Das Projekt "Laermtechnische Strassenbelagsanalyse" wird/wurde ausgeführt durch: Grolimund und Partner.Das Projekt verfolgt drei Ziele: 1. Verbesserung des Laermberechnungsmodells durch die Beruecksichtigung des Einflusses des Fahrbahnbelags auf die Laermentwicklung 2. Aufarbeiten von Kriterien fuer die Wahl von weniger laermigen Belaegen, die als Sanierungsmassnahmen verwendet werden koennen. 3. Aufarbeiten von Grundlagen fuer die Entwicklung von laermarmen Belaegen.
Durch die Mitteilungen der Zulassungsbehörden in Deutschland registriert das Kraftfahrt-Bundesamt (KBA) im Zentralen Fahrzeugregister (ZFZR) alle in Deutschland neu zugelassenen Fahrzeuge. Übermittelt werden neben den fahrzeugbezogenen Daten, wie zum Beispiel Hersteller, Kraftstoffart, Fahrzeugaufbau, auch Angaben zum Halter und zum Zulassungsvorgang, wie zum Beispiel der Tag der Zulassung. Im FZ 14 werden die jährlichen Neuzulassungen nach Bundesländern, Kraftstoffarten und Emissionsklassen dargestellt. Zusätzlich werden die Personenkraftwagen nach Segmenten und Modellreihen nach verschiedenen Umweltmerkmalen wie beispielsweise Motorleistung, CO2-Emissionen oder Fahrgeräusch ausgewertet.
Durch die Mitteilungen der Zulassungsbehörden in Deutschland registriert das Kraftfahrt-Bundesamt (KBA) im Zentralen Fahrzeugregister (ZFZR) alle in Deutschland neu zugelassenen Fahrzeuge. Übermittelt werden neben den fahrzeugbezogenen Daten, wie zum Beispiel Hersteller, Kraftstoffart, Fahrzeugaufbau, auch Angaben zum Halter und zum Zulassungsvorgang, wie zum Beispiel der Tag der Zulassung. Im FZ 14 werden die jährlichen Neuzulassungen nach Bundesländern, Kraftstoffarten und Emissionsklassen dargestellt. Zusätzlich werden die Personenkraftwagen nach Segmenten und Modellreihen nach verschiedenen Umweltmerkmalen wie beispielsweise Motorleistung, CO2-Emissionen oder Fahrgeräusch ausgewertet.
Das Grundgeräusch in deutschen Großstädten wird heute überwiegend durch Verkehrslärm bestimmt. Demgemäß wird von den Bundesbürgern bei Umfragen zur Lärmbelästigung durch unterschiedliche Geräuschquellen häufig der Straßenlärm an erster Stelle genannt. Belastungen durch Lärm im Wohn- und Arbeitsbereich sind offenkundig. Doch auch in der Freizeit, in der sich die Menschen erholen wollen, beeinträchtigt der Lärm das Wohlbefinden. Viele Park- und Grünanlagen, aber auch große Teile der Naherholungsgebiete sind so verlärmt, dass sie für ruhige Erholungsnutzung stark eingeschränkt sind. In den letzten Jahren sind zwar mittels technischer Neuerungen die Fahrgeräusche der einzelnen Kraftfahrzeuge leicht zurückgegangen, doch ist durch die steigende Anzahl und die Zunahme der Geschwindigkeit der Autos der Lärm insgesamt gestiegen. Neben dem Lärm von Kraftfahrzeugen, Bahn und Flugzeugen treten auch Lärmbelastungen durch Industrie, Gewerbe und Bautätigkeit auf. Hinzu kommen Nachbarschaftslärm (z.B. Geräusche von Haushalts- und Musikgeräten und Rasenmähern) sowie Lärm bei Sport- und Freizeitbetätigungen und -veranstaltungen. Die Stärke der Belästigung durch die verschiedenen Geräuschquellen wurde vom Umweltbundesamt untersucht (vgl. Abb. 1). Als Lärm bezeichnet man Schallereignisse , die von der überwiegenden Zahl der Menschen als störend eingestuft werden. Schallereignisse sind Luftdruckschwankungen mit einem Wechsel von 20 bis 20 000 Hz, die durch das menschliche Ohr wahrgenommen