API src

Found 1418 results.

Corrections

s/fettstoff/Feststoff/gi

Planspiel Mantelverordnung: Aspekte der Kreislaufwirtschaft und des Bodenschutzes

Jährlich fallen in Deutschland große Mengen mineralischer Abfälle an, wie z.B. Bauschutt und Bodenmaterial aus Baugruben sowie mineralische Abfälle aus industriellen Prozessen. Deren Verwertung (und ggf. Beseitigung) so zu steuern, dass der Schutz von Mensch und Umwelt unter Berücksichtigung des Vorsorge- und Nachhaltigkeitsprinzips am besten gewährleistet wird, stellt eine zentrale umweltpolitische Aufgabe dar. Werden die mineralischen Ersatzbaustoffe nicht sachgerecht in den Stoffkreislauf zurückgeführt, kann es zur Freisetzung von Schadstoffen kommen, die die Umwelt und den Menschen gefährden. Bis heute besteht keine bundesweit einheitliche Regelung zum Umgang mit mineralischen Ersatzbaustoffen. Diese Lücke soll durch die sogenannte Mantelverordnung (MantelV) – Verordnung zur Einführung einer Ersatzbaustoffverordnung, zur Neufassung der Bundes-Bodenschutz- und Altlastenverordnung und zur Änderung der Deponieverordnung und der Gewerbeabfallverordnung - geschlossen werden. Damit werden die beiden wichtigsten Verwertungswege für mineralische Abfälle geregelt, nämlich die Aufbereitung und der nachfolgende Einbau in technische Bauwerke sowie die stoffliche Verwertung in Form der Verfüllung von Abgrabungen und Tagebauen. Um die Regelungsinhalte der MantelV auf den Prüfstand zu stellen, wurde auf Basis des 3. Arbeitsentwurfs der MantelV vom 23. Juli 2015 ein Forschungsvorhaben aufgesetzt, dessen Ergebnisse nun mit dem Endbericht vorliegen. Dieses Vorhaben hatte zum Inhalt, die Regelungsinhalte der MantelV im Rahmen eines breit angelegten Dialogprozesses mit den betroffenen Akteuren hinsichtlich ihrer Praxistauglichkeit zu überprüfen. Auch sollten zu erwartenden Veränderungen von Verwertungs- gegenüber Beseitigungswegen durch eine Stoffstrommodellierung aufgezeigt werden. Da durch die MantelV ein neues Fachkonzept und Untersuchungsverfahren zur Abschätzung der Schadstoffkonzentration im Sickerwasser durch Auslaugung von Feststoffen eingeführt wird, war es für die Folgenabschätzung erforderlich, eine umfassende Analyse der IST-Situation bezüglich geltender Länderregelungen und Umweltqualitäten der betroffenen Materialien durchzuführen. Ebenfalls stand eine Ermittlung des zu erwartende Erfüllungsaufwand für Wirtschaft und Verwaltung im Fokus. Die Ergebnisse des Vorhabens haben zur Fortentwicklung des 3. Arbeitsentwurfes zum Referenten- und schließlich zum Regierungsentwurf beigetragen. Mit dem Endbericht als Hauptteil liegt auch ein Anhang vor, der in gebündelter Form eine ausführliche Dokumentation des Planspielprozesses beinhaltet. Die Mantelverordnung wurde zwischenzeitlich zum Regierungsentwurf fortentwickelt, der am 3. Mai 2017 vom Bundeskabinett beschlossen worden ist und im Juni 2017 den Bundestag passiert hat. Nach einer ersten Beratung im Bundesrat stehen dort in der neuen Legislaturperiode noch weitere Beratungen aus. Veröffentlicht in Texte | 104/2017.

