Das Projekt "Teilvorhaben 2: Hydrierung und Decarboxylierung von Ölen und Fetten" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Katalyse e.V. an der Universität Rostock durchgeführt. Ziel des Vorhabens ist es, Fettsäuren aus Pflanzenölen (speziell aus Rapsöl gewonnene Fettsäureestergemische) als Kraftstoffkomponente oder Reinkraftstoff zu hydrieren bzw. zu decarboxylieren, zu charakterisieren und ausgewählte Chargen auf ihre Eignung als Kraftstoffsubstitute in modernen Dieselmotoren zu untersuchen. Neben Decarboxylierung und Hydrierung ist vor allem eine Spaltung der Fettsäureketten erforderlich, um essentielle Kraftstoffeigenschaften zu gewährleisten. Die einzelnen Reaktionen werden durch homogene Katalysatoren bewerkstelligt. Ziel ist es, Reaktionsschritte parallel im gleichen Ansatz durchzuführen. Dabei sollen milde, energetisch wenig aufwändige Verfahren zum Einsatz kommen. Sie werden im Labormaßstab in 100-ml-Autoklaven getestet und bei Erfolg in den 1-Liter-Maßstab für die Charakterisierung als Kraftstoff bzw. -komponente überführt. Die Produkte sollen im Kraftstofflabor unter Fr. Dr. Schümann eingehend analysiert werden.
Das Projekt "Teilvorhaben 5: Prozesse und Verfahren zur Nutzung pflanzlicher Öle" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Chemische Technologie durchgeführt. Das Projekt ist getragen von der Vision der 'Integrierten Verbundproduktion auf Basis nachwachsender Rohstoffe' und der durchgängigen Entwicklung vom Labor- bis zum Produktionsmaßstab. Dieser Ansatz ist neuartig und wurde bisher noch nicht realisiert. Die durchgängige Entwicklung von Prozessen und Verfahren zur Nutzung nachwachsender Rohstoffe vom Labor- bis zum Produktionsmaßstab in einer Bioraffinerie ist ein entscheidender Faktor für die erfolgreiche Umsetzung des vorgeschlagenen Konzeptes. AP1: Charakterisierung der Inhaltsstoffe der pflanzlichen Öle sowie deren Eignung für die im Projekt verfolgten industriellen Anwendungen. AP2: Entwicklung von Verfahren zur Herstellung der chemischen und biologischen Katalysatoren, Immobilisierung der chemischen und biologischen Katalysatoren. AP3: Untersuchung und verfahrenstechnische Optimierung der vollständigen chemischen Fettspaltung, Untersuchung und verfahrenstechnische Optimierung der integrierten chemo-katalytischen Fettspaltung und Hydrierung. AP4: Screening, Untersuchung und verfahrenstechnische Optimierung der chemischen Epoxydierung von Fettsäuren und -estern zur Herstellung von Epoxyden, Screening, Untersuchung und verfahrenstechnische Optimierung der Metathese von Fettsäuren und -estern. AP5: Herstellung und anwendungstechnische Charakterisierung von Hydrophobierungsmitteln auf Basis funktionalisierter Fettsäureester, Diaminen und Polyaminen auf Basis ?-funktionalisierter Carbonsäuren und Schmierstoffen auf Basis funktionalisierter Fettsäureester. AP6: Zusammenführung der Teilprozesse, Skalierung vom Technikumsmaßstab in den Produktionsmaßstab und Integration in den chemischen Produktionsverbund. Die Ergebnisse werden zur Weiterführung und Stärkung der Forschungsaktivitäten des Fraunhofer ICT auf den Gebieten Nutzung nachwachsender Rohstoffe, Screening, Chemokatalalyse, Polymerisation und Downstream-Processing sowie als Grundlage für sich anschließende Industrieprojekte in diesen Bereichen benötigt.