werden können. Die Wahrnehmbarkeit von Schallereignissen durch das menschliche Ohr reicht von der Hörschwelle mit einem Effektivwert der Luftdruckschwankungen von 0,00002 Pascal (0,0002 µbar) bis zur Schmerzschwelle mit einem Effektivwert von 20 Pascal (= 200 µbar). Um eine dem menschlichen Vorstellungsvermögen gemäße Skalierung zu erhalten, wird der Schalldruck in einem logarithmischen Maßstab als Schalldruckpegel mit der Einheit Dezibel (dB) angegeben. In dieser Werteskala reicht der genannte Wahrnehmbarkeitsbereich des menschlichen Ohres von 0 bis 120 dB. Die Lautstärkewahrnehmung des Menschen wird bestimmt durch das Zusammenspiel von physikalischem Schalldruckpegel (0 bis 120 dB) und der Frequenz (20 bis 20 000 Hz). Die größte Empfindlichkeit besitzt das menschliche Ohr im mittleren Bereich zwischen 1 000 und 4 000 Hz. Diesem Umstand trägt die mit A-Bewertung benannte Frequenzbewertung Rechnung. Geräusche tiefer (20 bis 1 000 Hz) und hoher (4 000 bis 20 000 Hz) Frequenzlagen werden bei der Ermittlung des sogenannten A-Schallpegels mit einer geringeren Gewichtung als mittlere Frequenzen berücksichtigt. A-Schalldruckpegel werden in Dezibel (A) – dB(A) – angegeben. Die bei verschiedenen Geräuschquellen auftretenden typischen A-Schallpegel sind in Abbildung 2 dargestellt. Die Störwirkung von Geräuschen wird subjektiv sehr unterschiedlich bewertet. So kann ein open air Popkonzert mit einem Schalldruckpegel von 100 dB(A) in der ersten Reihe vom Konzertbesucher als angenehm und in 1 000 m Entfernung mit einem Schalldruckpegel von 60 dB(A) von einem Anwohner als störend empfunden werden. Unfreiwillig mitgehörte, störende Geräusche sind Lärm. Verkehrsbedingte Geräusche werden durch die Mehrzahl der Bevölkerung als störend und damit als Lärm eingestuft. Lärm wird nach heutigem Erkenntnisstand als Risikofaktor betrachtet, der sich nachteilig auf das physische, psychische und soziale Wohlbefinden des Menschen auswirken kann. Allein und im Zusammenwirken mit anderen Belastungsgrößen kann Lärm gesundheitliche Beeinträchtigungen hervorrufen. Folgende Wirkungen können unterschieden werden: Verminderung der Aufmerksamkeit und Konzentrationsfähigkeit Herabsetzung der Beobachtungsfähigkeit Beeinträchtigung von Schlaf und Erholung Überreizung des Nervensystems Bluthochdruck Herz-Kreislauf-Beschwerden Schädigung des Hörvermögens. Die im Alltag auftretenden Geräusche sind häufig großen Schwankungen ausgesetzt. Ihre Belästigungsstärke wird durch den Beurteilungspegel beschrieben. Der Beurteilungspegel wird durch einen Mittelwert, den Mittelungspegel, bestimmt. Dieser wird in einem etwas komplizierten Umrechnungsverfahren berechnet, in dem die Lautstärke (Schalldruckpegel) der auftretenden Geräusche und die jeweilige Zeitdauer ihrer Einwirkung in ein Verhältnis mit der Zeitdauer des Beurteilungszeitraums gesetzt werden, z.B. die 16 Stunden am Tag von 6.00 bis 22.00 Uhr, die Nachtzeit von 22.00 bis 6.00 Uhr. Beim Straßenverkehrslärm ist der Mittelungspegel meist identisch mit dem Beurteilungspegel. An ampelgeregelten Kreuzungen und Einmündungen ergibt sich der Beurteilungspegel durch einen Zuschlag auf den Mittelungspegel, wodurch die besondere Lästigkeit der Brems- und Anfahrgeräusche berücksichtigt wird. Der Beurteilungspegel ist ein Maß für die durchschnittliche Langzeitbelastung. Er beschreibt ein (theoretisches) Dauergeräusch