Weiterentwicklung des Prüfwertes für Ultrafeinstaubpartikel beim Umweltzeichen Blauer Engel für Drucker

In diesem Projekt wurde das Messverfahren und der Prüfwert es Blauen Engels für Bürogeräte mit Druckfunktion für die Partikelemission aus Bürogeräten validiert und weiterentwickelt (s. DE-UZ 205, Anhang S-M). Außerdem wurde zur Beurteilung der Veränderung der Emissionen aktueller gegenüber älteren Gerätegenerationen ein nicht repräsentativer Pool von table-top-Laserdruckern aufgebaut und die chemischen Emissionen wurden gemäß DE-UZ-205 gemessen. Ergänzend wurde eine quantitative chemische Analyse der anorganischen Feststoffe - insbesondere der Metalle - in den emittierten Aerosolen vorgenommen die Feststoffgehalte um 2 Massen-% ergaben. Diese Ergebnisse wurden gemeinsam mit neueren wissenschaftlichen Untersuchungen zur gesundheitlichen Bewertung der Emissionen aus Laserdruckern ausgewertet. Zuletzt wurde untersucht und bestätigt, dass mit dem Ziel eines zukünftigen Umweltzeichens das Emissionsverhalten Kunststoff verarbeitender 3D-FDM-Drucker und/oder die darin verarbeiteten Verbrauchsmaterialien (Filamente) mit dem für Laserdrucker entwickelten Mess- und Prüfschema charakterisiert und quantifiziert werden können. Veröffentlicht in Texte | 217/2020.

Chem-Org\PVC(Suspens)-DE-2020

PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Suspensionsverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Bei der Suspensionspolymerisation des VCM wird dieses durch starkes Rühren in Wasser fein verteilt. Die Polymerisation wird durch die Zugabe von Initiatoren (meist ein organisches Peroxid) in Gang gesetzt, die sich im Monomeren lösen. Suspendierungsmittel verhindern ein Zusammenbacken der sich bildenden Partikel. Die Polymerisation (Dauer 6 bis 8 Stunden) erfolgt diskontinuierlich in Rührkesseln. Wenn 90 % des VCM polymerisiert sind, wird die Reaktion abgebrochen. Nicht polymerisiertes VCM wird wiedergewonnen. Die Suspension (etwa 32 % Feststoff) wird in Zentrifugen weitgehend vom Wasser befreit. Anschließend erfolgt die Trocknung und Lagerung des PVC. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern in GEMIS wurden Daten aus #1 und #2 bzw. #3 verwendet (siehe unten). Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1010 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden und Initiatoren (organische Peroxide 0,87 kg) zum Starten der Polymerisation und Stabilisatoren (Methylzellulose 0,5 kg) von zusammen 1,37 kg benötigt. Die Verluste bei der Massenbilanz werden in #1 mit "Verluste im Abwasser" 3 kg, "Verluste als PVC Staub" 1 kg und "sonstige Verluste" ca. 7,4 kg beziffert. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 0,72 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird in #1 mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet. Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/tP. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden die prozessbedingten VOC-Emissionen bei der PVC-Herstellung (Suspensionsverfahren) abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 kg VOC/t PVC. Dieser Wert wird bei GEMIS unter NMVOC aufgeführt. In #3 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Abfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von einer Tonne PVC werden insgesamt 104 t Wasser benötigt. 100 t werden davon als Kühlwasser, 1,0 t als Mitteldruckdampf verwendet. Bei den restlichen 3 t handelt es sich um entmineralisiertes Wasser (#1). Beim Suspensions- und Emulsionsverfahren entstehen VCM-belastete Abwässer (quantitative Angaben zu Abwasserfrachten liegen nicht vor). Im Ablauf von zentralen biologischen Abwasserreinigungsanlagen ist VCM in der Regel nicht nachweisbar. Wegen der Flüchtigkeit geben VCM-haltige Abwässer das Vinylchlorid relativ schnell an die Atmosphäre ab (UBA 1991). Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99% Produkt: Kunststoffe

