API src

Found 877 results.

The iron-snow regime in Fe-FeS cores: a numerical and experimental approach

Das Projekt "The iron-snow regime in Fe-FeS cores: a numerical and experimental approach" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Dresden-Roßendorf, Institut für Fluiddynamik durchgeführt. In the Earth, the dynamo action is strongly linked to core freezing. There is a solid inner core, the growth of which provides a buoyancy flux that drives the dynamo. The buoyancy in this case derives from a difference in composition between the solid inner core and the fluid outer core. In planetary bodies smaller than the Earth, however, this core differentiation process may differ - Fe may precipitate at the core-mantle boundary (CMB) rather than in the center and may fall as iron snow and initially remelt with greater depth. A chemical stable sedimentation zone develops that comprises with time the entire core - at that time a solid inner core starts to grow. The dynamics of this system is not well understood and also whether it can generate a magnetic field or not. The Jovian moon Ganymede, which shows a present-day magnetic dipole field, is a candidate for which such a scenario has been suggested. We plan to study this Fe-snow regime with both a numerical and experimental approach. In the numerical study, we use a 2D/3D thermo-chemical convection model that considers crystallization and sinking of iron crystals together with the dynamics of the liquid core phase (for the 3D case the influence of the rotation of the Fe snow process is further studied).The numerical calculations will be complemented by two series of experiments: (1) investigations in metal alloys by means of X-ray radioscopy, and (2) measurements in transparent analogues by optical techniques. The experiments will examine typical features of the iron snow regime. On the one hand they will serve as a tool to validate the numerical approach and on the other hand they will yield important insight into sub-processes of the iron snow regime, which cannot be accessed within the numerical approach due to their complexity.

Teilvorhaben: Herstellung und Test der Kompaktate

Das Projekt "Teilvorhaben: Herstellung und Test der Kompaktate" wird vom Umweltbundesamt gefördert und von DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH durchgeführt. Zur Entfernung von Schwefelwasserstoff aus Biogas ist der Einsatz von fossil basierter Aktivkohle in der Gasphase bzw. von Eisenpräparaten in der Flüssigphase bereits gängige Praxis. Des Weiteren wird im Rahmen wissenschaftlicher Untersuchungen zunehmend der stabilisierende und effizienzsteigernde Effekt von kohlenstoffhaltigen bzw. leitfähigen Additiven wie z.B. Biokohle im Rahmen des Biogasprozesses aufgezeigt. Im Rahmen des Vorhabens CarboFerro wird daher ein kompaktiertes Kohlenstoff-Eisen-Kompaktat entwickelt werden, welches sowohl für die Biogasreinigung (als Aktivkohleersatz) als auch für die Stabilisierung des Biogasprozesses (als Prozessadditiv), eingesetzt werden kann. Die notwendigen Ausgangsstoffe zur Herstellung der Kompaktate sind Pyrolysekohle aus holzartiger Biomasse sowie ein Eisenmineralgemisch (Eisen(III)-hydroxid). Die übergeordnete Zielstellung des Vorhabens CarboFerro ist daher die Entwicklung eines Kohlenstoff-Eisen-Kompaktates sowie dessen Evaluation im Labormaßstab sowie unter praxisnahen Bedingungen an der Forschungsbiogasanlage des DBFZ.

BS2, Bioflotation von Sulfiden in Meerwasser

Das Projekt "BS2, Bioflotation von Sulfiden in Meerwasser" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Dresden-Roßendorf e.V., Helmholtz-Institut Freiberg für Ressourcentechnologie durchgeführt.

