API src

Found 871 results.

Related terms

Herstellung holzbasierter Schäume zur Substitution petrochemischer Rohstoffe

Die neu gegründete Butterweck Holzstoffe GmbH & Co. KG ist über die Gesellschafterstruktur mit der Butterweck Rundholzlogistik GmbH & Co. KG verbunden. Das mittlerweile in zweiter Generation geführte Familienunternehmen in Lehe/Ems ist als Dienstleister in der Forstwirtschaft tätig und bietet Beratung bei der Waldbepflanzung sowie der Waldbetreuung, -pflege und -vermessung an, unterstützt bei der bestandschonenden Holzernte und der Transportlogistik und vertreibt darüber hinaus Brenn- und Rundholz sowie Hackschnitzel und Rindenmulch. Die Butterweck Holzstoffe GmbH & Co. KG plant die erstmalige großtechnische Realisierung einer Anlage zur Herstellung von Holzschaumplatten ohne Verwendung von synthetischen Bindemitteln. Die vom Wilhelm-Klauditz-Institut in Braunschweig entwickelten holzbasierten Schäume sind ein neuer Werkstoff und werden in Deutschland noch nicht großtechnisch hergestellt. Sie sollen Verwendung als Dämmplatten, Möbel- und Sandwichelemente oder als Torfsodenersatz finden. Die Holzschaumplatten sollen konventionelle Holzfaserplatten, erdölbasierte Schäume sowie Verbunddämmmaterialien ersetzen, deren Herstellung mit schädlichen Umweltauswirkungen verbunden sind. So werden Holzfaserplatten in Deutschland üblicherweise mit synthetischen Bindemitteln, wie pMDI oder Harnstoff-Formaldehyd-Harzen, hergestellt. Die Bindemittel führen während und vor allem nach der Herstellung z.B. zu Formaldehydemissionen. Die Herstellung der Holzschaumplatten kommt hingegen ohne die Verwendung synthetischer Bindemittel aus. Insbesondere soll bei der Herstellung dieses neuartigen Werkstoffes die Ressourceneffizienz gegenüber der Herstellung konventioneller Produkte gesteigert und der Chemikalieneinsatz reduziert werden. Zur Herstellung des Holzschaums werden Holzhackschnitzel in verschiedenen Verfahrensschritten zellular aufgeschlossen. Die dadurch entstandene wässrige Suspension wird unter Zugabe eines Treibmittels im Intensivmischer aufgeschäumt. Ferner werden Proteine eingesetzt, die den Schäumungsprozess unterstützen und dabei denaturieren. Abhängig vom geplanten Anwendungsbereich der Platten werden ggf. auch Graphite als Flammschutzmittel und/oder Wachse als Hydrophobierungsmittel zugegeben. Auf synthetische Bindemittel kann vollständig verzichtet werden. Der Holzschaum wird anschließend auf ein spezielles Förderband in Plattenform aufgebracht und mittels einer innovativen elektromagnetischen Trocknungsanlage auf die erforderliche Endfeuchte getrocknet. Diese Trocknung zeichnet sich durch einen sehr schnellen Wärmeeintrag und einen hohen Wirkungsgrad aus. Je nach Mahlgrad, eingesetzter Faser- und Additivmenge können unterschiedliche Plattenrohdichten für unterschiedlichste Anwendungen erzeugt werden. Die so hergestellten Holzschaumplatten können wie konventionelle Holzwerkstoffplatten nachbearbeitet werden, z.B. durch Sägen, Schleifen und Beschichten. Fehlerhafte Platten können in den Produktionsprozess zurückgeführt oder zu Torfsodenersatz weiterverarbeitet werden. Die Umweltentlastungen des Vorhabens beruhen auf der umweltschonenderen Herstellung der Holzschaumplatten im Vergleich zur Herstellung von konventionellen