Chem-Org\PVC(Suspens)-DE-2000

PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Suspensionsverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Bei der Suspensionspolymerisation des VCM wird dieses durch starkes Rühren in Wasser fein verteilt. Die Polymerisation wird durch die Zugabe von Initiatoren (meist ein organisches Peroxid) in Gang gesetzt, die sich im Monomeren lösen. Suspendierungsmittel verhindern ein Zusammenbacken der sich bildenden Partikel. Die Polymerisation (Dauer 6 bis 8 Stunden) erfolgt diskontinuierlich in Rührkesseln. Wenn 90 % des VCM polymerisiert sind, wird die Reaktion abgebrochen. Nicht polymerisiertes VCM wird wiedergewonnen. Die Suspension (etwa 32 % Feststoff) wird in Zentrifugen weitgehend vom Wasser befreit. Anschließend erfolgt die Trocknung und Lagerung des PVC. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern in GEMIS wurden Daten aus #1 und #2 bzw. #3 verwendet (siehe unten). Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1010 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden und Initiatoren (organische Peroxide 0,87 kg) zum Starten der Polymerisation und Stabilisatoren (Methylzellulose 0,5 kg) von zusammen 1,37 kg benötigt. Die Verluste bei der Massenbilanz werden in #1 mit "Verluste im Abwasser" 3 kg, "Verluste als PVC Staub" 1 kg und "sonstige Verluste" ca. 7,4 kg beziffert. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 0,72 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird in #1 mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet. Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/tP. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden die prozessbedingten VOC-Emissionen bei der PVC-Herstellung (Suspensionsverfahren) abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 kg VOC/t PVC. Dieser Wert wird bei GEMIS unter NMVOC aufgeführt. In #3 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Abfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von einer Tonne PVC werden insgesamt 104 t Wasser benötigt. 100 t werden davon als Kühlwasser, 1,0 t als Mitteldruckdampf verwendet. Bei den restlichen 3 t handelt es sich um entmineralisiertes Wasser (#1). Beim Suspensions- und Emulsionsverfahren entstehen VCM-belastete Abwässer (quantitative Angaben zu Abwasserfrachten liegen nicht vor). Im Ablauf von zentralen biologischen Abwasserreinigungsanlagen ist VCM in der Regel nicht nachweisbar. Wegen der Flüchtigkeit geben VCM-haltige Abwässer das Vinylchlorid relativ schnell an die Atmosphäre ab (UBA 1991). Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99% Produkt: Kunststoffe

Chem-Org\PVC(Suspens)-DE-2005

PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Suspensionsverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Bei der Suspensionspolymerisation des VCM wird dieses durch starkes Rühren in Wasser fein verteilt. Die Polymerisation wird durch die Zugabe von Initiatoren (meist ein organisches Peroxid) in Gang gesetzt, die sich im Monomeren lösen. Suspendierungsmittel verhindern ein Zusammenbacken der sich bildenden Partikel. Die Polymerisation (Dauer 6 bis 8 Stunden) erfolgt diskontinuierlich in Rührkesseln. Wenn 90 % des VCM polymerisiert sind, wird die Reaktion abgebrochen. Nicht polymerisiertes VCM wird wiedergewonnen. Die Suspension (etwa 32 % Feststoff) wird in Zentrifugen weitgehend vom Wasser befreit. Anschließend erfolgt die Trocknung und Lagerung des PVC. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern in GEMIS wurden Daten aus #1 und #2 bzw. #3 verwendet (siehe unten). Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1010 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden und Initiatoren (organische Peroxide 0,87 kg) zum Starten der Polymerisation und Stabilisatoren (Methylzellulose 0,5 kg) von zusammen 1,37 kg benötigt. Die Verluste bei der Massenbilanz werden in #1 mit "Verluste im Abwasser" 3 kg, "Verluste als PVC Staub" 1 kg und "sonstige Verluste" ca. 7,4 kg beziffert. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 0,72 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird in #1 mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet. Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/tP. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden die prozessbedingten VOC-Emissionen bei der PVC-Herstellung (Suspensionsverfahren) abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 kg VOC/t PVC. Dieser Wert wird bei GEMIS unter NMVOC aufgeführt. In #3 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Abfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von einer Tonne PVC werden insgesamt 104 t Wasser benötigt. 100 t werden davon als Kühlwasser, 1,0 t als Mitteldruckdampf verwendet. Bei den restlichen 3 t handelt es sich um entmineralisiertes Wasser (#1). Beim Suspensions- und Emulsionsverfahren entstehen VCM-belastete Abwässer (quantitative Angaben zu Abwasserfrachten liegen nicht vor). Im Ablauf von zentralen biologischen Abwasserreinigungsanlagen ist VCM in der Regel nicht nachweisbar. Wegen der Flüchtigkeit geben VCM-haltige Abwässer das Vinylchlorid relativ schnell an die Atmosphäre ab (UBA 1991). Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99% Produkt: Kunststoffe