Anlagenbezogener Gewaesserschutz bei einem 380-kV-Drehstrom-Kabelsystem

Das Projekt "Anlagenbezogener Gewaesserschutz bei einem 380-kV-Drehstrom-Kabelsystem" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für wassergefährdende Stoffe (IWS) e.V. durchgeführt. West-Berlin stellte seit dem 2. Weltkrieg auch von der Stromversorgung her eine Insel dar. Die BEWAG beabsichtigte deshalb 1990, die Stadt ueber ein 380-kV-Drehstrom-System an das westeuropaeische Verbundnetz anzuschliessen. Der Leitungsbau war noch mit der DDR-Regierung ausgehandelt worden. Ausserhalb der Stadtgrenze sollte das System als Freileitung gefuehrt, innerhalb der Stadt vom Teufelsbruch bis zum Kraftwerk Reuter dann auf Senatsbeschluss aus Gruenden der Sicherheit, des Umwelt- und des Landschaftsschutzes unterirdisch gelegt werden. Die BEWAG betrieb bereits eine aehnliche unterirdische Kabelanlage in der Stadt, die als Referenzobjekt dienen konnte. Unterirdische Stromkabel beduerfen einer elektrischen Isolierung. In der Regel besteht sie aus oelgetraenktem Papier (erst neueste Entwicklungen verwenden oelfreie Isolierungen aus Polyethylen). Im Inneren eines solchen Kabels befindet sich ein Kupferhohlleiter, in den sich freies Isolieroel, das nicht an das Papier gebunden ist, bewegen kann. Das Isolieroel ist eine wassergefaehrdende Fluessigkeit. Ein solches Kabel stellt also eine Anlage zum Verwenden wassergefaehrdender Stoffe im Sinne des Paragraphen 19g (1) Wasserhaushaltsgesetz dar. Im Einvernehmen mit der Senatsverwaltung fuer Stadtentwicklung und Umweltschutz als zustaendiger Wasserbehoerde wurde das IWS von der BEWAG beauftragt, die Planungen der Anlage bezueglich des Boden- und Grundwasserschutzes zu untersuchen und festzustellen, ob von ihr keine Besorgnis einer Gewaessergefaehrdung ausginge.

Verknüpfung von CFD und Tropfenpopulationsbilanzen (TPBM) in der Extraktion

Das Projekt "Verknüpfung von CFD und Tropfenpopulationsbilanzen (TPBM) in der Extraktion" wird vom Umweltbundesamt gefördert und von Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Lehrstuhl für Thermische Verfahrenstechnik durchgeführt. Der erste Teil des Forschungsvorhabens (Start April 2006) wurde erfolgreich abgeschlossen. Im folgenden werden die Erfolge des ersten Projektabschnitts und die Ziele und Ergebnisse des zweiten Projektabschnitts zusammengefasst. 1. Abschnitt: Zu Beginn des Projekts waren CFD-Simulationen von zweiphasigen flüssig-flüssig betriebenen Extraktionskolonnen in der Literatur quasi nicht vorhanden. Im ersten Teil wurden daher zunächst zweiphasige CFD.Simulationen mit konstanten Tropfendurchmessern ohne Berücksichtigung von Populationsbilanzen erfolgreich durchgeführt. In beiden CFD Tools konnten die ein- und zweiphasigen Strömungsbedingungen in einem Rotating Disc Contactor vorhergesagt werden (1,2). Ein- und zweiphasige Particle Image Velocimetry Messungen ermöglichten einen Vergleich und eine Validierung der Simulationen. Im nächsten Schritt wurden Methoden zur Lösung der Populationsbilanzen in die CFD codes integriert. Die Standardvorgehensweise ist, dass für jede Phase in CFD ein Fluid verwendet wird (Two-Fluid Model) und sich die disperse Tropfenphase mit dem Sauterdurchmesser (d32) bewegt, der mit Hilfe der Populationsbilanzen berechnet wird. Die klassischen Lösungsmethoden, Klassenmethode und Momentenmethode (Quadrature Method of Moments), wurden im Rahmen von Fluent untersucht (4). In diesem Zusammenhang wurden auch mehrere Literaturmodelle für Zerfall und Koaleszenz der Tropfen in Fluent integriert und verglichen. Es zeigte sich, dass eine Vorhersage der Tropfengröße in einer 5 Compartment Sektion eines RDC Extraktors, bei richtiger Wahl der Modelle, möglich ist. Bei der Kopplung zwischen CFD und PBM ist die Momentenmethode vorzuziehen, da hier der Rechenaufwand wesentlich geringer ist, bei besserer Genauigkeit des Sauterdurchmessers. Sowohl in Fluent als auch in FPM wurde die Sectional Quadrature Method of Moments (SQMOM) implementiert (5-7). Die SQMOM als eine adaptive Methode ist für die Verwendung in CFD sehr gut geeignet. Im Gegensatz zum Zwei-Fluid CFD-Modell können im Multi-Fluid Modell tropfengrößenspezifische Aufstiegsgeschwindigkeiten wiedergegben werden. 2. Abschnitt: Während die reine Verknüpfung und die Vorhersage der Zweiphasenströmung im ersten Forschungsabschnitt realisiert wurden, sollen im weiteren Forschungsvorhaben die Vorhersagemöglichkeiten weiterentwickelt werden. Ziele sind hierbei ein Turbulenzmodell für FPM zu realisieren und zu validieren, mit dessen Hilfe Zerfall und Koaleszenz der Tropfen modelliert werden. Am Lehrstuhl f. Thermische Verfahrenstechnik sind Untersuchungen zur Messung der Turbulenz und zum Zerfall der Tropfen geplant. Eine integrierte Betrachtung von experimentellen und simulierten Turbulenzgrößen zusammen mit Zerfall und Koaleszenz der Tropfen soll zu einer Verbesserung der Vorhersage führen. Die Berücksichtigung von Stofftransport mit Hilfe eines bivariaten Populationsbilanzmodells wird die Beschreibung des Stoffaustauschs ermöglichen. (Text gekürzt)

