API src

Found 5 results.

FELIZIA - Festelektrolyte als Enabler für Lithium-Zellen in automobilen Anwendungen

Das Projekt "FELIZIA - Festelektrolyte als Enabler für Lithium-Zellen in automobilen Anwendungen" wird vom Umweltbundesamt gefördert und von Justus-Liebig-Universität Gießen, Physikalisch-Chemisches Institut durchgeführt. Das Teilvorhaben ist auf Aufgaben im Bereich der inneren Grenzflächen von Feststoffbatterien und der Charakterisierung von Festelektrolyten ausgerichtet. Das übergreifende Ziel des Teilvorhabens ist es, gemeinsam mit den Verbundpartnern limitierende Grenzflächeneffekte zu identifizieren, quantitativ zu charakterisieren und Lösungen zur Reduzierung der Effekte zu erarbeiten. Festelektrolyte werden als wichtiger Faktor für die erfolgreiche Nutzung von Lithiummetallanoden angesehen. In diesem Teilvorhaben soll daher die Grenzflächenkinetik von Lithiummetallanoden unter verschiedenen mechanischen Randbedingungen untersucht werden. Die Kathodengrenzfläche zwischen Festelektrolyten und Kathodenmaterialien besitzt dagegen kinetisch wie thermodynamisch andere kritische Aspekte. Gemischtleitende Interphasen können hier vermitteln und entsprechende Beschichtungen sollen gemeinsam mit den Partnern untersucht werden. Die komplexen Grenzflächen in Kathodenkompositen sollen ebenfalls gezielt untersucht werden. Im AP 2.3.1 ist die AG Janek an der Entwicklung langzeitstabiler, gut zyklisierbarer Kathoden-Komposite beteiligt. Im AP 3.3.1 unterstützt die AG Janek Untersuchungen der FSU durch gemeinsame Messungen mittels in situ-Röntgendiffraktometrie. In den AP 4.1 - 4.3 wirkt die AG Janek bei komplexen Charakterisierungsproblemen von Festelektrolyten der Partner mittel XPS und SIMS mit. Im AP 5.2.3 bringt die AG Janek ihre umfangreichen Erfahrungen in der elektrochemischen Charakterisierung von Metall/Festelektrolyt-Grenzflächen ein. AP 6 (Optimierung Grenzflächen Festelektrolyt / Kathode bzw. Anode) stellt einen zentralen Aufgabenbereich dar, in dem mögliche kinetische Hemmungen an Elektroden/Festelektrolyt-Grenzflächen durch geeignete künstliche Zwischenschichten unterdrückt werden sollen. Im AP 7.2.1 übernimmt die AG Janek gemeinsam mit der BASF SE die Konstruktion eines optimierten Zellgehäuses für Testzellmessungen unter definiertem Druck.

Teilvorhaben A: Metallschaum

Das Projekt "Teilvorhaben A: Metallschaum" wird vom Umweltbundesamt gefördert und von Alantum Europe GmbH durchgeführt. Ziel dieses Forschungsvorhabens ist die Entwicklung einer neuartigen dreidimensionalen, schaumbasierten Elektrodenstruktur für die Verwendung in Lithium-Ionen-Batterien mit flüssigen und festen Elektrolyten. Durch das spezielle Design dieser Elektroden können die Energie- und Leistungsdichte sowie die intrinsische Sicherheit im Vergleich zu konventionellen Batteriezellen spürbar verbessert werden. Konventionelle Lithium-Ionen-Batteriekonzepte basieren auf zweidimensionalen Elektrodenstrukturen. Im Regelfall sind dies Aktivmaterialschichten auf einer Metall-Trägerfolie, die zusammen mit einem Polymer-Separator gestapelt werden. Das hier vorgeschlagene Konzept sieht im Gegensatz dazu die Verwendung dreidimensionaler, schaumbasierter Strukturen als Träger für die Aktivmaterialien vor. Durch die große innere Oberfläche der Schäume wird die für den Ionenaustausch zur Verfügung stehende Fläche drastisch gesteigert. Dadurch kann die abrufbare Leistung in gleichem Maße erhöht werden. Da die Schäume gleichzeitig eine hohe Porosität von 95% und mehr aufweisen, ist die volumetrische Energiedichte gleichzeitig ebenfalls sehr hoch. Zum Erreichend der vorgesehen Projektziele werden zunächst speziell angepasste Schaumsubstrate entwickelt. Dazu werden die Anforderungen eng mit den ebenfalls am Projekt beteiligten Anwendern abgestimmt. Im Anschluss erfolgt die Beschichtung der Schäume mit Aktivmaterial. Im Fall des Flüssigsystems werden die Elektroden anschließend direkt in Batteriezellen getestet. Für Festkörperelektrolytbasierte Systeme wird zusätzlich eine Festkörperelektrolytschicht appliziert und die Gegenelektrode direkt aufgebracht. Für beide Varianten ist der Aufbau eines Demonstrators und begleitende Untersuchungen durch erfahrene Batterieanwender vorgesehen.