Das Projekt "Teilvorhaben 1: Entwicklung von Verfahren zur Hydrosilylierung, Silanisierung und Vinylierung von Fettsäuren" wird vom Umweltbundesamt gefördert und von Wacker Chemie AG durchgeführt. Fettsäuren zählen zu den besonders kostengünstigen Chemierohstoffen, die sich aus nach-wachsenden Rohstoffen ableiten. Die weit entwickelte Technologie zur Herstellung von Fettsäuren erlaubt es, diese in für technische Anwendungen wohldefinierter Reinheit bereitzustellen. Zudem ist ein breites Spektrum unterschiedlicher Fettsäuren zugänglich (insbesondere C12 bis C22-Säuren), womit sich mögliche Produkteigenschaften und Verfahrensanpassungen über die gezielte Wahl der Fettsäurekettenlänge einstellen bzw. auswählen lassen. Daher zählen Fettsäuren zu den bedeutendsten und etabliertesten Einsatzgebieten nachwachsender Rohstoffe in der chemischen Industrie. Von besonderem Interesse ist dabei auch die Nutzung von Fettsäuren als Basis für polymere Materialien, da sich damit i.d.R. grossvolumige Einsatzmöglichkeiten eröffnen. Die Einheitlichkeit und Reinheit kommerzieller Fettsäuren stellt eine günstige Voraussetzung für entsprechen-de Monomerbausteine dar. Aus der breiten Palette relevanter Polymerklassen zählen Vinylpolymere zu den bedeutendsten Polymeren. Vinylpolymere umfassen auch die wichtige Gruppe der Polymerisate von Vinylestern. So decken Polyvinylacetat und verwandte Copolymerisate nicht nur breite Anwendungsmöglichkeiten von Kaugummirohstoffen bis hin zu Klebstoffen ab, sondern sind zudem als einzige Klasse von Vinylpolymeren biologisch abbaubar. Der Einsatz von Fettsäure-Vinylestern als Comonomer ist bekannt, wobei dafür insbesondere Vinyllaurat zum Einsatz kommt. Vinyllaurat wird bisher über das industriell etablierte Verfahren der Vinylierung mit Acetylen hergestellt. Dieses Verfahren ist aber limitiert auf leichtflüchtige Carbonsäuren, und damit nicht für höhere Fettsäuren geeignet. Von Interesse ist daher die Untersuchung der Zugänglichkeit von Vinylestern höherer natürlicher Fettsäuren.
Das Projekt "Teilvorhaben 11: Herstellung, Charakterisierung und Prozessintegration der Produkte" wird vom Umweltbundesamt gefördert und von Addinol Lube Oil GmbH durchgeführt. Das Projekt ist getragen von der Vision der Integrierten Verbundproduktion auf Basis nachwachsender Rohstoffe und der durchgängigen Entwicklung vom Labor- bis zum Produktionsmaßstab. Dieser Ansatz ist neuartig und wurde bisher noch nicht realisiert. Die durchgängige Entwicklung von Prozessen und Verfahren zur Nutzung nachwachsender Rohstoffe vom Labor- bis zum Produktionsmaßstab in einer Bioraffinerie ist ein entscheidender Faktor für die erfolgreiche Umsetzung des vorgeschlagenen Konzeptes. Herstellung und anwendungstechnische Charakterisierung von Schmierstoffen auf Basis funktionalisierter Fettsäureester. Zusammenführung der Teilprozesse, Skalierung vom Technikumsmaßstab in den Produktionsmaßstab und Integration in den chemischen Produktionsverbund. Bei erfolgreicher Realisierung der geplanten Arbeiten ist eine Erweiterung des Prozesses auf Basis nachwachsender Rohstoffe sowie eine Erweiterung des Produktspektrums möglich. Das vorgeschlagene Projekt hat durch die anspruchsvolle Aufgabe der Erschließung von pflanzlichen Ölen als zukünftige und nachhaltige Rohstoffquelle für Schmierstoffe einen großen Signalcharakter für die Bestrebungen zur Substitution der petrochemischen Rohstoffbasis.