Werkstoffen. Die Herstellung der Holzschaumplatten besitzt eine höhere Materialeffizienz als die Herstellung vergleichbarer Holzfaserplatten. Die konkrete Holzeinsparung ist abhängig vom Referenzprodukt. Ausgehend vom geplanten Produktportfolio nach Inbetriebnahme werden Holzeinsparungen in Höhe von 14.813 Tonnen pro Jahr erwartet, was rund 68 Prozent pro Jahr entspricht. Als Rohstoff für die Holzschaumplatten kommt sämtliche hölzerne Biomasse in Betracht (z.B. Nadel- & Laubholz, Altholz, Sägerestholz, Flachs oder Maisspindeln), wodurch die Kaskadennutzung unterstützt wird. Auch die Laubholznutzung wird dadurch gefördert. Für Holzfaserdämmplatten wird zurzeit ausschließlich Nadelrundholz eingesetzt. Bei der Holzschaumherstellung wird die Trocknungsluft im Kreislauf gefahren (Umluft), so dass bei diesem Prozessschritt keine Abluft entsteht und Emissionen vollständig vermieden werden. Gemäß den Ergebnissen der Vorversuche ist die elektromagnetische Trocknung darüber hinaus sechsmal energieeffizienter als eine konventionelle Trocknung. Das Prozesswasser wird ebenfalls im Kreislauf gefahren und innerbetrieblich gereinigt. Nach dem Anfahren der Produktionsprozesse wird unter normalen Betriebsbedingungen kein Frischwasser benötigt, da durch das Frischholz ausreichend Wasser in den Prozess nachfolgt. Das Vorhaben kann insbesondere auf Anlagen der Holzwerkstoffindustrie, aber auch auf die Sägeindustrie oder Holzpelletindustrie übertragen werden, bei denen die vor- und nachgelagerten Prozesse der Holzverarbeitung bereits vorhanden sind und die Prozesse der Holzschaumherstellung ergänzt werden können. In Anbetracht knapper werdender Holzressourcen besitzt das Vorhaben außerdem Modellcharakter für eine ressourceneffiziente und abfallfreie Nutzung von Biomasse. Die elektromagnetische Trocknung als Einzeltechnik kann auch auf Anlagen anderer Branchen übertragen werden, insbesondere wenn instabile Produkte mit hohem Wasseranteil getrocknet werden müssen. Branche: Holzverarbeitung Umweltbereich: Ressourcen Fördernehmer: Butterweck Holzstoffe GmbH & Co. KG Bundesland: Niedersachsen Laufzeit: seit 2023 Status: Laufend

PARC – EU Partnerschaft für die Risikobewertung von Chemikalien

PARC – EU Partnerschaft für die Risikobewertung von Chemikalien Die „Europäische Partnerschaft für die Bewertung von Risiken durch Chemikalien“ (PARC) wurde mit dem übergeordneten Ziel entwickelt, das Wissen um chemische Substanzen zu verbessern, um so die Gesundheit der Menschen und die Umwelt besser zu schützen. Umgesetzt werden soll dieses Ziel innerhalb von sieben Jahren und mit 200 Organisationen aus Europa. Ziele Ein Ziel der Partnerschaft PARC besteht darin, Innovationen in der Risikobewertung von Chemikalien voranzutreiben. Dadurch sollen die nachhaltige Nutzung und das Management von Chemikalien ermöglicht und gleichzeitig die menschliche Gesundheit und die Umwelt geschützt werden. Erreicht werden sollen diese Ziele durch die Stärkung der wissenschaftlichen Grundlagen für die Risikobewertung chemischer Stoffe in der EU, durch die Schließung von Datenlücken und Erarbeitung neuer Methoden und Konzepte und indem Risikobewerter gemeinsam mit Wissenschaftlern die notwendigen Daten und Erkenntnisse zusammentragen und somit den Risikomanagern wesentliche