von konstanter Lautstärke, das – tritt es real auf – das gleiche Maß an Belästigung hervorruft, wie die realen unterschiedlich lauten Geräusche bei ihrem zeitlich verteilten Einwirken über den gleichen Zeitraum. Mit diesem Wert sind in der städtebaulichen Planung anzustrebende Zielwerte oder in der Gesetzgebung fixierte Grenzwerte zu vergleichen. Änderungen in der Verkehrsstärke führen zu Änderungen der Beurteilungspegel. Die Beeinflussung sowie die Beurteilung dieser Änderung durch den Menschen sind in Tabelle 1 dargestellt. Bei der städtebaulichen Planung sind nach der DIN 18005 vom Mai 1987 für die Lärmbelastung schalltechnische Orientierungswerte angegeben. Der angegebene Wert für Grün- und Freiflächen lautet (tags und nachts) und ist mit den in der Karte dargestellten Beurteilungspegeln zu vergleichen. In dem Gutachten “Studie der ökologischen und stadtverträglichen Belastbarkeit der Berliner Innenstadt durch den Kfz-Verkehr” wurden 1991 folgende Werte für Erholungszonen empfohlen: Die Lärmschutzverordnung der Schweiz sieht für Erholungszonen folgende Werte vor: Der gemäß DIN 18005 für Grün- und Freiflächen anzustrebende Orientierungswert von 55 dB(A) wird mit Ergebnissen der Lärmwirkungsforschung begründet. Danach treten bis zu diesem Schalldruckpegel kaum vegetative Reaktionen und keine körperlichen Schäden auf. Auch die psychischen und sozialen Beeinträchtigungen liegen in einem akzeptablen Rahmen. Bei normaler Sprechweise ist für Gesprächspartner mit 2 m Abstand eine zufriedenstellende Sprachverständlichkeit gegeben.
In Berlin sind zur Zeit rund 1,28 Millionen Kraftfahrzeuge zugelassen, deren Nutzung nicht nur zu einer erheblichen Verlärmung des Straßenraumes führt, sondern darüber hinaus auch die Wohn- und Aufenthaltsqualität in den an den Hauptnetzstraßen gelegenen Gebäuden und auf den Grundstücken sowohl am Tage als auch in der Nacht nachhaltig vermindert. Besonders gravierend sind diese Auswirkungen bei Straßen mit Verkehrsmengen über 50.000 Kfz/24 Std. (z. B. Sachsendamm, Schöneberger Ufer, Frankfurter Allee, Grunerstraße und Seestraße). Diese Straßen umfassen zwar nur 1,7 % der Gesamtlänge des ca. 1.200 km langen übergeordneten Straßennetzes (Hauptnetz), übernehmen jedoch ca. 19 % aller Fahrleistungen. Durch technisch – konstruktive Veränderungen an den Fahrzeugen wurden in den vergangenen Jahren erhebliche Pegelminderungen bei den Antriebsgeräuschen erzielt. Die nach EU-Recht zulässige Geräuschemission von Kraftfahrzeugen lag 1983 ungefähr 10 dB über der heutigen Grenze, d. h. 10 Fahrzeuge aktueller Bauart sind – bezogen auf die Antriebsgeräusche – nicht lauter als ein Fahrzeug, das 1983 seine Zulassung erhielt. Trotzdem ist es insgesamt auf Berliner Straßen nicht leiser geworden. Ursache ist die erhebliche Zunahme des Kraftfahrzeugverkehrs aber auch die Tatsache, daß bei der Minderung der Reifen- / Fahrbahngeräusche kaum Fortschritte erzielt wurden. Die Einführung von Tempo 30-Zonen für 70 % aller Straßen erbrachte dort zwar eine tendenzielle Reduzierung der Verkehrslärmbelastung, in den Hauptverkehrsstraßen hat der Lärm jedoch zugenommen. Spürbare Entlastungen hat es auch an Abschnitten des Straßenbahnnetzes gegeben, wo die Gleiskörper rekonstruiert worden sind. Insgesamt stellt der Lärm des übergeordneten Straßennetzes – verglichen mit anderen Verursachern wie Eisenbahn- und