COMPoSE: Charakterisierung der Verteilung der Eis- und Flüssigphase in Mischphasenwolken

Das Projekt "COMPoSE: Charakterisierung der Verteilung der Eis- und Flüssigphase in Mischphasenwolken" wird vom Umweltbundesamt gefördert und von Universität Leipzig, Institut für Meteorologie durchgeführt. Mischphasenwolken, in denen unterkühltes Flüssigwasser und Eiskristalle gleichzeitig auftreten, sind bisher nur unzureichend beschrieben, denn die akkurate Messung von Mischphasenwolken stellt eine Herausforderung dar. Besonders das Fehlen der vollständigen vertikalen Charakterisierung der Flüssigwasserkomponente ist ein Problem der derzeitig angewendeten Beobachtungsmethoden. Im Rahmen des vorgeschlagenen Projekts soll diese Beobachtungslücke durch Entwicklung neuer Methoden und den Einsatz neuer Modelle geschlossen werden. Mischphasenwolken werden mit modernsten Fernerkundungsinstrumenten wie Doppler-Wolkenradar sowie Doppler- und Polarisationslidar beobachtet werden. Die derzeitig zur Erfassung von unterkühlten Flüssigwasserschichten angewendete synergistische Beobachtung mit Wolkenradar und Lidar ist normalerweise bis zur Höhe limitiert, in der das Signal des Lidars vollständig ausgelöscht ist, was bei einer durchquerten optischen Dicke von etwa 3 geschieht. Das erlaubt meist die Detektion von nur einer Flüssigwasserschicht. Im Gegensatz dazu können Wolkenradare die gesamte Mischphasenwolke auch beim Auftreten mehrerer Flüssigwasserschichten durchdringen. Sie können daher genutzt werden, um die Verteilung der Wolkenphase in der gesamten vertikalen Säule zu bestimmen, wenn geeignete Algorithmen zur Identifikation von Flüssigwasser aus Radarmessungen entwickelt werden. Dafür soll das komplette Radardopplerspektrum analysiert werden, dessen Struktur durch die Mikrophysik und die Dynamik der Wolke bestimmt ist. Zudem soll das Radardopplerspektrum genutzt werden, um Vertikalwinde abzuleiten. Der Fokus des Projekts wird auf der vollständigen Charakterisierung von Fallstudien liegen. Dabei wird insbesondere untersucht werden, wie Vertikalwinde und Lufttemperatur die zeitliche Entwicklung der Partitionierung der Wolkenphasen beeinflussen, um so Einblick in den Lebenszyklus von Mischphasenwolken zu erhalten. In diesem Zusammenhang wird auch der Einfluss von Aerosolpartikeln auf die Wolkenphasenpartitionierung bestimmt werden. Die beobachteten Wolken werden dabei durch Rückwärtstrajektorien in Luftmassenherkunftsklassen unterteilt und es werden Modellvorhersagen sowie eine lidarbasierte Charakterisierung der Aerosoleigenschaften durchgeführt. Das vorgeschlagene Projekt geht über die Entwicklung von Fernerkundungstechniken in Mischphasenwolken hinaus. Ergebnisse eines auf den Messungen basierenden 1D-Mikrophysikmodells sollen als Eingabewerte für einen Vorwärtssimulator für Radardopplerspektren genutzt werden. Dessen Ausgabewerte wiederrum werden mit den beobachteten Dopplerspektren verglichen werden. Dadurch ergibt sich ein geschlossener Kreislauf aus Beobachtung und Modellierung, der es uns möglich machen wird, bestimmte mikrophysikalische Prozesse in Mischphasenwolken, wie z.B. Reif- und Graupelbildung, genauer zu verstehen.