Grundlagen für Entscheidungsprozesse liefern. Ein weiteres vorrangiges Ziel ist die Fortführung des europaweiten Human-Biomonitoring und die Entwicklung eines nachhaltigen und langfristigen Human-Biomonitoring-Systems in Europa, das an HBM4EU anknüpft. Außerdem sollen - gestützt von neuen Konzepten und Daten zur ⁠ Exposition ⁠ - die Grundlagen für eine zunehmend auf „New Approach Methodologies“ (NAMs)-basierte Risikobewertung ( Bajard et al 2023 ) 1 erarbeitet und Vorschläge zur Umsetzung erstellt werden. Politische Entscheidungsträger auf der ganzen Welt haben sich dem Ziel eines hohen gesundheitlichen Verbraucher- und Umweltschutzes sowie dem Ziel einer nachhaltigen Entwicklung verpflichtet. Da Chemikalien einen großen Einfluss auf die menschliche Gesundheit, die Umwelt und die nachhaltige Entwicklung haben können, ist diese europäische Partnerschaft (PARC) für die Entwicklung der Bewertung der Risiken von Chemikalien im europäischen Kontext von zentraler Bedeutung. 1 Application of AOPs to assist regulatory assessment of chemical risks – Case studies, needs and recommendations Vorstellung der Partnerschaft Struktureller Rahmen der Partnerschaft: Im Mai 2022 ist die Partnerschaft „Europäische Partnerschaft für die Bewertung von Risiken durch Chemikalien“ (European Partnership for the Assessment of Risks from Chemicals) gestartet. Dabei handelt es sich um ein EU Horizont Europa Projekt . PARC soll als europaweite Partnerschaft der Unterstützung europäischer und nationaler Risikobewertungs- und Risikomanagementbehörden im Bereich der Chemikalienbewertung dienen. Die Partnerschaft hat eine Laufzeit von sieben Jahren (Mai 2022 bis April 2029) und verfügt über ein Gesamtbudget von 400 Mio. Euro. Die Partnerschaft wird mit einer Eigenbeteiligung von 50 Prozent durch die teilnehmenden Mitgliedstaaten beziehungsweise deren nationale Verbundpartner mitgetragen. 27 EU-Mitgliedsstaaten sowie Großbritannien und die Schweiz sind mit unterschiedlichem finanziellem Rahmen in der Partnerschaft beteiligt, wobei Deutschland und Frankreich finanziell am stärksten beitragen. Frankreich hat mit der französischen Agentur für Lebensmittel, Umwelt und Arbeitsschutz (Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail, ANSES ) die Koordination der Partnerschaft PARC übernommen. Jedes Land wird durch entsprechende vertragszeichnende Behörden vertreten, in Deutschland übernehmen diese Aufgabe das Umweltbundesamt (⁠ UBA ⁠) und das Bundesinstitut für Risikobewertung (BfR). Den vertragszeichnenden Behörden sind wiederum weitere Verbundpartner angegliedert, die sogenannten „Affiliated entities“ (AE). Dem UBA sind sechs Verbundpartner und dem BfR zehn Verbundpartner zugeordnet (siehe Abschnitt „PARC – National Hub -> Verbundpartner“). Darüber hinaus nehmen auch die Europäische Umweltagentur ( EEA ), die Europäische Behörde für Lebensmittelsicherheit ( EFSA ) und die Europäische Chemikalienagentur ( ECHA ) teil. Außerdem übernehmen fünf Europäische Generaldirektionen ( DGs ) der Europäischen Kommission die fachliche Begleitung der Partnerschaft: : Generaldirektion Forschung und Innovation (DG R&I); Generaldirektion Umwelt (DG ENV); Generaldirektion Gesundheit und Lebensmittelsicherheit (DG SANTE); Generaldirektion Binnenmarkt, Industrie und Unternehmertum (DG GROW); und die gemeinsame Forschungsstelle (Joint Research Center, JRC). Organisatorischer Rahmen der Partnerschaft: PARC baut auf die Arbeiten des European Joint Programme HBM4EU , welches vom Fachgebiet „Toxikologie, gesundheitsbezogene Umweltbeobachtung“ des UBA koordiniert und geleitet wurde ( Kolossa-Gehring et al. 2023 ) 2 auf und führt die in HBM4EU begonnene Arbeit, insbesondere an einem EU-weiten Human-Biomonitoring-System, fort. Um dem Forschungs- und Innovationsbedarf zu entsprechen und die gesteckten Ziele zu erreichen, ist die Partnerschaft PARC inhaltlich in neun Arbeitspakete unterteilt (Work Packages, WP). Die Arbeitspakete decken inhaltlich ein breites Themenspektrum zu Forschung und Methoden unter Aspekten der ⁠ Nachhaltigkeit ⁠, Innovation und Integration ab und werden durch Arbeitspakte mit koordinierenden und steuernden Aufgaben ergänzt. Zur Steuerung von PARC sind verschiedene Entscheidungsgremien vorgesehen, an denen unter anderem Vertreter*innen der verantwortlichen Ministerien der Mitgliedstaaten beteiligt sind. In Deutschland nehmen Vertreter*innen des Bundesministeriums für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz ( BMUV ) und des Bundesministeriums für Ernährung und Landwirtschaft ( BMEL ) an diesen Gremien teil. Inhaltlicher Rahmen der Partnerschaft: Das UBA ist insgesamt in acht von neun Arbeitspaketen (WP) mit insgesamt 36 Mitarbeitenden vertreten. Zusätzlich hat das UBA die Leitung des WP 4 („Monitoring und Exposition“) übernommen und das BfR als zweite vertragszeichnende Institution in Deutschland u.a. die Leitung des WP 5 („Hazard Assessment“). In dem WP 4 sollen die ⁠ Exposition ⁠ des Menschen und der Umwelt gegenüber Chemikalien gemeinsam betrachtet werden. ( Liebmann et al, 2024 ) 4 Die Untersuchungen stehen unter dem Fokus des „one-substance-one-assessment approach“ ( van Dijk et al, 2021 ) 3 mit dem Ziel die Verknüpfung der Daten zwischen Gesundheit und Umwelt zu stärken und eine integrierte Bewertung zu ermöglichen. Außerdem werden in PARC neue Methoden entwickelt und getestet, die unter anderem darauf abzielen, eine verbesserte Expositionsabschätzung von besonders vulnerablen Bevölkerungsgruppen zu erreichen. Schwerpunkt der WP 4 Methodenentwicklung sind sogenannte „Screening-Methoden“, die es ermöglichen sollen, für eine große Anzahl an Chemikalien gleichzeitig deren Präsenz in der Umwelt und im Menschen zu bestimmen. Dazu sollen bestehende Monitoringprogramme weiterentwickelt werden und die Monitoringergebnisse in Zukunft systematisch in der Zulassung gefährlicher Stoffe verwendet werden. 2 HBM4EU from the Coordinator's perspective: lessons learnt from managing a large-scale EU project 3 Towards ‘one substance – one assessment’: An analysis of EU chemical registration and aquatic risk assessment frameworks 4 Europäische Partnerschaft zur Bewertung von Risiken durch Chemikalien (PARC) – Deutschlands Beitrag im Überblick Priorisierung von Substanzen bzw. Substanzgruppen Chemikalien werden in Europa nach ihrem Verwendungszweck in unterschiedlichen Rechtsrahmen registriert, bewertet und zum Teil auch extra zugelassen. Während es für den Bereich Umwelt bereits etablierte Rechtsrahmen für die Risikobewertung gibt, werden im Bereich menschliche Gesundheit häufig nicht alle