Luftverkehr, Industrie und Gewerbe sowie Sport- und Freizeitlärm sowohl von seinem Ausmaß als auch von der Zahl der Betroffenen her die problematischste Belastung dar. Unter Lärm ist jede Art von Geräusch zu verstehen, das unerwünscht ist, stört oder belästigt und das physische, psychische und soziale Wohlbefinden beeinträchtigt. Je nach Dauer und Intensität der Einwirkung kann Lärm zu einer Vielzahl von Problemen führen. Dazu gehören u. a.: Verminderung der Konzentrationsfähigkeit, Störung der Kommunikation, Störung von Schlaf und Erholung, negative Beeinflussung des vegetativen Nervensystems (Bluthochdruck, Herz-Kreislauf-Beschwerden, Störungen der Verdauungsorgane), Beeinträchtigung bzw. Schädigung des Hörvermögens, Risikoerhöhung für Herz-/Kreislauferkrankungen. Lärm ist subjektiv bewerteter Schall und folglich abhängig von der jeweiligen Einstellung zum vorhandenen Geräusch, der augenblicklichen Befindlichkeit, der gerade ausgeübten Tätigkeit, der Höhe des gegenwärtigen Ruheanspruchs usw.. Schwer skalierbar ist auch die Lästigkeit eines Geräusches. Neben den vorgenannten subjektiven Parametern spielen u. a. auch eine Rolle: der Informationsgehalt des Geräusches, die Zeit des Auftretens, der zeitliche Verlauf, der frequenzmäßige Verlauf, Impuls- und Tonhaltigkeit, der Übertragungsweg, die spezifische Quelle. Physikalisch gesehen entsteht Schall durch schwingende Körper, d. h. durch Druckschwankungen innerhalb von elastischen Medien (Gase, Flüssigkeiten, feste Körper). Die Anregung von Druckschwankungen kann durch Schlag, Reibung oder strömende Gase (Prinzip aller Musikinstrumente) ausgelöst werden. Die entstandenen Druckschwankungen breiten sich im Umgebungsmedium Luft mit hoher Geschwindigkeit (330 m/s) aus und können bei ausreichender Intensität vom Ohr wahrgenommen werden, wenn die Zahl der Schwingungen pro Sekunde (gemessen in Hertz [Hz]) mehr als 16 und weniger als 20.000 beträgt. Der vom menschlichen Ohr wahrnehmbare Bereich der Druckschwankungen in der Luft (Schwingungsamplitude oder Lautstärke) liegt zwischen 20 µPa (Hörschwelle) und 200.000.000 µPa (Schmerzgrenze). Mikropascal (µPa) ist die Maßeinheit für den Druck. Zur Vermeidung des Umgang mit derartig großen Zahlen wurde ein logarithmischer Maßstab eingeführt, die sog. Dezibel (dB) – Skala. Dabei entsprechen 20 µPa, also der Hörschwelle, 0 dB und 200.000.000 µPa (Schmerzgrenze) 140 dB. Die Dezibelskala, die den ”Schalldruckpegel” beschreibt, ist damit keine absolute Maßeinheit, wie z. B. das Gramm oder das Meter, sondern sie gibt nur das Verhältnis zur Hörschwelle wieder, d. h. sie sagt aus, um wieviel ein bestimmtes Geräusch die Hörschwelle übersteigt. Geräusche bestehen in der Regel aus einem Gemisch von hohen, mittleren und tiefen Frequenzanteilen. Das menschliche Ohr nimmt diese Frequenzanteile mit einer unterschiedlichen Empfindlichkeit wahr. Um diese Eigenschaften des Ohres nachzubilden, sind Meßgeräte mit Bewertungsfiltern ausgestattet. Das Bewertungsfilter ”A” zeigt für die üblichen Umweltgeräusche die beste Übereinstimmung zwischen Ohr und Meßgerät. Die korrigierten Schalldruckpegel werden deshalb in ”dB(A)” angegeben. In unserer Umwelt vorhandene Geräusche, z. B. auch der Verkehrslärm, sind selten gleichförmig, sondern schwanken sowohl kurzzeitig als auch in ihrem Tages- und Wochengang (vgl. Karte Verkehrsmengen 07.01.). Zur