Das Projekt "Biokatalyse 2021 P44 - Steuerung der Reaktionsselektivität der biokatalytischen Fettsäureestersynthese" wird vom Umweltbundesamt gefördert und von Evonik Industries AG durchgeführt. 'In der industriellen Produktion von Polyolestern sind Verfahren gefragt, die es erlauben Produkte mit definierten Subtitutionsmustern zu synthetisieren. Daher ist Ziel des Projektes die Steuerung der Reaktionsselektivität der biokatalytischen Fettsäureestersynthese durch die Nutzung neuer Biokatalysatoren und die Etablierung einer Inprozesskontrolle mittels FTIR (Fourier-Transformations-Infrarot-Spektroskopie). Einfluss auf die Biotransformation kann dabei durch die Wahl des Katalysators genommen werden und/oder durch eine Regelung des Prozesses basierend auf einer kinetischen Differenzierung (z.B. Fed-Batch, Abbruchzeiten). Der Fokus der Arbeiten liegt auf der selektiven Veresterung von polyfunktionalisierten Alkoholen wie z.B. Glycerol und Polyglycerol mit verschiedenen Fettsäuren und Fettsäuregemischen zu Mono- bzw. Diestern, welche u.a. als Emulgatoren in kosmetischen Formulierungen ihren Einsatz finden. Die erhaltenen Produkte werden bei Evonik physikochemisch charakterisiert und in der Anwendungstechnik auf ihre Eigenschaften getestet. Neben den in der AG Streit vorhandenen Enzymen sollen kommerzielle Lipasen auf die gewünschten Eigenschaften, nämlich unterschiedliche Reaktivitäten bzgl. Mono-, Di- und Triestern, hin geprüft werden. Darüber hinaus soll im Rahmen einer funktionalen und sequenzbasierten Metagenomsuche nach ähnlich Enzymen gesucht werden, um so ggf. noch bessere Varianten der bisher gefundenen Enzyme zu erhalten. Dabei soll auch der Weg der de novo Gensynthese eingeschlagen werden. Auf diese Weise wird eine sogenannte Toolbox mit robusten Lipasen aufgebaut, die alle in der Lage sind, Polyole unter industrienahen Bedingungen zu verestern. Am Institut für Technische Biokatalyse soll die umsatzabhängige Analyse der Fettsäureveresterung von Polyolen durchgeführt werden. Die Arbeiten beginnen mit der Analyse der Veresterung von Glycerin mit einer Fettsäure und werden dann auf die Veresterung mit einem Fettsäuregemisch erweitert. Im Fokus steht hier die Kontrolle der Reaktionsselektivität, welche dann zur Steuerung des Prozesses genutzt werden soll. Die Kenntnis der Kinetik der mehrstufigen Reaktion soll dann die selektive Synthese von Mono- bzw. Diestern erlauben. Vorarbeiten hierzu sind bereits erfolgt (Müller et al. 2011). Die Prozesssteuerung mittels FT-IR wird im Labormaßstab etabliert und bei Evonik im 200 kg Maßstab in einer Technikumsblasensäule übertragen werden '
Das Projekt "Teilvorhaben 3: Hydrothermale Spaltung von Fettsäuren" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Chemische Technologie durchgeführt. Ziel des Vorhabens ist die Entwicklung und Erprobung neuer Synthesemethoden zur Herstellung von olefinischen Spezialchemikalien aus nachwachsenden Rohstoffen (Öle und Fette). In dem Forschungsverbund aus Industriepartnern und akademischen Partnern soll im Gesamtvorhaben eine neue Spaltungsmethode von ungesättigten Fettsäuren und deren Derivaten unter Erhalt der Doppelbindung entwickelt werden, welche mittels neuen katalytischen Verfahren durch Isomerisierung zu bisher nicht zugänglichen, endständigen Alkencarbonsäuren umgesetzt werden. Diese neuen Substanzen werden als Bausteine für die Herstellung von Spezialchemikalien auf der Basis von Silanen, Siloxanen und Vinylestern eingesetzt. 1) Hydrothermale Spaltung von Fettsäuren (Ölsäure und/oder Erucasäure), sowie deren Ester, 2) Entwicklung und Optimierung von Aufarbeitungsverfahren für die erhaltene Spaltprodukte, 3) Verschiebung der Doppelbindungen in omega-Position durch Isomerisierung der durch hydrothermale Spaltung erhaltenen kürzerkettigen ungesättigten Alkencarbonsäuren, sowie der Ölsäure und/oder Erucasäure bzw. deren Ester, 4) Bewertung, Scale-Up der Katalysatorsynthese, sowie Bereitstellung der für die Isomerisierung benötigten Katalysatoren, 5) Entwicklung und Optimierung von Verfahren zur chemischen Konversion der endständig funktionalisierten Alkencarbonsäuren zu Polysiloxanen, Silanen, sowie Vinylestern. Hierzu sollen die erhaltenen verwertbaren Ergebnisse (z.B. Spezialchemikalien und Katalysatoren) in den Pilotmaßstab überführt und im Hinblick auf eine kommerzielle Anwendung geprüft werden. Eine Verwertung kommerziell relevanter Ergebnisse durch den jeweiligen Industriepartner als Ergänzung bisheriger Geschäftsfelder ist geplant. Resultierende neuartige Spezialchemikalien sowie neue Isomerisierungskatalysatoren runden somit das Produktportfolio der beteiligten Partner ab und stärken das Know-how und die bisherige Geschäftstätigkeit.