Expositionsquellen berücksichtigt, und ein umfassender rechtlicher Rahmen fehlt. Priorisierungen im Rahmen von PARC bauen für den Bereich HBM (WP4) auf den in HBM4EU begonnenen Arbeiten und der Priorisierung von gefährlichen Substanzen im Bereich der menschlichen Gesundheit auf. Dabei wird die Priorisierung mit dem Bereich Umwelt abgestimmt, welcher bereits über eine Jahrzehntelange Erfahrung in dem Bereich verfügt. Die Kriterien, nach denen Substanzen in PARC priorisiert werden, beziehen sich dabei auf die gefährlichen Eigenschaften des Stoffs/der Stoffgruppe, sowie die ⁠ Exposition ⁠ und/oder die Risiken für die menschliche Gesundheit und die Umwelt und auf ihre regulatorische Relevanz. Eine der größten Herausforderungen von PARC ist es, Datenlücken für die prioritären Stoffe zu schließen, die sich auf jeden Schritt im Risikobewertungsprozess beziehen können: Gefahr, Exposition (für Mensch oder Umwelt) und Risikobewertung. Einige Stoffe sind bereits gut untersucht (z.B. ⁠ Pestizide ⁠ und Biozide), da die in den spezifischen Rechtsvorschriften geforderten Toxizitätsdaten bereits recht umfangreich sind, für andere Stoffgruppen liegen fast keine Daten vor. Je nachdem, welche Daten verfügbar sind, legen die verschiedenen Bereiche in PARC (WPs) ihren Fokus auf verschiedene Stoffe/Gruppen. Tabelle 1 zeigt die Stoffe/Stoffgruppen, die derzeit für Studien im Rahmen der einzelnen Arbeitspakete ausgewählt wurden. die in den einzelnen Arbeitspaketen behandelt werden und für die Fortschritte bei der Risikobewertung erwartet werden. Wie aus der Tabelle hervorgeht, befassen sich alle drei Arbeitspakete (Arbeitspaket 4 „Monitoring und Exposition“, Arbeitspaket 5 „Hazard Assessment“ und Arbeitspaket 6 „Innovation in regulatory risk assessment“) teilweise mit denselben Stoffen und/oder Stoffgruppen (Biozide, Bisphenole, ⁠ Pflanzenschutzmittel ⁠, endokrine Disruptoren und chemische Gemische). Im Gegensatz dazu werden einige andere Stoffe in einem einzigen Arbeitspaket untersucht (z. B. werden Quecksilber und Arsen ausschließlich in Arbeitspaket 4 und Flammschutzmittel nur in Arbeitspaket 6 untersucht). Das bedeutet, dass nicht alle Stoffe, die in der fortlaufenden Strategischen Forschungs- und Innovationsagenda von PARC enthalten sind, in allen Arbeitspaketen behandelt werden müssen, da die im Rahmen von PARC durchgeführten Aktivitäten auf spezifische Wissensbedürfnisse oder Datenlücken eingehen sollten. Deutscher National Hub Auf nationaler Ebene sind in den teilnehmenden Mitgliedstaaten sogenannte National Hubs (NHs) entstanden, die neben den Verbundpartnern zusätzliche, wissenschaftliche Expertise im Bereich der Forschung und der Risikobewertung von Chemikalien einbringen. Darüber hinaus sollen im National Hub die deutschen ⁠ Stakeholder ⁠ und Entscheidungsträger aus den verschiedenen Forschungsgemeinschaften vernetzt werden, um die Ergebnisse aus PARC zu diskutieren und Ihr Wissen und Ihre Expertisen, sowie gegebenenfalls Forschungsbedarfe, in die Partnerschaft einzubringen. Ein weiteres zentrales Ziel der NH-Arbeit ist es, die (Fach-) Öffentlichkeit über die PARC-Ergebnisse zu informieren und diese zielgruppengerecht aufzuarbeiten. Das ⁠ UBA ⁠ und das ⁠ BfR ⁠ koordinieren und begleiten im Rahmen der Beteiligung an der europäischen Partnerschaft