Beurteilung und zum Vergleich von Geräuschen benutzt man deshalb zweckmäßigerweise einen ”Einzahlwert”, der als Mittelwert des Schalldruckpegelverlaufes gebildet wird. Mit anderen Worten: ein innerhalb eines bestimmten Zeitabschnittes schwankendes Geräusch wird durch ein Dauergeräusch mit konstantem Pegel und gleicher Energie ersetzt. Der ”Mittelungspegel” wird deshalb auch als (energie-) ”äquivalenter Dauerschallpegel” bezeichnet. Der Mittelungspegel ist also nicht als arithmetisches Mittel zu verstehen, sondern entspricht physikalisch gesehen dem energetischen Mittel. Bei diesem Verfahren werden Lärmspitzen besonders berücksichtigt. Für Rechenoperationen mit Schalldruckpegeln gelten die Logarithmengesetze. So erhöht z. B. die Verdoppelung einer Zahl gleichlauter Schallquellen (Fahrzeuge) den Schalldruckpegel um 3 dB (entspricht 10·log 2); eine Verdreifachung um 5 dB (entspricht 10·log 3), eine Verzehnfachung um 10 dB (10·log 10). Ein Geräusch mit einem um 10 dB(A) höheren Pegel wird etwa doppelt so laut empfunden. In gleicher Weise wirken sich auch Vervielfachungen der Einwirkzeiten von Geräuschen innerhalb eines bestimmten Beurteilungszeitraumes (Tag bzw. Nacht) aus. Das heißt, eine Verlängerung der Geräuscheinwirkung, z. B. von 10 auf 20 Minuten oder von 2 auf 4 Stunden, erhöht den Mittelungspegel um 3 dB. Eine Verkürzung der Einwirkungsdauer eines Geräusches von 600 auf 60 Minuten entspräche dann einer Pegelsenkung von 10 dB. Im Vergleich mit Grenz- oder Richtwerten wird üblicherweise der sog. ”Beurteilungspegel” angegeben. Dieser unterscheidet sich vom Mittelungs- bzw. äquivalenten Dauerschallpegel durch bestimmte Zu- oder Abschläge, die die unterschiedliche Lästigkeit der Geräusche berücksichtigen. Bei Straßenverkehrslärm ist die erhöhte Lästigkeit der Brems- und Anfahrgeräusche im Bereich von Lichtsignalanlagen durch einen Zuschlag zu berücksichtigen. Der empirisch belegten geringeren Lästigkeit des Schienenverkehrslärms wird durch einen Abschlag, dem sog. Schienenbonus, entsprochen. Die gesetzlichen Regelungen für die Begrenzung der Straßenverkehrslärmimmission an bestehenden Straßen sind derzeit noch unbefriedigend. Das Bundes-Immissionsschutzgesetz und die Verkehrslärmschutzverordnung (16. BImSchV) sowie die Verkehrswege- Schallschutzmaßnahmenverordnung (24. BImSchV) gelten nur für den Bau oder die wesentliche Änderung von Straßen- und Schienenwegen. Bestehende Verkehrslärmsituationen werden von diesen Vorschriften nicht reglementiert. Nach der 16. BImSchV gelten folgende Immissionsgrenzwerte: Bei vorhandenen Straßen und Stadtautobahnen in der Baulast des Bundes ergeben sich dagegen Lärmsanierungsmöglichkeiten nach den ”Richtlinien für den Verkehrslärmschutz an Bundesfernstraßen in der Baulast des Bundes-VLärmSchR 97” durch eine freiwillige Verpflichtung des Bundesministers für Verkehr. Lärmsanierung, insbesondere durch Schallschutzfenster, ist hiernach dann möglich, wenn der Beurteilungspegel einen der folgenden Richtwerte übersteigt: Die nach diesen Richtlinien möglichen Lärmsanierungsmaßnahmen sind in Berlin weitgehend umgesetzt. Unter bestimmten Voraussetzungen sind Schallschutzmaßnahmen im Bereich des Straßenverkehrs auch über straßenverkehrsrechtliche Maßnahmen nach § 45 StVO möglich. Regelungen für diesen Sachverhalt sind in den ”Vorläufigen Richtlinien des Bundesministeriums für Verkehr für straßenverkehrsrechtliche Maßnahmen zum Schutz der Bevölkerung vor Lärm” enthalten. Die Tag-/Nacht – Richtwerte liegen hiernach bei 70/60 dB(A) für Wohngebiete und ähnlich schutzwürdige Einrichtungen sowie 75/65 dB(A) für Kern-, Dorf-, Misch- und Gewerbegebiete.