Teilvorhaben: Thermische Direktbeschichtung Transportschicht und Funktionscharakterisierung Elektroden

Das Projekt "Teilvorhaben: Thermische Direktbeschichtung Transportschicht und Funktionscharakterisierung Elektroden" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Technische Thermodynamik durchgeführt. Elektrolyseure mit anionenleitenden Trennmembranen (AEM) vereinigen die Vorteile einer protonenleitenden Polymerelektrolytmembranwasserelektrolyse mit denen der alkalischen Elektrolyse, sofern diese großskalig hergestellt werden können. In AEM-Direkt werden Direktbeschichtungstechnologien zur Herstellung von CCMs (Catalyst Coated Membran) und CCSs (Catalyst Coated Substrates z.B. Stromkollektoren) gegeneinander verglichen. Die Elektrokatalysatoren basieren auf Nickel oder Nickellegierungen, die zudem noch Phosphor oder Schwefel, je nach Abscheidemethode enthalten können. Im AEM-Direkt werden folgende Beschichtungen aus der Flüssigphase untersucht: - Schlitzdüsenbeschichtung bzw. Rackeln von Katalysatorpasten - Elektrochemische (galvanische) Abscheidung - Chemische (stromlose) Abscheidung - Solvothermische Abscheidung Im AEM-Direkt werden folgende Beschichtungen aus der Gasphase untersucht: - Sputtern - Lichtbogenverdampfung - Thermisches Spritzen Die Bewertung der elektrochemischen Aktivität der Schichten wird an einer einheitlichen Verbund-Zelle auf 25 cm² durchgeführt. Gatemeilensteine entscheiden, welche Proben in einem Zellstapel von 6 x 300cm² bis zu 500 h im Dauerbetrieb geprüft werden. Die AEM-Direkt-Ziele sind: - Zellspannung kleiner als 1.9 V bei 1.5 A /cm² und 70°C - Degradation nach 500 h kleiner als 10 µV/h unter Konstantstrombedingungen - Gasübertritt nach 500h: H2 in O2 kleiner als 0.8 % und O2 in H2 kleiner als 0.3 % Der Probenaustausch im Verbund wird über Round-Robin Kampagnen periodisch gesteuert. Das DLR übernimmt im Projekt AEM-Direkt das Design und die Optimierung von porösen Transportschichten (PTS). Die entwickelten Schichten werden u.a. via FIB-SEM untersucht, um Wirkung im Elektrolyseur mit der physikalischen Beschaffenheit zu korrelieren und zu verstehen. Das DLR wird mit Hilfe eines AEMEL-Teststands die im Projekt entwickelten Komponenten elektrochemisch charakterisieren. Weiterhin wird das DLR die entwickelten Elektroden in-situ via NAP-XPS untersuchen.

