Das Projekt "The iron-snow regime in Fe-FeS cores: a numerical and experimental approach" wird/wurde ausgeführt durch: Helmholtz-Zentrum Dresden-Roßendorf, Institut für Fluiddynamik.In the Earth, the dynamo action is strongly linked to core freezing. There is a solid inner core, the growth of which provides a buoyancy flux that drives the dynamo. The buoyancy in this case derives from a difference in composition between the solid inner core and the fluid outer core. In planetary bodies smaller than the Earth, however, this core differentiation process may differ - Fe may precipitate at the core-mantle boundary (CMB) rather than in the center and may fall as iron snow and initially remelt with greater depth. A chemical stable sedimentation zone develops that comprises with time the entire core - at that time a solid inner core starts to grow. The dynamics of this system is not well understood and also whether it can generate a magnetic field or not. The Jovian moon Ganymede, which shows a present-day magnetic dipole field, is a candidate for which such a scenario has been suggested. We plan to study this Fe-snow regime with both a numerical and experimental approach. In the numerical study, we use a 2D/3D thermo-chemical convection model that considers crystallization and sinking of iron crystals together with the dynamics of the liquid core phase (for the 3D case the influence of the rotation of the Fe snow process is further studied).The numerical calculations will be complemented by two series of experiments: (1) investigations in metal alloys by means of X-ray radioscopy, and (2) measurements in transparent analogues by optical techniques. The experiments will examine typical features of the iron snow regime. On the one hand they will serve as a tool to validate the numerical approach and on the other hand they will yield important insight into sub-processes of the iron snow regime, which cannot be accessed within the numerical approach due to their complexity.
Das Projekt "Forschergruppe (FOR) 1740: Ein neuer Ansatz für verbesserte Abschätzungen des atlantischen Frischwasserhaushalts und von Frischwassertransporten als Teil des globalen Wasserkreislaufs, Variation of the fresh water in the western Nordic Seas" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung.The goal of this project is to capture and analyse fluctuations of the fresh water in the western Nordic Seas and to understand the related processes. The East Greenland Current in the Nordic Seas constitutes an important conduit for fresh water exiting the Arctic Ocean towards the North Atlantic. The Arctic Ocean receives huge amounts of fresh water by continental runoff and by import from the Pacific Ocean. Within the Arctic Ocean fresh water is concentrated at the surface through sea ice formation. The East Greenland Current carries this fresh water in variable fractions as sea ice and in liquid form; part of it enters the central Nordic Seas, via branching of the current and through eddies. It controls the intensity of deep water formation and dilutes the water masses which result from convection. The last decades showed significant changes of the fresh water yield and distribution in the Nordic Seas and such anomalies were found to circulate through the North Atlantic. In this project the fresh water inventory, its spatial distribution and its pathways between the East Greenland Current and the interior Greenland and Icelandic seas shall be captured by autonomous glider missions. The new measurements and existing data will, in combination with the modeling work of the research group, serve as basis for understanding the causes of the fresh water variability and their consequences for the North Atlantic circulation and deep water formation.
Das Projekt "BS2, Bioflotation von Sulfiden in Meerwasser" wird/wurde ausgeführt durch: Helmholtz-Zentrum Dresden-Roßendorf e.V., Helmholtz-Institut Freiberg für Ressourcentechnologie.