Durch die Mitteilungen der Zulassungsbehörden in Deutschland registriert das Kraftfahrt-Bundesamt (KBA) im Zentralen Fahrzeugregister (ZFZR) alle in Deutschland neu zugelassenen Fahrzeuge. Übermittelt werden neben den fahrzeugbezogenen Daten, wie zum Beispiel Hersteller, Kraftstoffart, Fahrzeugaufbau, auch Angaben zum Halter und zum Zulassungsvorgang, wie zum Beispiel der Tag der Zulassung. Im FZ 14 werden die jährlichen Neuzulassungen nach Bundesländern, Kraftstoffarten und Emissionsklassen dargestellt. Zusätzlich werden die Personenkraftwagen nach Segmenten und Modellreihen nach verschiedenen Umweltmerkmalen wie beispielsweise Motorleistung, CO2-Emissionen oder Fahrgeräusch ausgewertet.
Das Projekt "Mobilität der Zukunft, ELSEC: Ermittlung von längenbezogenen Schallleistungspegeln und Eingangsparameter für CNOSSOS-EU" wird/wurde gefördert durch: Österreichische Forschungsförderungsgesellschaft mbH (FFG). Es wird/wurde ausgeführt durch: Technische Universität Wien, Institut für Verkehrswissenschaften (E230).Längenbezogene Schallleistungspegel sind die Basis gängiger Verfahren zur Berechnung von Schienenlärmimmissionen. In Österreich wurden diese Pegel bislang anhand der ÖNORM S 5026 ermittelt, welche unter Annahme eines Schallausbreitungsmodells nach ÖAL 28 von erfassten Schalldruckpegeln auf Schallleistungspegeln einer Ersatzschallquelle rückschließt. Zur Analyse von Vorbeifahrtgeräuschen werden jedoch häufig Messung nach EN ISO 3095 durchgeführt, welche im Gegensatz zur ÖNORM einen einfacheren Messaufbau erfordert (nur ein Standardmesspunkt in 7,5 m Entfernung zur Gleisachse). Als Grundlage für weitere Betrachtungen wird in vorliegendem Projekt zunächst ein Berechnungsverfahren zur näherungsweisen Ermittlung der Schallleistungspegel aus Messungen nach EN ISO 3095 entwickelt. Zu diesem Zweck werden mehrwöchige, automatisierte Messungen von Schallemissionen an zwei Messquerschnitten an Strecken mit verschiedenen Regelgeschwindigkeiten mit Mikrofonpositionen sowohl nach ÖNORM S 5026 wie auch im Standardmesspunkt gemäß EN ISO 3095 veranstaltet. Vergleiche der Messungen mit Berechnungen in den Messorten nach den verschiedenen Ausbreitungsmodellen (ÖAL 28, ISO 9613-2 und CNOSSOS-EU) werden Umrechnungsmöglichkeiten und deren Unsicherheiten aufzeigen. Das in Österreich zur strategischen Lärmkartierung ab 2022 verpflichtend einzusetzende Verfahren CNOSSOS-EU verwendet ebenfalls längenbezogene Schallleistungspegel, diese sind aber für verschiedene Geräuscharten wie Roll- oder Antriebsgeräusche getrennt definiert. Ein Vergleich, oder gar eine direkte Überführung von Schallleistungspegeln gemäß ONR 305011 nach CNOSSOS-EU ist damit nicht mehr möglich. Zwar liegen Vorschläge für Eingangsparameter für das Berechnungsmodell CNOSSOS-EU durch die Europäische Kommission, sowie durch Expertenkommissionen vor, jedoch fehlt eine direkte messtechnische Verifikation für das österreichische Schienennetz und deren Fahrzeugkategorien. Aus diesem Grund werden in vorliegendem Projekt für häufig in Österreich verkehrende Fahrzeugkategorien diese Eingangsparameter