Das Projekt "Teilvorhaben 7: Katalysatorentwicklung und Gewinnung von Synthesebausteinen" wird vom Umweltbundesamt gefördert und von Martin-Luther-Universität Halle-Wittenberg, Institut für Pharmazie, Arbeitsgruppe Aufarbeitung biotechnischer Produkte durchgeführt. Das Projekt ist getragen von der Vision der Integrierten Verbundproduktion auf Basis nachwachsender Rohstoffe und der durchgängigen Entwicklung vom Labor- bis zum Produktionsmaßstab. Dieser Ansatz ist neuartig und wurde bisher noch nicht realisiert. Die durchgängige Entwicklung von Prozessen und Verfahren zur Nutzung nachwachsender Rohstoffe vom Labor- bis zum Produktionsmaßstab in einer Bioraffinerie ist ein entscheidender Faktor für die erfolgreiche Umsetzung des vorgeschlagenen Konzeptes. AP2: Entwicklung von Produktionsstämmen für die Enzymproduktion und die biochemische ?-Funktionalisierung, Entwicklung von Verfahren zur Herstellung der chemischen und biologischen Katalysatoren, Immobilisierung der chemischen und biologischen Katalysatoren.AP3: Enzymscreening, Untersuchung und verfahrenstechnische Optimierung der vollständigen und partiellen enzymatischen Fettspaltung, Enzymscreening, Untersuchung und verfahrenstechnische Optimierung der regioselektiven Fettspaltung.AP4: Screening, Untersuchung und verfahrenstechnische Optimierung der biochemischen Epoxydierung von Fettsäuren und -estern zur Herstellung von Epoxyden. Die zu erwartenden Ergebnisse bilden die Grundlage für eine großtechnische Produktion von Biokatalysatoren, sowie deren Einsatz für stoffwandelnde Prozesse. Auf der Basis der ermittelten Daten können die Partner verläßliche Kostenberechnungen erstellen.
Das Projekt "Stärkeester mit einstellbarer Hydrophilie" wird vom Umweltbundesamt gefördert und von Friedrich-Schiller-Universität Jena, Institut für Organische Chemie und Makromolekulare Chemie, Kompetenzzentrum Polysaccharidforschung durchgeführt. Ziel des Projektes ist es thermisch umformbare Stärkeester herzustellen, die als Basismaterialien für innovative Klebesysteme genutzt werden könne. Es sollen Materialien zur Verfügung gestellt werden, die sich durch thermische Prozesse zu Folien mit guter mechanischer Festigkeit verarbeiten lassen und eine definierte Hydrophilie aufweisen um als Träger für Klebstoffe zu fungieren. Dazu werden technisch relevante Synthesebedingungen erarbeitet und Recyclingstrategien für das eingesetzte Lösungsmittel und das überschüssige Reagenz. Um die gestellten Ziele zu erreichen werden umfangreiche Untersuchungen zur Synthese langkettiger Fettsäureester der Stärke in geschmolzenem Imidazol als Reagenz durchgeführt. Neben gesättigten Resten werden auch Säurereste mit Doppelbindungen eingeführt um vernetzbare Produkte zu erhalten. Alle Ester werden hinsichtlich struktureller Einheitlichkeit und thermischer Umformbarkeit untersucht. Weiterhin wird durch ein solvatochromes Verfahren die Hydrophilie der Stärkeester erforscht um eine Optimierung der Wechselwirkung mit Klebstoffen zu gewährleisten. Mit erfolgversprechenden Derivaten müssen Experimente zur Folienherstellung durchgeführt werden. Dies wird mit einem Laborextruder realisiert. Für die so erhaltenen Folien mit definierter Hydrophilie sind materialwissenschaftliche Tests vorgesehen um ihre Eignung als Trägermaterial einzuschätzen. Ein Schwerpunkt der Arbeiten am IOMC ist die Vorbereitung des up-scalings der Synthesen.