PARC gemeinsam den deutschen National Hub (NH). Auf EU-Ebene werden die NHs in PARC dazu beitragen, eine sinnvolle Zusammenarbeit im Bereich der Risikobewertung und dem Risikomanagement im Austausch mit und zwischen den Mitgliedstaaten zu gewährleisten. Jedes an PARC teilnehmende Land benennt dazu eine nationale Kontaktperson für PARC (National Hub Contact Point, NHCP). In Deutschland wird diese Position durch je eine Vertreterin der beiden Vertragszeichner UBA und BfR ausgefüllt, die die nationale Zusammenarbeit in PARC koordiniert. Finanziert wird die Position der deutschen NHCP durch das Bundesministerium für Bildung und Forschung (BMBF, FKZ: 01DT21043A). Die gemeinsame Aufgabenwahrnehmung der NHCP-Funktion durch das BfR und das UBA schafft eine „Brücke“ zwischen den Forschungsgemeinschaften aus den Bereichen Human- und Umwelttoxikologie. Diese Synergie wird den Schutz der menschlichen Gesundheit und der Umwelt weiter verbessern. Der deutsche National Hub setzt sich neben dem UBA und dem BfR als Vertragszeichner und den Vertretungen der Ministerien ⁠ BMUV ⁠ und ⁠ BMEL ⁠, aus den Vertreter*innen der deutschen Verbundpartner (Forschungseinrichtungen und Behörden), sowie ausgewählten Expert*innen, die ansonsten nicht in PARC involviert sind, zusammen. Um den Bedürfnissen der unterschiedlichen thematischen Bereiche gerecht zu werden, gibt es eine zusätzliche Untergliederung in den BfR und den UBA assoziierten Sub-Hub mit dem Fokus „Human-Tox“ (BfR) und „Human-Biomonitoring/ Umwelt“ (UBA). Deutsche Verbundpartner des UBA in PARC mit der/dem jeweiligen Vertreter*in im National Hub: Bundesanstalt für Gewässerkunde ( BfG ) – Vertreterin im NH: Martina Fenske Institut und Poliklinik für Arbeits-, Sozial und Umweltmedizin, Klinikum der Universität München ( KUM ) – Vertreter im NH: Stefan Rakete Helmholtz Zentrum für Umweltforschung ( UFZ ) – Vertreter im NH: Werner Brack Universität Duisburg-Essen ( UDE ) – Vertreter im NH: Ralf Schäfer Universität Osnabrück – Vertreter im NH: Andreas Focks Fraunhofer Institut für Biomedizinische Technik ( IBMT ) – Vertreterin im NH: Sylvia Wagner Fraunhofer Institut für Molekularbiologie und Angewandte Ökologie ( IME ) – Vertreter im NH: Bernd Göckener Externe Expert*innen im Sub Hub „Human-Biomonitoring/ Umwelt“ des PARC National Hubs ohne Involvierung des Arbeitgebers in PARC: Peter Kujath – Arbeitgeber: Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA) Holger Koch – Arbeitgeber: Institut für Prävention und Arbeitsmedizin der Deutschen Gesetzlichen Unfallversicherung – Institut der Ruhr Universität Bochum (IPA DGUV) Jörg Oehlmann – Arbeitgeber: Goethe-Universität Frankfurt am Main Thomas Schettgen – Arbeitgeber: RWTH Universitätsklinikum Aachen Rita Triebskorn – Arbeitgeber: Eberhard Karls Universität Tübingen Martina Roß-Nickoll – Arbeitgeber: RWTH Universität Aachen Nathalie Costa Pinheiro – Arbeitgeber: Niedersächsisches Landesgesundheitsamt ( NLGA ) Stakeholder des deutschen PARC National Hubs: Die Mitglieder des National Hubs treffen sich zwei Mal im Jahr, einmal virtuell und einmal in hybriden Format. Bei der Veranstaltung in hybridem Format, handelt es sich um zwei Meeting-Tage, wovon sich ein Tag an deutsche Stakeholder richtet. Dafür werden über verschiedene Verteiler und