Chem-Org\PVC(Suspens)-DE-2010

PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Suspensionsverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Bei der Suspensionspolymerisation des VCM wird dieses durch starkes Rühren in Wasser fein verteilt. Die Polymerisation wird durch die Zugabe von Initiatoren (meist ein organisches Peroxid) in Gang gesetzt, die sich im Monomeren lösen. Suspendierungsmittel verhindern ein Zusammenbacken der sich bildenden Partikel. Die Polymerisation (Dauer 6 bis 8 Stunden) erfolgt diskontinuierlich in Rührkesseln. Wenn 90 % des VCM polymerisiert sind, wird die Reaktion abgebrochen. Nicht polymerisiertes VCM wird wiedergewonnen. Die Suspension (etwa 32 % Feststoff) wird in Zentrifugen weitgehend vom Wasser befreit. Anschließend erfolgt die Trocknung und Lagerung des PVC. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern in GEMIS wurden Daten aus #1 und #2 bzw. #3 verwendet (siehe unten). Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1010 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden und Initiatoren (organische Peroxide 0,87 kg) zum Starten der Polymerisation und Stabilisatoren (Methylzellulose 0,5 kg) von zusammen 1,37 kg benötigt. Die Verluste bei der Massenbilanz werden in #1 mit "Verluste im Abwasser" 3 kg, "Verluste als PVC Staub" 1 kg und "sonstige Verluste" ca. 7,4 kg beziffert. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 0,72 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird in #1 mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet. Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/tP. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden die prozessbedingten VOC-Emissionen bei der PVC-Herstellung (Suspensionsverfahren) abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 kg VOC/t PVC. Dieser Wert wird bei GEMIS unter NMVOC aufgeführt. In #3 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Abfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von einer Tonne PVC werden insgesamt 104 t Wasser benötigt. 100 t werden davon als Kühlwasser, 1,0 t als Mitteldruckdampf verwendet. Bei den restlichen 3 t handelt es sich um entmineralisiertes Wasser (#1). Beim Suspensions- und Emulsionsverfahren entstehen VCM-belastete Abwässer (quantitative Angaben zu Abwasserfrachten liegen nicht vor). Im Ablauf von zentralen biologischen Abwasserreinigungsanlagen ist VCM in der Regel nicht nachweisbar. Wegen der Flüchtigkeit geben VCM-haltige Abwässer das Vinylchlorid relativ schnell an die Atmosphäre ab (UBA 1991). Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99% Produkt: Kunststoffe

Chem-Org\PVC(Suspens)-DE-2030

PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Suspensionsverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Bei der Suspensionspolymerisation des VCM wird dieses durch starkes Rühren in Wasser fein verteilt. Die Polymerisation wird durch die Zugabe von Initiatoren (meist ein organisches Peroxid) in Gang gesetzt, die sich im Monomeren lösen. Suspendierungsmittel verhindern ein Zusammenbacken der sich bildenden Partikel. Die Polymerisation (Dauer 6 bis 8 Stunden) erfolgt diskontinuierlich in Rührkesseln. Wenn 90 % des VCM polymerisiert sind, wird die Reaktion abgebrochen. Nicht polymerisiertes VCM wird wiedergewonnen. Die Suspension (etwa 32 % Feststoff) wird in Zentrifugen weitgehend vom Wasser befreit. Anschließend erfolgt die Trocknung und Lagerung des PVC. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern in GEMIS wurden Daten aus #1 und #2 bzw. #3 verwendet (siehe unten). Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1010 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden und Initiatoren (organische Peroxide 0,87 kg) zum Starten der Polymerisation und Stabilisatoren (Methylzellulose 0,5 kg) von zusammen 1,37 kg benötigt. Die Verluste bei der Massenbilanz werden in #1 mit "Verluste im Abwasser" 3 kg, "Verluste als PVC Staub" 1 kg und "sonstige Verluste" ca. 7,4 kg beziffert. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 0,72 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird in #1 mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet. Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/tP. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden die prozessbedingten VOC-Emissionen bei der PVC-Herstellung (Suspensionsverfahren) abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 kg VOC/t PVC. Dieser Wert wird bei GEMIS unter NMVOC aufgeführt. In #3 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Abfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von einer Tonne PVC werden insgesamt 104 t Wasser benötigt. 100 t werden davon als Kühlwasser, 1,0 t als Mitteldruckdampf verwendet. Bei den restlichen 3 t handelt es sich um entmineralisiertes Wasser (#1). Beim Suspensions- und Emulsionsverfahren entstehen VCM-belastete Abwässer (quantitative Angaben zu Abwasserfrachten liegen nicht vor). Im Ablauf von zentralen biologischen Abwasserreinigungsanlagen ist VCM in der Regel nicht nachweisbar. Wegen der Flüchtigkeit geben VCM-haltige Abwässer das Vinylchlorid relativ schnell an die Atmosphäre ab (UBA 1991). Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99% Produkt: Kunststoffe