Das Projekt "COMPoSE: Charakterisierung der Verteilung der Eis- und Flüssigphase in Mischphasenwolken" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Leipzig, Institut für Meteorologie.Mischphasenwolken, in denen unterkühltes Flüssigwasser und Eiskristalle gleichzeitig auftreten, sind bisher nur unzureichend beschrieben, denn die akkurate Messung von Mischphasenwolken stellt eine Herausforderung dar. Besonders das Fehlen der vollständigen vertikalen Charakterisierung der Flüssigwasserkomponente ist ein Problem der derzeitig angewendeten Beobachtungsmethoden. Im Rahmen des vorgeschlagenen Projekts soll diese Beobachtungslücke durch Entwicklung neuer Methoden und den Einsatz neuer Modelle geschlossen werden. Mischphasenwolken werden mit modernsten Fernerkundungsinstrumenten wie Doppler-Wolkenradar sowie Doppler- und Polarisationslidar beobachtet werden. Die derzeitig zur Erfassung von unterkühlten Flüssigwasserschichten angewendete synergistische Beobachtung mit Wolkenradar und Lidar ist normalerweise bis zur Höhe limitiert, in der das Signal des Lidars vollständig ausgelöscht ist, was bei einer durchquerten optischen Dicke von etwa 3 geschieht. Das erlaubt meist die Detektion von nur einer Flüssigwasserschicht. Im Gegensatz dazu können Wolkenradare die gesamte Mischphasenwolke auch beim Auftreten mehrerer Flüssigwasserschichten durchdringen. Sie können daher genutzt werden, um die Verteilung der Wolkenphase in der gesamten vertikalen Säule zu bestimmen, wenn geeignete Algorithmen zur Identifikation von Flüssigwasser aus Radarmessungen entwickelt werden. Dafür soll das komplette Radardopplerspektrum analysiert werden, dessen Struktur durch die Mikrophysik und die Dynamik der Wolke bestimmt ist. Zudem soll das Radardopplerspektrum genutzt werden, um Vertikalwinde abzuleiten. Der Fokus des Projekts wird auf der vollständigen Charakterisierung von Fallstudien liegen. Dabei wird insbesondere untersucht werden, wie Vertikalwinde und Lufttemperatur die zeitliche Entwicklung der Partitionierung der Wolkenphasen beeinflussen, um so Einblick in den Lebenszyklus von Mischphasenwolken zu erhalten. In diesem Zusammenhang wird auch der Einfluss von Aerosolpartikeln auf die Wolkenphasenpartitionierung bestimmt werden. Die beobachteten Wolken werden dabei durch Rückwärtstrajektorien in Luftmassenherkunftsklassen unterteilt und es werden Modellvorhersagen sowie eine lidarbasierte Charakterisierung der Aerosoleigenschaften durchgeführt. Das vorgeschlagene Projekt geht über die Entwicklung von Fernerkundungstechniken in Mischphasenwolken hinaus. Ergebnisse eines auf den Messungen basierenden 1D-Mikrophysikmodells sollen als Eingabewerte für einen Vorwärtssimulator für Radardopplerspektren genutzt werden. Dessen Ausgabewerte wiederrum werden mit den beobachteten Dopplerspektren verglichen werden. Dadurch ergibt sich ein geschlossener Kreislauf aus Beobachtung und Modellierung, der es uns möglich machen wird, bestimmte mikrophysikalische Prozesse in Mischphasenwolken, wie z.B. Reif- und Graupelbildung, genauer zu verstehen.
Das Projekt "Verknüpfung von CFD und Tropfenpopulationsbilanzen (TPBM) in der Extraktion" wird/wurde ausgeführt durch: Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Lehrstuhl für Thermische Verfahrenstechnik.Der erste Teil des Forschungsvorhabens (Start April 2006) wurde erfolgreich abgeschlossen. Im folgenden werden die Erfolge des ersten Projektabschnitts und die Ziele und Ergebnisse des zweiten Projektabschnitts zusammengefasst. 1. Abschnitt: Zu Beginn des Projekts waren CFD-Simulationen von zweiphasigen flüssig-flüssig betriebenen Extraktionskolonnen in der Literatur quasi nicht vorhanden. Im ersten Teil wurden daher zunächst zweiphasige CFD.Simulationen mit konstanten Tropfendurchmessern ohne Berücksichtigung von Populationsbilanzen erfolgreich durchgeführt. In beiden CFD Tools konnten die ein- und zweiphasigen Strömungsbedingungen in einem Rotating Disc Contactor vorhergesagt werden (1,2). Ein- und zweiphasige Particle Image Velocimetry Messungen ermöglichten einen Vergleich und eine Validierung der Simulationen. Im nächsten Schritt wurden Methoden zur Lösung der Populationsbilanzen in die CFD codes integriert. Die Standardvorgehensweise ist, dass für jede Phase in CFD ein Fluid verwendet wird (Two-Fluid Model) und sich die disperse Tropfenphase mit dem Sauterdurchmesser (d32) bewegt, der mit Hilfe der Populationsbilanzen berechnet wird. Die klassischen Lösungsmethoden, Klassenmethode und Momentenmethode (Quadrature Method of Moments), wurden im Rahmen von Fluent untersucht (4). In diesem Zusammenhang wurden auch mehrere Literaturmodelle für Zerfall und Koaleszenz der Tropfen in Fluent integriert und verglichen. Es zeigte sich, dass eine Vorhersage der Tropfengröße in einer 5 Compartment Sektion eines RDC Extraktors, bei richtiger Wahl der Modelle, möglich ist. Bei der Kopplung zwischen CFD und PBM ist die Momentenmethode vorzuziehen, da hier der Rechenaufwand wesentlich geringer ist, bei besserer Genauigkeit des Sauterdurchmessers. Sowohl in Fluent als auch in FPM wurde die Sectional Quadrature Method of Moments (SQMOM) implementiert (5-7). Die SQMOM als eine adaptive Methode ist für die Verwendung in CFD sehr gut geeignet. Im Gegensatz zum Zwei-Fluid CFD-Modell können im Multi-Fluid Modell tropfengrößenspezifische Aufstiegsgeschwindigkeiten wiedergegben werden. 