Stofftransport bei der Rektifikation von Zwei- und Dreistoffgemischen

Das Projekt "Stofftransport bei der Rektifikation von Zwei- und Dreistoffgemischen" wird vom Umweltbundesamt gefördert und von Berliner Hochschule für Technik, Fachbereich VIII Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik durchgeführt. Sehr haeufig werden fuer die Rektifikation Fuellkoerperkolonnen eingesetzt. Fuer die Dimensionierung dieser Kolonnen muss der Stoffdurchgangskoeffizient bekannt sein, der sich aus den Stoffuebergaengen auf der Dampf- und Fluessigkeitsseite berechnen laesst. Mit den hierfuer bekannten Gleichungen erhaelt man Werte, die erheblich von den gemessenen Werten abweichen. Im Labor fuer thermische Verfahrenstechnik der Technischen Fachhochschule Berlin wird an einer Versuchskolonne der Stoffdurchgang fuer Zwei- und Dreikomponentensysteme ermittelt.

Teilvorhaben: Stackdesign & elektrochemische Charakterisierung

Das Projekt "Teilvorhaben: Stackdesign & elektrochemische Charakterisierung" wird vom Umweltbundesamt gefördert und von Siemens Energy Global GmbH & Co. KG durchgeführt. Elektrolyseure mit anionenleitenden Trennmembranen (AEM) vereinigen die Vorteile einer protonenleitenden Polymerelektrolytmembranwasserelektrolyse mit denen der alkalischen Elektrolyse, sofern diese großskalig hergestellt werden können. In AEM-Direkt werden Direktbeschichtungstechnologien zur Herstellung von CCMs (Catalyst Coated Membran) und CCSs (Catalyst Coated Substrates z.B. Stromkollektoren) gegeneinander verglichen. Die Elektrokatalysatoren basieren auf Nickel oder Nickellegierungen, die zudem noch Phosphor oder Schwefel, je nach Abscheidemethode enthalten können. Im AEM-Direkt werden folgende Beschichtungen aus der Flüssigphase untersucht: - Schlitzdüsenbeschichtung bzw. Rackeln von Katalysatorpasten - Elektrochemische (galvanische) Abscheidung - Chemische (stromlose) Abscheidung - Solvothermische Abscheidung Im AEM-Direkt werden folgende Beschichtungen aus der Gasphase untersucht: - Sputtern - Lichtbogenverdampfung - Thermisches Spritzen Die Bewertung der elektrochemischen Aktivität der Schichten wird an einer einheitlichen Verbund-Zelle auf 25 cm² durchgeführt. Gatemeilensteine entscheiden, welche Proben in einem Zellstapel von 6 x 300cm² bis zu 500 h im Dauerbetrieb geprüft werden. Die AEM-Direkt-Ziele sind: - Zellspannung kleiner als 1.9 V bei 1.5 A /cm² und 70°C - Degradation nach 500 h kleiner als 10 µV/h unter Konstantstrombedingungen - Gasübertritt nach 500h: H2 in O2 kleiner als 0.8 % und O2 in H2 kleiner als 0.3 % Der Probenaustausch im Verbund wird über Round-Robin Kampagnen periodisch gesteuert. Siemens Energy (SE) legt mittels FEM- und CFD-Simulation eine 5000 cm² stapelbare Elektrolysezelle aus, die verkleinert in einem Stack von 6 x 300 cm² mit automatisierter Verfahrenstechnik realisiert wird (weitere Testkapazität: Einzelzelle 4 x 25 cm²; Stack 6 x 50 cm²). SE fokussiert auf die Abscheidung mittels Schlitzdüse und Rakeln und stellt Referenzkatalysatoren und Elektrolyseurkomponenten bereit.