Teilvorhaben I: Elektoylt-Polymerisation

Das Projekt "Teilvorhaben I: Elektoylt-Polymerisation" wird vom Umweltbundesamt gefördert und von Hochschule Osnabrück, Fakultät Management, Kultur und Technik, Abteilung Maschinenbau, insbesondere chemische Prozesstechnik durchgeführt. Ziel dieses Forschungsvorhabens ist die Entwicklung einer neuartigen dreidimensionalen, schaumbasierten Elektrodenstruktur für die Verwendung in Lithium-Ionen-Batterien mit flüssigen und festen Elektrolyten. Durch das spezielle Design dieser Elektroden können die Energie- und Leistungsdichte sowie die intrinsische Sicherheit im Vergleich zu konventionellen Batteriezellen spürbar verbessert werden. Konventionelle Lithium-Ionen-Batteriekonzepte basieren auf zweidimensionalen Elektrodenstrukturen. Im Regelfall sind dies Aktivmaterialschichten auf einer Metall-Trägerfolie, die zusammen mit einem Polymer-Separator gestapelt werden. Das hier vorgeschlagene Konzept sieht im Gegensatz dazu die Verwendung dreidimensionaler, schaumbasierter Strukturen als Träger für die Aktivmaterialien vor. Durch die große innere Oberfläche der Schäume wird die für den Ionenaustausch zur Verfügung stehende Fläche drastisch gesteigert. Dadurch kann die abrufbare Leistung in gleichem Maße erhöht werden. Da die Schäume gleichzeitig eine hohe Porosität von 95% und mehr aufweisen, ist die volumetrische Energiedichte gleichzeitig ebenfalls sehr hoch. Zum Erreichen der vorgesehen Projektziele werden zunächst speziell angepasste Schaumsubstrate entwickelt. Dazu werden die Anforderungen eng mit den ebenfalls am Projekt beteiligten Anwendern abgestimmt. Im Anschluss erfolgt die Beschichtung der Schäume mit Aktivmaterial. Im Fall des Flüssigsystems werden die Elektroden anschließend direkt in Batteriezellen getestet. Für Festkörperelektrolytbasierte Systeme wird zusätzlich eine Festkörperelektrolytschicht appliziert und die Gegenelektrode direkt aufgebracht. Für beide Varianten ist der Aufbau eines Demonstrators und begleitende Untersuchungen durch erfahre Batterieanwender vorgesehen.