messtechnisch geprüft und im Fall von signifikanten Abweichungen abgeschätzt. Zunächst werden hierfür relevante Fahrzeugeigenschaften - das bedeutet Eigenschaften, welche merklichen Einfluss auf Schallemissionen im Regelbetrieb bzw. Auswirkung auf Eingangsdaten von CNOSSOS EU aufweisen können - systematisch erhoben. Im Anschluss wird ein iteratives Näherungsverfahren anhand des Vergleichs der Schalldruckpegel in 7,5 m Abstand ausgearbeitet. Bei diesem Verfahren wird durch logisch nachvollziehbare Veränderung der Geräuschkomponenten (Rad, Schiene, Aufbau, Traktion, Aerodynamik), welche u. a. aus den erhobenen Fahrzeugdaten abgeleitet werden, eine Übereinstimmung der Pegel am Messpunkt gesucht. (Text gekürzt)
Das Projekt "Hamburger Elektrobus Demonstration - HELD^Hamburger Elektrobus Demonstration - HELD, Hamburger Elektrobus Demonstration - HELD" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Es wird/wurde ausgeführt durch: Hamburger Hochbahn AG.Ziel des Vorhabens ist die Erprobung von Plug-In Hybridbussen (PHEV) und Batterieelektrischen Bussen (BEV) im Linienverkehr in Hamburg. Mit den Erkenntnissen aus dem Linieneinsatz und der technischen Weiterentwicklung werden die Voraussetzungen dafür geschaffen, dass elektrische Busse schneller an den Markt kommen und praxistauglicher sind. Darüber hinaus tragen die Busse dazu bei, die Emissionen schon heute zu reduzieren. So kann beispielsweise der Ausstoß von Kohlendioxid in rein elektrisch betriebenen Bussen ( je nach Herkunft des Stroms und Verbrauch des Vergleichsfahrzeuges) um annähernd 3 kg je Liter Dieselkraftstoff reduziert werden. Bei einem unterstellten Verbrauch von 40 Liter Diesel und etwa 60.000 km Kilometern Jahresleistung spart ein komplett elektrisch betriebener Bus etwa 70 Tonnen des schädlichen Klimagases Kohlendioxid ein. Zudem entfallen bei einem elektrischen Betrieb (bei PHEV und BEV) komplett die anderen Emissionen wie Stickoxide oder Ruß. Auch die Geräusche des Busses werden beim elektrischen Fahren erheblich reduziert. Das Projekt setzt sich aus insgesamt 15 Arbeitspaketen zusammen, die teils sukzessive, teils parallel umgesetzt werden. Die wesentlichen Aufgaben des Arbeitsprogrammes sind die praktische Erprobung der innovativen Busse auf den Linien einschließlich ihrer technischen und betrieblichen Weiterentwicklung im Abgleich mit der Ladeinfrastruktur für die Busse. Die Verringerung von Emissionen und Lärm in den Städten ist eine Aufgabe, die alle Entscheider beschäftigt. Daher beschäftigen sich fast alle Verkehrsunternehmen mit elektrisch angetriebenen Bussen unterschiedlicher Konzepte. Die Flotte der in Deutschland eingesetzten Nahverkehrsbusse beträgt etwa 45.000 Fahrzeuge, davon 33.000 im Stadtverkehr. Aktuell sind aber erst 250 Hybridbusse im Einsatz und noch erheblich weniger Elektrobusse. Auch die Fahrzeughersteller haben sich, gemessen an dem Bedarf, bislang mit Entwicklungsaktivitäten noch zurückgehalten. Vor diesem Hintergrund besteht ein erhebliches Interesse, in dem vorliegenden Projekt PHEV und BEV in einem Praxistest zu erproben und zu optimieren. Zwar kann zurzeit noch nicht sicher abgeschätzt werden, in welchem Umfang PHEV und BEV am Markt künftig nachgefragt werden. Die vorstehend ausgewiesenen Zahlen belegen jedoch ein grundsätzliches und interessantes Mengenpotenzial für entsprechende Busse, vor allem im Stadtverkehr.
