API src

Found 3 results.

Modellerweiterung - Erweiterung des Land Use Allocation Models LUCALP

Das Projekt "Modellerweiterung - Erweiterung des Land Use Allocation Models LUCALP" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. Ziel dieses Projektes ist es, das Land Use Allocation Model LUCALP (Walz, 2006) flächenhaft auf das ganze Schweizer Berggebiet auszuweiten. LUCALP simuliert das räumliche Muster der durch einen Rückgang der Landwirtschaft und durch verändertes Klima verursachten Waldausdehnung, sowie der erweiterten Ausdehnung der Siedlungsflächen in einer Auflösung von 100m x 100m. Grundlage der Verteilungsmuster sind logistischen Regressionen, die auf der Basis der Arealstatistiken 1979-85 und 1992-97. Das ursprüngliche Model wurde im Rahmen das NFP48-Projektes ALPSCAPE entwickelt und beschränkt sich auf Simulationen im Raum der Landschaft Davos, Graubünden, Schweiz. Mit dem erweiterten Model sollen Szenarien simuliert werden, die dann weiter im Projekt Entwicklung und Leistungen von Schutzwäldern unter dem Einfluss des Klimawandels gefördert vom WSL-Forschungsprogramm 'Wald und Klima' zur großräumigen Abschätzung der Albedo verwendet werden.

Cross-sectional Statistical Analyses of Regional Climate Effects: Ricardian Analysis and Extensions

Das Projekt "Cross-sectional Statistical Analyses of Regional Climate Effects: Ricardian Analysis and Extensions" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Landwirtschaftliche Betriebslehre durchgeführt. This project aims at the improvement of methods that use cross-sectional data for the assessment of regional climate change impacts on agriculture. Firstly, reported land rental prices of the German districts will be explained by means of traditional Ricardian analysis using advanced spatial statistics. For the first time, different approaches to control for the districts' soil qualities will be compared. Secondly, relying on multinomial logit models we will try to explain the climate dependency of German land use structures in order to understand how farmers adapt to different climate settings. Thirdly, the impact of climate change will be assessed entering spatially adapted regional climate forecasts into the traditional Ricardian models and into the 'structural models'. Since a major shortcoming of climate change impact assessment based on Ricardian analysis consists in its disregard of adjustment costs, finally, a typology of corresponding transaction costs will be elaborated. In the light of this typology present and predicted land use patterns and resulting adaptation needs will be analysed. Regions where the needs to adapt and related costs will be presumably relatively important will be identified.

Quantification of functional hydro-biogeochemical indicators in Ecuadorian ecosystems and their reaction on global change

Das Projekt "Quantification of functional hydro-biogeochemical indicators in Ecuadorian ecosystems and their reaction on global change" wird vom Umweltbundesamt gefördert und von Universität Gießen, Institut für Landschaftsökologie und Ressourcenmanagement, Professur für Landschafts-, Wasser- und Stoffhaushalt durchgeführt. Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).

1