Teilverbund B: HB Applikation, DD Metallschaumsynthese, PM Polymersynthese

Das Projekt "Teilverbund B: HB Applikation, DD Metallschaumsynthese, PM Polymersynthese" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung durchgeführt. Ziel dieses Forschungsvorhabens ist die Entwicklung einer neuartigen dreidimensionalen, schaumbasierten Elektrodenstruktur für die Verwendung in Lithium-Ionen-Batterien mit flüssigen und festen Elektrolyten. Durch das spezielle Design dieser Elektroden können die Energie- und Leistungsdichte sowie die intrinsische Sicherheit im Vergleich zu konventionellen Batteriezellen spürbar verbessert werden. Konventionelle Lithium-Ionen-Batteriekonzepte basieren auf zweidimensionalen Elektrodenstrukturen. Im Regelfall sind dies Aktivmaterialschichten auf einer Metall-Trägerfolie, die zusammen mit einem Polymer-Separator gestapelt werden. Das hier vorgeschlagene Konzept sieht im Gegensatz dazu die Verwendung dreidimensionaler, schaumbasierter Strukturen als Träger für die Aktivmaterialien vor. Durch die große innere Oberfläche der Schäume wird die für den Ionenaustausch zur Verfügung stehende Fläche drastisch gesteigert. Dadurch kann die abrufbare Leistung in gleichem Maße erhöht werden. Da die Schäume gleichzeitig eine hohe Porosität von 95% und mehr aufweisen, ist die volumetrische Energiedichte gleichzeitig ebenfalls sehr hoch. Zum Erreichen der vorgesehen Projektziele werden zunächst speziell angepasste Schaumsubstrate entwickelt. Dazu werden die Anforderungen eng mit den ebenfalls am Projekt beteiligten Anwendern abgestimmt. Im Anschluss erfolgt die Beschichtung der Schäume mit Aktivmaterial. Im Fall des Flüssigsystems werden die Elektroden anschließend direkt in Batteriezellen getestet. Für Festkörperelektrolytbasierte Systeme wird zusätzlich eine Festkörperelektrolytschicht appliziert und die Gegenelektrode direkt aufgebracht. Für beide Varianten ist der Aufbau eines Demonstrators und begleitende Untersuchungen durch erfahrene Batterieanwender vorgesehen.

Teilvorhaben J: Applikation

Das Projekt "Teilvorhaben J: Applikation" wird vom Umweltbundesamt gefördert und von Smart Battery Solutions GmbH durchgeführt. Ziel dieses Forschungsvorhabens ist die Entwicklung einer neuartigen dreidimensionalen, schaumbasierten Elektrodenstruktur für die Verwendung in Lithium-Ionen-Batterien mit flüssigen und festen Elektrolyten. Durch das spezielle Design dieser Elektroden können die Energie- und Leistungsdichte sowie die intrinsische Sicherheit im Vergleich zu konventionellen Batteriezellen spürbar verbessert werden. Konventionelle Lithium-Ionen-Batteriekonzepte basieren auf zweidimensionalen Elektrodenstrukturen. Im Regelfall sind dies Aktivmaterialschichten auf einer Metall-Trägerfolie, die zusammen mit einem Polymer-Separator gestapelt werden. Das hier vorgeschlagene Konzept sieht im Gegensatz dazu die Verwendung dreidimensionaler, schaumbasierter Strukturen als Träger für die Aktivmaterialien vor. Durch die große innere Oberfläche der Schäume wird die für den Ionenaustausch zur Verfügung stehende Fläche drastisch gesteigert. Dadurch kann die abrufbare Leistung in gleichem Maße erhöht werden. Da die Schäume gleichzeitig eine hohe Porosität von 95% und mehr aufweisen, ist die volumetrische Energiedichte gleichzeitig ebenfalls sehr hoch. Zum Erreichend der vorgesehen Projektziele werden zunächst speziell angepasste Schaumsubstrate entwickelt. Dazu werden die Anforderungen eng mit den ebenfalls am Projekt beteiligten Anwendern abgestimmt. Im Anschluss erfolgt die Beschichtung der Schäume mit Aktivmaterial. Im Fall des Flüssigsystems werden die Elektroden anschließend direkt in Batteriezellen getestet. Für Festkörperelektrolytbasierte Systeme wird zusätzlich eine Festkörperelektrolytschicht appliziert und die Gegenelektrode direkt aufgebracht. Für beide Varianten ist der Aufbau eines Demonstrators und begleitende Untersuchungen durch erfahrene Batterieanwender vorgesehen.

1