Das Projekt "Leiser Straßenverkehr, 10 - Teilvorhaben Röchling: Fernfeld-Geräuschminderung durch auf das Reifen-Fahrbahn-Geräuschspektrum abgestimmte, straßenseitig absorbierende Unterbodenverkleidungen bei Transportern und Klein-LKW." wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Technologie. Es wird/wurde ausgeführt durch: Röchling Automotive SE & Co. KG, Entwicklungsstandort Worms.
Für das Umweltbundesamt wurden Mess- und Analyseleistungen zur Ermittlung der Geräusche-missionen von Kfz mittels statistischer Vorbeifahrtmessung zur Fortschreibung einer langjährigen Zeitreihe durchgeführt. Hierzu wurden Messungen nach dem in DIN EN ISO 11819-1: Akustik - Messung des Einflusses von Straßenoberflächen auf Verkehrsgeräusche - Teil 1: Statistisches Vorbeifahrtverfahren", 1997, beschriebenen Verfahren durchgeführt. Die Messungen wurden an insgesamt 30 Messpunkten für jeweils mindestens 1000 Fahrzeuge durchgeführt. Insgesamt wurden also ca. 30.000 Fahrzeuge (PKW, LKW und Motorräder) gemessen. Da der Einfluss von Fahrzeugeigenschaften auf die Vorbeifahrtgeräusche im Fokus stand wurden die Messungen durchwegs auf nicht beschädigten oder geräuschmindernden Fahrbahnbelägen durchgeführt, die zum Zeitpunkt der Messungen dem Stand der Technik entsprachen. Die Messpunkte unterschieden sich hinsichtlich Steigung, zulässiger Höchstgeschwindigkeit und Fahrverhalten (Konstantfahrt, beschleunigte Vorbeifahrt). Zusätzlich zur akustischen Messung wurden die meteorologischen Randbedingungen, die Fahrzeuggeschwindigkeit, der Abstand zum Messmikrofon (bei Motorrädern) und das amtliche Kennzeichen des Fahrzeugs aufgezeichnet. Über das amtliche Kennzeichen und einer Datenabfrage beim Kraftfahrtbundesamt konnten zu jeder gemessenen Vorbeifahrt die technischen Daten des Fahrzeugs ermittelt werden. Die statistische Analyse dieser Untersuchung ist in diesem Bericht dargestellt.<BR>Quelle: Forschungsbericht
Origin | Count |
---|---|
Bund | 77 |
Land | 2 |
Zivilgesellschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 71 |
Text | 4 |
unbekannt | 4 |
License | Count |
---|---|
geschlossen | 3 |
offen | 75 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 78 |
Englisch | 3 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 3 |
Dokument | 3 |
Keine | 59 |
Webseite | 18 |
Topic | Count |
---|---|
Boden | 55 |
Lebewesen & Lebensräume | 67 |
Luft | 79 |
Mensch & Umwelt | 79 |
Wasser | 55 |
Weitere | 72 |