2. Abschnitt: Während die reine Verknüpfung und die Vorhersage der Zweiphasenströmung im ersten Forschungsabschnitt realisiert wurden, sollen im weiteren Forschungsvorhaben die Vorhersagemöglichkeiten weiterentwickelt werden. Ziele sind hierbei ein Turbulenzmodell für FPM zu realisieren und zu validieren, mit dessen Hilfe Zerfall und Koaleszenz der Tropfen modelliert werden. Am Lehrstuhl f. Thermische Verfahrenstechnik sind Untersuchungen zur Messung der Turbulenz und zum Zerfall der Tropfen geplant. Eine integrierte Betrachtung von experimentellen und simulierten Turbulenzgrößen zusammen mit Zerfall und Koaleszenz der Tropfen soll zu einer Verbesserung der Vorhersage führen. Die Berücksichtigung von Stofftransport mit Hilfe eines bivariaten Populationsbilanzmodells wird die Beschreibung des Stoffaustauschs ermöglichen. (Text gekürzt)
Das Projekt "Eine neuartige Beschreibung des Wärmetransports zwischen Flüssigkeiten und rauen Rissflächen in porösen Gesteinen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bochum, Institut für Geologie, Mineralogie und Geophysik, Arbeitsgruppe Hydrogeologie.Wärmetransfer in geklüfteten porösen Medien ist ein essentieller Prozess im Erdinnern. Er ist Triebkraft für zahlreiche Naturphänomene, wie Geysire, hydrothermische und vulkanische Systeme, als auch für Naturgefahren wie Gesteinsbrüche und Erdbeben. Er bildet die Grundlage für industrielle Anwendungen, etwa im Bereich Geothermie. Die Fließbewegung in Risssystemen kann recht gut beschrieben werden. Es existiert eine breite Auswahl an Ansätzen, u. a. aus der Kontinuumsmechanik, multiple Medien und die explizite Beschreibung von Klüften. Allerdings haben existierende Modelle für den Wärmetransfer zwei große Schwachpunkte: Oft wird ein thermisches Gleichgewicht zwischen Gestein und Fluid vorausgesetzt und die Rolle der Risse vernachlässigt. Beides ist eng miteinander verbunden, da Risse mit hohen Fließgeschwindigkeiten eine Ursache für ein thermisches Ungleichgewicht sind und eine passende Beschreibung des Wärmetransfers in Rissen fehlt. In diesem Projekt wird ein neuartiges Modell entwickelt, um Wärmetransfer in Klüften unter Berücksichtigung mikroskopischer Rissoberflächenmorphologie zu beschreiben. Aktuelle Laborexperimente erlauben eine Analyse dieser Prozesse in bisher unbekannter Genauigkeit und ermöglichen einen tief gehenden Vergleich mit theoretischen Modellen. Oberflächenrauhigkeit, Öffnungsweite und Kontaktfläche beeinflussen Fließfeld wie Wärmetransfer. Gleichzeitig verändert Temperatur die Fluideigenschaften, und Risscharakteristiken hängen vom Spannungsfeld ab, welches wiederum von Temperatur und Fluiddruck abhängt. Ein passendes Wärmemodell muss daher auch hydraulische und mechanische Prozesse berücksichtigen, was in einem vollständig gekoppelten thermisch-hydraulisch-mechanischen Modell resultiert. Die theoretische Modellentwicklung beginnt mit einfachen Geometrien, um gute Vergleichbarkeit mit Laborergebnissen von externen Projektpartnern im Centimeterbereich zu ermöglichen. Daran schließt sich die Erweiterung auf komplexe Kluftnetzwerke an. Um auch für Anwendungen mit hunderten Metern Ausdehnung geeignet zu sein, wird das Modell mit statistischen Methoden skaliert und durch andere Parameter beschrieben, wie der Rissdichte. Anwendung auf Feldskala und Vergleich mit Messungen dienen zur Evaluation. Eine Einbindung des entwickelten Modells in eine Auswahl an wissenschaftlichen Softwareprogrammen ist geplant. Dieser innovative Ansatz kann in unterschiedlichen Modellen unabhängig von der gewählten Rissrepräsentation verwendet werden. Das vorgeschlagene Projekt schließt die lang existierende Lücke einer über die Skalen konsistenten Beschreibung des Wärmetransfers in geklüfteten porösen Medien unter Berücksichtigung statischer wie dynamischer Größen. Erstmals wird es möglich sein den Einfluss und die Interaktion einzelner Bedingungen und Gegebenheiten auf den Wärmetransfer und -transport im Detail zu untersuchen. Die Bestimmung der transferierten Wärme in natürlichen und industriellen Anwendungen wird sich dadurch signifikant verbessern.
