transport, degradation pathways and sinks of contaminants in the environment which will be urgently needed in the future. Multi-element isotope fingerprinting of chemically complex substances can be used to elucidate transformation pathways making use of isotope fractionation processes altering the reactive position and to analyse the isotope composition of an organic molecule to track sources. Concepts and applications are available for the more simple organic contaminants such as BTEX, chlorinated ethenes and MTBE but not for more complex organic contaminants such as pesticides or brominated flame retardants. Thus, the aim of this ITN is to train young scientist in development of concepts for the application of isotope tools to assess the fate of organic chemicals in the environment. Young scientists will be educated in the field of isotope forensics, pushing forward the frontiers of current isotope techniques to develop new areas of isotope applications in both fundamental and applied environmental sciences.

PAH Anaerobic Biodegradation Assessment by Stable Isotope Technologies (BASIS)

Das Projekt "PAH Anaerobic Biodegradation Assessment by Stable Isotope Technologies (BASIS)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Isotopenbiogeochemie durchgeführt. Hydrocarbon pollution has been recognized to be a major environmental and human health problem that require accurate exposure assessment and remediation. Oil and oily products are extremely complex mixtures, containing hundreds (even thousands) of different compounds, among which polycyclic aromatic hydrocarbons (PAHs) are of greatest regulatory concern due to their potential toxic, mutagenic and carcinogenic properties. 2- and 3-ring PAHs are water soluble and can be transported over significant distances. Natural attenuation is a low-cost bioremediation option widely accepted for the clean-up of hydrocarbon polluted sites. Many efforts have been made to study and enhance aerobic biodegradation of hydrocarbons. However, anaerobic degradation of oily products is practically unknown, although in many environments, such as aquifers, marshes or intertidal zones oxigen is often a limiting factor. Some studies have proven the ability of microorganisms to degrade aromatic hydrocarbons in different conditions, but there is a significant gap of knowledge regarding in situ anaerobic biodegradation of these compounds (metabolism, key microorganisms involved, etc.). Stable isotope techniques (compound specific stable isotope analysis, CSIA, and stable isotope probing, SIP) are novel techniques which can help overcoming this situation, providing valuable information on biodegradation and coping suitably with linking biodegradation processes to microbial taxa. Despite their clear advantatges these techniques have seldom been applied to field studies. In the light of this situation, the main goals of this proposed project are to assess in situ biodegradation of PAHs under anaerobic environments in marine and fresh water systems, to describe microbial activities and to identify microbial key players. The project will be carried out in the Isotope Biogeochemistry Department at the UFZ (Leipzig), which provide outstanding facilities for the achievement of these objectives.

Numerical Simulation Tools for Protection of Coasts against Flooding and Erosion (SIM.COAST)

Das Projekt "Numerical Simulation Tools for Protection of Coasts against Flooding and Erosion (SIM.COAST)" wird vom Umweltbundesamt gefördert und von Technische Universität Hamburg-Harburg, Referat Drittmittel- und Landesmittelmanagement durchgeführt. This project aims to provide improved process understanding, new knowledge, methods, new and improved numerical tools, resulting in decision support systems serving decision-making at protection of coasts against flooding and erosion. Project resultys will contribute to improve reliability of coastal protection structures, and introduce an environmentally friendly approach in coastal protection. The activities will focus on work-out/improve/coordinate numerical model tools that are able to manage interactive data and forecast (by numerical simulations) short term (storm surge, tsunami) and long term (erosion, water level change) phenomena with respect to coastal protection. Project objectives will be pursued by exploring the available experience of the partners, creating complementarities /synergies between them, and using basic preconditions, as follows: - Scientific potential of all partners, the available theoretical knowledge, and expected new findings in the field of coastal hydrodynamics and flooding and - Long-term research cooperation with Chinese partners (dated from 1989) in the field of coastal protection (including some joint model developments, and published papers) - Experience in use of advanced numerical models (MIKE FLOOD, MIKE 21HD/CAMS, SWAN, VOF), as well as GIS data handling abilities, providing links to field observations and related monitoring programs - Well proven expertise in the field of coastal protection & risk management (via EU Coastal protection Projects: EU-FLOWS/FLOODsite/DELOS/CLAS and other - Experience in Environmentally Friendly Coastal Protection, advanced & innovative coastal technologies. Project output should finally help decision makers in: - improving co-ordination of coastal erosion and surface water flood risk - strengthening emergency planning arrangements - managing the investment of significant levels of public funding - helping communities adapt to climate change.

Seismic Inversion and Stochastic Spectral Analysis of Thermohaline Staircases in the Tyrrhenian Sea (SEISSEA)

Das Projekt "Seismic Inversion and Stochastic Spectral Analysis of Thermohaline Staircases in the Tyrrhenian Sea (SEISSEA)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Seismic oceanography is the application of seismic reflection profiling together with conventional oceanographic techniques to the study of physical oceanographic processes. Seismic oceanography data were acquired in April and May, 2010 in the Tyrrhenian Sea and imaged so-called thermohaline staircases. Thermohaline staircases are regular, well-defined, step-like variations in vertical temperature and salinity gradients that form when temperature and salinity increase with depth and nearly compensate with density. They are important indicators of mixing processes such as double-diffusive convection. The candidate proposes the development of three new seismic oceanography techniques: a) advanced seismic data analysis, b) inversion of seismic data to obtain estimates of temperature, salinity and sound speed, and c) stochastic spectral analysis, which will allow discrimination between areas dominated by turbulence and those dominated by internal waves and provide estimates of their associated scale lengths. The results of this project will undoubtedly advance the tools of seismic oceanography and will provide some of the constraints necessary to generate ocean circulation models. Since the ocean is responsible for a large portion of heat redistribution, the results will also be useful to climate scientists whom use circulation models in the study of climate change.

1 2 3 4