Eine neuartige Beschreibung des Wärmetransports zwischen Flüssigkeiten und rauen Rissflächen in porösen Gesteinen

Das Projekt "Eine neuartige Beschreibung des Wärmetransports zwischen Flüssigkeiten und rauen Rissflächen in porösen Gesteinen" wird vom Umweltbundesamt gefördert und von Universität Bochum, Institut für Geologie, Mineralogie und Geophysik, Arbeitsgruppe Hydrogeologie durchgeführt. Wärmetransfer in geklüfteten porösen Medien ist ein essentieller Prozess im Erdinnern. Er ist Triebkraft für zahlreiche Naturphänomene, wie Geysire, hydrothermische und vulkanische Systeme, als auch für Naturgefahren wie Gesteinsbrüche und Erdbeben. Er bildet die Grundlage für industrielle Anwendungen, etwa im Bereich Geothermie. Die Fließbewegung in Risssystemen kann recht gut beschrieben werden. Es existiert eine breite Auswahl an Ansätzen, u. a. aus der Kontinuumsmechanik, multiple Medien und die explizite Beschreibung von Klüften. Allerdings haben existierende Modelle für den Wärmetransfer zwei große Schwachpunkte: Oft wird ein thermisches Gleichgewicht zwischen Gestein und Fluid vorausgesetzt und die Rolle der Risse vernachlässigt. Beides ist eng miteinander verbunden, da Risse mit hohen Fließgeschwindigkeiten eine Ursache für ein thermisches Ungleichgewicht sind und eine passende Beschreibung des Wärmetransfers in Rissen fehlt. In diesem Projekt wird ein neuartiges Modell entwickelt, um Wärmetransfer in Klüften unter Berücksichtigung mikroskopischer Rissoberflächenmorphologie zu beschreiben. Aktuelle Laborexperimente erlauben eine Analyse dieser Prozesse in bisher unbekannter Genauigkeit und ermöglichen einen tief gehenden Vergleich mit theoretischen Modellen. Oberflächenrauhigkeit, Öffnungsweite und Kontaktfläche beeinflussen Fließfeld wie Wärmetransfer. Gleichzeitig verändert Temperatur die Fluideigenschaften, und Risscharakteristiken hängen vom Spannungsfeld ab, welches wiederum von Temperatur und Fluiddruck abhängt. Ein passendes Wärmemodell muss daher auch hydraulische und mechanische Prozesse berücksichtigen, was in einem vollständig gekoppelten thermisch-hydraulisch-mechanischen Modell resultiert. Die theoretische Modellentwicklung beginnt mit einfachen Geometrien, um gute Vergleichbarkeit mit Laborergebnissen von externen Projektpartnern im Centimeterbereich zu ermöglichen. Daran schließt sich die Erweiterung auf komplexe Kluftnetzwerke an. Um auch für Anwendungen mit hunderten Metern Ausdehnung geeignet zu sein, wird das Modell mit statistischen Methoden skaliert und durch andere Parameter beschrieben, wie der Rissdichte. Anwendung auf Feldskala und Vergleich mit Messungen dienen zur Evaluation. Eine Einbindung des entwickelten Modells in eine Auswahl an wissenschaftlichen Softwareprogrammen ist geplant. Dieser innovative Ansatz kann in unterschiedlichen Modellen unabhängig von der gewählten Rissrepräsentation verwendet werden. Das vorgeschlagene Projekt schließt die lang existierende Lücke einer über die Skalen konsistenten Beschreibung des Wärmetransfers in geklüfteten porösen Medien unter Berücksichtigung statischer wie dynamischer Größen. Erstmals wird es möglich sein den Einfluss und die Interaktion einzelner Bedingungen und Gegebenheiten auf den Wärmetransfer und -transport im Detail zu untersuchen. Die Bestimmung der transferierten Wärme in natürlichen und industriellen Anwendungen wird sich dadurch signifikant verbessern.

1 2 3 4 586 87 88