Das Projekt "Teilvorhaben 4: Katalytische Isomerisierung zur Darstellung endständiger Olefine" wird vom Umweltbundesamt gefördert und von Technische Universität München, Wissenschaftszentrum Straubing, Lehrstuhl für Rohstoff- und Energietechnologie durchgeführt. Ziel des Vorhabens ist die Entwicklung und Erprobung neuer Synthesemethoden zur Herstellung von olefinischen Spezialchemikalien aus nachwachsenden Rohstoffen (Öle und Fette). In dem Forschungsverbund aus Industriepartnern und akademischen Partnern soll im Gesamtvorhaben eine neue Spaltungsmethoden von ungesättigten Fettsäuren und deren Derivaten unter Erhalt der Doppelbindung entwickelt werden, welche mittels neuen katalytischen Verfahren durch Isomerisierung zu bisher nicht zugänglichen, endständigen Alkencarbonsäuren umgesetzt werden. Diese neuen Substanzen werden als Bausteine für die Herstellung von Spezialchemikalien auf der Basis von Silanen, Siloxanen und Vinylestern eingesetzt. Arbeitsplanung:1) Hydrothermale Spaltung von Fettsäuren (Ölsäure und/oder Erucasäure), sowie deren Ester2) Entwicklung und Optimierung von Aufarbeitungsverfahren für die erhaltene Spaltprodukte3) Verschiebung der Doppelbindungen in omega-Position durch Isomerisierung der durch hydrothermale Spaltung erhaltenen kürzerkettigen ungesättigten Alkencarbonsäuren, sowie der Ölsäure und/oder Erucasäure bzw. deren Ester4) Bewertung, Scale-Up der Katalysatorsynthese, sowie Bereitstellung der für die Isomerisierung benötigten Katalysatoren.5 Entwicklung und Optimierung von Verfahren zur chemischen Konversion der endständig funktionalisierten Alkencarbonsäuren zu Polysiloxanen, Silanen, sowie Vinylestern Ergebnisverwertung: Hierzu sollen die erhaltenen Ergebnisse (z.B. Spezialchemikalien und Katalysatoren) in den Pilotmaßstab überführt und im Hinblick auf eine kommerzielle Anwendung geprüft werden. Eine Verwertung der erhaltenen Ergebnisse durch die Industriepartner als Ergänzung der bisherigen Geschäftsfelder ist geplant. Die neuartigen Spezialchemikalien sowie neue Isomerisierungskatalysatoren runden somit das Produktportfolio der beteiligten Partner ab und stärken das Know-how und die bisherige Geschäftstätigkeit.
Das Projekt "Teilvorhaben 2: Katalysatorentwicklung" wird vom Umweltbundesamt gefördert und von Umicore AG & Co. KG durchgeführt. Katalysatorenentwicklung zur Herstellung von olefinischen Spezialchemikalien. Ziel des Vorhabens ist die Entwicklung und Erprobung neuer Synthesemethoden zur Herstellung von olefinischen Spezialchemikalien aus nachwachsenden Rohstoffen (Öle und Fette). In dem Forschungsverbund aus Industriepartnern und akademischen Partnern soll im Gesamtvorhaben eine neue Spaltungsmethode von ungesättigten Fettsäuren und deren Derivaten unter Erhalt der Doppelbindung entwickelt werden, welche mittels neuen katalytischen Verfahren durch Isomerisierung zu bisher nicht zugänglichen, endständigen Alkencarbonsäuren umgesetzt werden. 1) Hydrothermale Spaltung von Fettsäuren (Ölsäure und/oder Erucasäure), sowie deren Ester2) Entwicklung und Optimierung von Aufarbeitungsverfahren für die erhaltene Spaltprodukte3) Verschiebung der Doppelbindungen in omega-Position durch Isomerisierung der durch hydrothermale Spaltung erhaltenen kürzerkettigen ungesättigten Alkencarbonsäuren, sowie der Ölsäure und/oder Erucasäure bzw. deren Ester4) Bewertung, Scale-Up der Katalysatorsynthese, sowie Bereitstellung der für die Isomerisierung benötigten Katalysatoren.5) Entwicklung und Optimierung von Verfahren zur chemischen Konversion der endständig funktionalisierten Alkencarbonsäuren zu Polysiloxanen, Silanen, sowie Vinylestern Hierzu sollen die erhaltenen verwertbaren Ergebnisse (z.B. Spezialchemikalien und Katalysatoren) in den Pilotmaßstab überführt und im Hinblick auf eine kommerzielle Anwendung geprüft werden. Eine Verwertung kommerziell relevanter Ergebnisse durch den jeweiligen Industriepartner als Ergänzung bisheriger Geschäftsfelder ist geplant. Resultierende neuartige Spezialchemikalien sowie neue Isomerisierungskatalysatoren runden somit das Produktportfolio der beteiligten Partner ab und stärken das Know-how und die bisherige Geschäftstätigkeit.
Origin | Count |
---|---|
Bund | 11 |
Type | Count |
---|---|
Förderprogramm | 11 |
License | Count |
---|---|
open | 11 |
Language | Count |
---|---|
Deutsch | 11 |
Resource type | Count |
---|---|
Keine | 1 |
Webseite | 10 |
Topic | Count |
---|---|
Boden | 10 |
Lebewesen & Lebensräume | 4 |
Luft | 1 |
Mensch & Umwelt | 11 |
Wasser | 1 |
Weitere | 11 |