LANUV-Jahresbericht 2015 liegt vor

Am 23. Juni hat das Landesamt für Natur, Umwelt und Verbraucherschutz in Essen seinen Jahresbericht 2015 vorgelegt. PCB in Grubenwasser und das Thema Klimaschutz und Klimaanpassung sind nur zwei Schwerpunkte der vorgestellten Ergebnisse. Der Bericht gibt Auskunft über weitere Schwerpunktthemen des vergangenen Jahres, wie z. B. Mikroschadstoffe im Rhein, Nitrat im Grundwasser, Antibiotikaeinsatz in der Tierhaltung, die Schadstoffbelastung der Luft in den Innenstädten und vieles mehr. Hohe Standards in der Umweltqualität lassen sich nur mit einer effizienten Überwachung erreichen. Dazu gehören Untersuchungsmethoden, die immer genauere Ergebnisse liefern. Oft sind es diese Messergebnisse, die zu neuen Entwicklungen in der Umwelttechnik führen, und damit zur Minderung von Schadstoffeinträgen in die Umwelt. Dass diese Neuentwicklungen nicht immer hochsensible und technisch aufwändige Geräte sein müssen, zeigte Dr. Thomas Delschen, Präsident des LANUV, heute am Beispiel der PCB-Untersuchungsmethodik. PCB in Grubenwasser Der Eintrag von PCB über Grubenwässer in Flüsse wurde in den vergangenen Monaten immer wieder diskutiert. PCB sind synthetische Chemikalien, die im Bergbau häufig in hydraulischen Anlagen eingesetzt wurden. In Wasser sind PCB kaum löslich. Und doch gelangen Sie mit dem Grubenwasser in die Umwelt, denn sie sind gebunden an Schwebstoffteilchen, die im Wasser enthalten sind. Für die effektive Überwachung des PCB im Grubenwasser müssen diese Schwebstoffe aus dem Wasser abgeschieden werden, um die Gehalte im Labor analysieren zu können. Hierzu erprobt das LANUV derzeit eine ebenso einfache wie wirkungsvolle Methode. In einem Senkkasten wird das Grubenwasser über eingebaute Hindernisse geführt, wodurch sich die Feststoffe am Boden absetzen. Ein Sondermessprogramm hat im vergangenen Jahr wichtige Informationen zu PCB-Konzentrationen im Grubenwasser geliefert. Die routinemäßige Überwachung der Flüsse gibt zusätzlich Auskunft darüber, wie sich die Einleitung auf deren Wasserqualität auswirkt. „Auch wenn in den Gewässern die Umweltqualitätsnormen eingehalten sind, muss alles getan werden, um die PCB-Frachten so gering wie möglich zu halten. Denn PCB sind hochgiftig und bauen sich in der Umwelt nur extrem langsam ab“ erklärt Dr. Delschen. Klimaschutz, Folgen des Klimawandels und Klimaanpassung Neben der Umweltbelastung, Naturschutzfragen oder dem Verbraucherschutz beschäftigt sich das LANUV sehr intensiv mit dem Klimaschutz und den Folgen des beginnenden Klimawandels. In den letzten Wochen hat es in Deutschland und auch in NRW ungewöhnlich oft sehr stark geregnet. Klimaexperten sind sich einig, dass eine bisher nicht gekannte Häufung solcher Ereignisse eine Folge des Klimawandels ist. Thomas Delschen vermutet: „Und dabei spüren wir heute wahrscheinlich