Das Projekt "H2Giga_NG5_AEM-Direkt: Direktbeschichtung von anionenleitenden Membranen für großskalige Wasserelektrolyseure, Teilvorhaben: Chemische und elektrochemische Abscheidung Elektrokatalysator auf Membran und Stromverteiler" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Dr.-Ing. Max Schlötter GmbH & Co. KG.
Das Projekt "Zur Bestimmung kinetischer Daten und zur Verbesserung der Reaktionsführung bei heterogen-katalysierten Gas-Flüssig-Reaktionen - Untersuchungen anhand ausgewählter Reaktionen aus der Raffinerietechnik und Petrochemie" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bayreuth, Lehrstuhl für Chemische Verfahrenstechnik.Im Rahmen des geplanten Forschungsvorhabens soll eine verbesserte Methode zur Bestimmung kinetischer Daten von Mehrphasenreaktionen entwickelt und getestet werden. Dabei soll ein Zweiphasenreaktor (Flüssigkeit und Katalysator) mit einer Vorsättigung der flüssigen Phase (z.B. bei Hydrierungen mit Wasserstoff) eingesetzt werden. Da nur eine fluide Phase vorliegt, wird der Einfluss der Fluiddynamik überschaubar. Da außerdem kein Stofftransport mehr aus der Gasphase in die Flüssigkeit erfolgt, bestimmen neben der chemischen Reaktion 'nur' noch Diffusionsvorgänge in der flüssigen (Kern)Phase bzw. in den Katalysatorproben die (effektive) Reaktionskinetik. Dieses wesentlich einfachere Reaktionssystem kann sehr genau untersucht werden, und zwar unter Bedingungen (Partikelgröße, Fluidgeschwindigkeit), die auch in technischen Reaktoren herrschen. Durch den anschließenden Vergleich mit Untersuchungen in einem Dreiphasenreaktor kann dann der Einfluss der Fluiddynamik und des Stofftransportes Gas/Flüssigkeit besser als mit den oben beschriebenen üblichen Methoden beurteilt werden. Diese Methode bietet sich allerdings nicht nur für kinetische Untersuchungen an, sondern auch für eine verbesserte Reaktionsführung bei Mehrphasenreaktionen. (...) Folgende Reaktionen, die in der chemischen Praxis bisher in Dreiphasen-Festbettreaktoren durchgeführt wurden, sollen näher untersucht werden: Hydrierung ungesättigter Kohlenwasserstoffe, Entschwefelung von Erdölfraktionen, die Hydrierung von Nitroaromaten, die Umsetzung von Kohlenmonoxid mit Wasserstoff in höhere Kohlenwasserstoffe wie z.B. Dieselöl durch Fischer-Tropsch-Synthese. Diese Modellsysteme wurden ausgewählt, da sie sich hinsichtlich der Kinetik und der notwendigen Reaktionsführung sehr deutlich unterscheiden. Auf diese Weise soll das Prinzip des Zweiphasenreaktors mit Vorsättigung der flüssigen Phase als Methode für kinetische Untersuchungen und als eine Alternative im Hinblick auf die Reaktionsführung von Mehrphasenreaktoren auf einer möglichst breiten Basis untersucht werden.
Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Nichtmischbare Sulfidschmelzen: Einblicke in Fraktionierungsprozesse chalkophiler Elemente in der ozeanischen Kruste" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Erlangen-Nürnberg, Geozentrum Nordbayern, Lehrstuhl für Geologie (Endogene Geodynamik).Nichtmischbare Sulfidschmelzen sind in der ozeanischen Kruste als magmatische Sulfide erhalten und zeichnen die Entwicklung von S und chalkophilen Elementen im magmatischen System auf. Neuste Ergebnisse zeigen systematische Unterschiede in deren Mineralogie und Chemie zwischen konvergenten und divergenten Plattengrenzen, die Prozesse die hierfür verantwortlich sind, sowie deren Einfluss auf die Verteilung chalkophiler Elemente sind jedoch weitestgehend unbekannt. Faktoren die die Löslichkeit von S in Silikatschmelzen kontrollieren beinhalten: (1) Temperatur, (2) Druck, (3) Sauerstofffugazität und (4) Fraktionierungsgrad. Die Bedingungen bei der Aufschmelzung des oberen Mantels und der Differentiation von Magmen in der Kruste unterscheiden sich zwischen Mittelozeanischen Rücken und Subduktionszonen, der Einfluss dieser Prozesse auf die Verteilung von S, Metallen und Halbmetallen in Magmen ist jedoch schlecht verstanden. Diese Prozesse kontrollieren die Entwicklung und den Kreislauf von S und chalkophilen Elementen in der ozeanischen Lithosphäre, die Zusammensetzung hydrothermaler Sulfide am Meeresboden, die Bildung der kontinentalen Kruste, die Zusammensetzung von vulkanischen Gasen und möglicherweise von epithermal-porphyrischen Lagerstätten.Diese Fragen sollen im Rahmen des Projekts bearbeitet werden, indem der magmatische Fluss von Metallen und Halbmetallen (z.B. Co, Ni, Cu, Se, Ag, Te, PGE, Au, Bi) durch die ozeanische Lithosphäre an Mittelozeanischen Rücken und ozeanischen Subduktionszonen untersucht wird. Neuste Methoden ermöglichen es die Spurenelementgehalte in magmatischen Sulfiden aus allen Abschnitten der ozeanischen Lithosphäre erstmals aus einer globalen Perspektive und unter Berücksichtigung des plattentektonischen Milieus und der zeitlichen Entwicklung des Systems zu messen. Proben die die initiale Phase ozeanischer Spreizung beim Zerbrechen eines Kontinents, sowie heutige vulkanische Aktivität an Mittelozeanischen Rücken dokumentierend ermöglichen es zusammen mit einer Abfolge von den jüngsten Laven am Meeresboden zu den ältesten am Übergang zu den Sheeted Dykes, die zeitliche Entwicklung des magmatischen Systems in hoher Auflösung zu untersuchen. Hierfür ist eine kontinuierliche Beprobung vom oberen Lithosphärenmantel bis in die oberste Kruste notwendig, was nur mit Bohrkernen aus DSPD, ODP und IODP Expeditionen möglich ist. Wir haben entsprechende Bohrkerne identifiziert und zusammen mit Proben vom Meeresboden und aus alter ozeanischer Lithosphäre (z.B. Troodos Ophiolith) kann ein vollständiges Spektrum von Perdiotiten des oberen Mantels, Grabbros der unteren Kruste, Sheeted Dykes und Laven basaltischer bis rhyolitischer Zusammensetzung untersucht werden. Magmatische Sulfide sind in vielen dieser Proben bekannt. Durch diesen Ansatz können erstmals Modelle entwickelt werden die den magmatischen Kreislauf chalkophiler Spurenelemente durch die gesamte ozeanische Lithosphäre an konvergenten und divergenten Plattengrenzen abbilden.
Das Projekt "H2Giga_NG5_AEM-Direkt: Direktbeschichtung von anionenleitenden Membranen für großskalige Wasserelektrolyseure" wird/wurde ausgeführt durch: Siemens Energy Global GmbH & Co. KG.
Origin | Count |
---|---|
Bund | 893 |
Kommune | 1 |
Land | 9 |
Wissenschaft | 12 |
Type | Count |
---|---|
Förderprogramm | 893 |
License | Count |
---|---|
offen | 893 |
Language | Count |
---|---|
Deutsch | 801 |
Englisch | 171 |
Resource type | Count |
---|---|
Keine | 512 |
Webseite | 381 |
Topic | Count |
---|---|
Boden | 628 |
Lebewesen & Lebensräume | 608 |
Luft | 494 |
Mensch & Umwelt | 893 |
Wasser | 484 |
Weitere | 893 |