nur die zaghaften Vorboten möglicher Auswirkungen. Sie zeigen uns aber schon jetzt sehr deutlich, dass alle Anstrengungen zum Klimaschutz notwendig sind“. Um die Emissionen von klimaschädlichen Gasen zu senken, verfolgt das LANUV die Strategie der drei großen „E“: Energieeinsparung, Energieeffizienz, erneuerbare Energien. Allein in Nordrhein-Westfalen wurden im Jahr 2014 etwa 290 Mio. Tonnen Treibhausgase aus Industrie, Verkehr, Landwirtschaft und Haushalten freigesetzt. NRW trägt pro Jahr etwa ein Drittel zu den bundesweiten Treibhausgas-Emissionen bei. Der größte Anteil davon entsteht in der Energiewirtschaft. Beinahe die Hälfte der CO 2 -Emmissionen, die in Deutschland durch Energieerzeugung entstehen, kommen aus Nordrhein-Westfalen. Das verwundert nicht, denn die großen Energieversorger betreiben zahlreiche Kraftwerke hier bei uns. Der Klimawandel hat in NRW längst begonnen. Die Folgen für Mensch und Natur zeigen auch unsere Mess- und Beobachtungsprogramme. Das Klima verhält sich träge, etwa wie ein riesengroßer behäbiger Hochseetanker. Daher ist zu erwarten, dass der Trend der letzten Jahrzehnte so schnell nicht zu bremsen ist. Deshalb müssen wir trotz aller Anstrengungen davon ausgehen, dass die Temperaturen weiter ansteigen und sich das Niederschlagsverhalten weiter ändern wird. Die Anpassung an die Folgen dieser Klimaveränderung wird eine der wichtigsten Aufgaben der Zukunft sein. Dabei werden die Folgen des Klimawandels lokal unterschiedlich sein. Landwirte im Münsterland, Forstwirte im Sauerland oder Stadtplaner in den Ballungsräumen werden jeweils vor ganz unterschiedlichen Herausforderungen stehen, um sich für die bevorstehenden Veränderungen zu rüsten. Mit Fachinformationssystemen bietet das LANUV den Akteuren Planungshilfen und Lösungen an, mit deren Hilfe sie auf den jeweiligen Standort zugeschnittene Vorkehrungen für die Klimaanpassung treffen können. Das LANUV hat auch untersucht, wieviel Potenzial für erneuerbare Energien in den einzelnen Regionen in NRW vorhanden ist. Solarenergie, Windkraft, Energie aus Biomasse oder Geothermie wurden betrachtet. Dabei geht es nicht nur um Strom, sondern auch um Wärme. Die Untersuchungen zeigten z. B., dass NRW mehr als die Hälfte seines Wärmebedarfs aus Geothermie decken könnte. Den Jahresbericht mit allen Schwerpunktthemen aus Natur, Umwelt und Verbraucherschutz in Nordrhein-Westfalen finden sie zum kostenlosen Download auf der Internetseite des LANUV: www.lanuv.nrw.de Download Pressemitteilung

Fachliche Unterstützung des BfS bei der Erstellung von Referenzbiosphärenmodellen für den radiologischen Langzeitsicherheitsnachweis von Endlagern - Biosphären-Szenarioanalyse für potentielle Endlagerstandorte - Vorhaben 3609S50004 - Bd. 2: Analyse der physikalischen Biosphäre in den Referenzregionen in Nord- und Süddeutschland

Bei der Endlagerung hoch- und mittelradioaktiver Abfälle ist ein Langzeitsicherheitsnachweis für den Endlagerstandort zu führen. In diesem ist darzulegen, welche radiologischen Belastungen für Mensch und Umwelt bei einer potentiellen Freisetzung von Radionukliden in die Biosphäre über einen Zeitraum von 1 Million Jahre auftreten können. In den Sicherheitsanforderungen für die Endlagerung von wärmeentwickelnden Abfällen /BMU10/ wird daher empfohlen, realitätsnahe Berechnungen für die potentielle Strahlenbelastung durchzuführen. Für die mögliche Entwicklung des Klimas, der Landschaft und Landnutzung sowie der menschlichen Gesellschaft sind daher Referenzbiosphären1 zu entwickeln /KIR09/. Diese werden aus zurückliegenden Entwicklungen eines Standortes abgeleitet. Von besonderem Interesse sind dabei Änderungen, die sich auf die Migrations- und Expositionspfade von Radionukliden in der Biosphäre auswirken können. Im vorliegenden Bericht wird die physikalische Biosphäre zweier Referenzregionen unter besonderer Berücksichtigung expositionsrelevanter Prozesse betrachtet. Diese umfassen insbesondere die Wechselwirkungen zwischen der Geo- und Biosphäre, wie die Um- und Ablagerung von Feststoffen und den Austausch von Wasser. Eine der Referenzregionen liegt im Raum Ulm eine andere wird aus Gebieten in der Region Elbe und Weser zusammengestellt /FOE09/. Die Auswahl erfolgte zum einen auf Grundlage der unterschiedlichen untersuchungswürdigen Wirtsgesteinsformationen Ton (Ulm, Weser) und Salz (Elbe), zum anderen aufgrund der unterschiedlichen vorhandenen Naturräume und zu erwartenden Referenzbiosphären. Die Zusammenlegung der norddeutschen Referenzregionen wurde durch die nahezu identischen Naturräume und zu erwartende Klimaentwicklung möglich.

Bericht: "Makrozoobenthos: Wesermündung (1975-2004)"

„Seit 1969 wird Abwasser aus der Titandioxidproduktion in die Wesermündung eingeleitet. Urheber ist die Firma Kronos Titan GmbH & Co. OHG, die in ihrem Werk in Nordenham aus norwegischem Titanerz (Ilmenit) unter Einsatz von Schwefelsäure (Sulfatverfahren) das Weißpigment Titandioxid gewinnt. Die Einleitungsstelle für die Abwässer, die nach der Richtlinie 92/112/EWG1 als „schwach saure Abfälle“ einzustufen sind, befindet sich in Höhe UW-km 65,8 am Grunde des Stromes. Die Hauptbestandteile des Abwassers bilden Schwefelsäure (H2SO4) und Eisensulfat (FeSO4). Daneben sind verschiedene Titanverbindungen und Spuren weiterer Metalle enthalten. Ein Überblick über die durchschnittlichen Netto-Jahresfrachten dieser Stoffe wird in Tabelle 2 gegeben. Durch die Richtlinie 78/176 EWG2 wird eine regelmäßige Überwachung der Umwelt im Bereich der Einleitungsstelle begründet. Unter anderem sind zu untersuchen „die Vielfalt sowie der relative und absolute Bestand der Tier- und Pflanzenwelt“ sowie „die toxischen Metalle im Wasser, in schwebenden Feststoffen, in den Sedimenten und, akkumuliert, in ausgewählten benthonischen und pelagischen Organismen“. Weitere Einzelheiten zur Überwachung sind in Anhang II der Richtlinie 82/883/EWG3 niedergelegt. Die biologische Überwachung (seit 1968) sowie die Überwachung der Anreicherung von toxischen Metallen (seit 1985) wird von der Forschungsstelle Küste Norderney (heute NLWKN) durchgeführt. Die Ergebnisse dieser Umweltüberwachung sind in verschiedenen Berichten bis einschließlich 1994 (Makrozoobenthos und Sedimente) bzw. 1992 (Metalle) dokumentiert (u. a. MICHAELIS 1973, GROTJAHN & MICHAELIS 1985, WIENECKE 1982, KOLBE 1997 und KOLBE 1995). Im Juni 2005 wurde die Firma bio-büro Norden durch den NLWKN – Betriebsstelle Brake Oldenburg mit der Auswertung der bis 2004 erhobenen Überwachungsdaten beauftragt.“

1 2 3 4 5140 141 142