Webseiten Stakeholder aus unterschiedlichen Bereichen (Industrie, Behörden, Verbänden, ⁠ NGO ⁠, Landesämter), die die Kernthemen menschliche Gesundheit und Umwelt thematisch abdecken, informiert. Einige deutsche Stakeholder sind bereits Teil des Stakeholder-Forums der PARC Partnerschaft, während die Mehrheit der deutschen Stakeholder selbst nicht in PARC involviert ist. Veranstaltungen Im Rahmen von Konferenzen, Tagungen und anderen Veranstaltungen werden die Partnerschaft PARC, die Arbeiten und deren Ergebnisse von verschiedenen deutschen Partnern vorgestellt. Im Folgenden werden Informationen zu dem Termin, Veranstaltungstitel, Themenbereich und dem für den Vortrag verantwortlichen deutschen Verbundpartner gelistet. Events: 2. deutscher PARC ⁠ Stakeholder ⁠-Dialog: "Die Risikobewertung von Chemikaliengemischen" in Berlin, 27.11.2024 - 12:00-17:30 PARC und Stakeholder im Gespräch – Chemikaliengemische im Fokus Zum 2. Deutschen PARC-Stakeholder-Dialog luden das Bundesinstitut für Risikobewertung (⁠ BfR ⁠) und das Umweltbundesamt (⁠ UBA ⁠) Fachleute aus den Bereichen Human- und Umwelttoxikologie sowie Verbraucher- und Umweltschutz ein, um die Auswirkungen chemischer Mischungen auf Mensch und Umwelt zu diskutieren. Auch die interessierte Öffentlichkeit nahm an der Veranstaltung teil. Im Fokus standen die aktuellen wissenschaftlichen Erkenntnisse zu Chemikaliengemischen sowie die regulatorischen Herausforderungen. Die Teilnehmenden tauschten sich über bestehende Rahmenbedingungen und mögliche Lösungsansätze aus, um den Umgang mit chemischen Belastungen zu verbessern. Die Vorträge der Veranstaltung sind auf der Veranstaltungsseite des BfR verfügbar. PARC Work Package 4 "⁠ Monitoring ⁠ und Exposure" jährliches hybrides Treffen der PartnerInnen in Berlin am 08.-09. Oktober 2024 - Die PARC HBM aligned studies schreiten voran, wobei konstruktive Diskussionen über die Bewältigung der verbleibenden Herausforderungen geführt werden. - Es sind verstärkte Anstrengungen erforderlich, um ein nachhaltiges Human-Biomonitoring (HBM) in Europa zu gewährleisten und einen soliden Rechtsrahmen zu schaffen. - Koordinierte Überwachungskampagnen verbessern unser Wissen über schädliche Chemikalien und die Expositionspfade des Menschen. - Innovative Methoden treiben die Expositionsbewertung voran und ermitteln wichtige Chemikalien für die künftige Überwachung. 20. November 2023 – 1. ⁠ Stakeholder ⁠-Dialog des deutschen National Hubs (hybrid) im Stellwerk Nordbahnhof in Berlin Auf dem Foto sind Vertreter und Vertreterinnen des UBA, des BfR, des BMUV, des NH und der eingeladenen Stakeholder. Weitere Vertreter und Vertreterinnen haben virtuell teilgenommen.

Ressourceneffizienz im Fokus: Wünsch besucht Flammschutz-Spezialisten ICL-IP in Bitterfeld-Wolfen

Die Umweltallianz Sachsen-Anhalt feiert in diesem Jahr ihr 25-jähriges Bestehen. Ein Unternehmen, das sich seit dem Jahr 2000 in der Allianz engagiert, ist die ICL-IP Bitterfeld GmbH. Am Montag hat Energie-Staatssekretär Thomas Wünsch das Unternehmen an seinem Standort in Bitterfeld-Wolfen besucht, um das langjährige Engagement in der Allianz zu würdigen und sich mit der Geschäftsleitung über das Thema nachhaltige Produktion auszutauschen. Wichtige Weichen hierfür hat das Unternehmen in den vergangenen Jahren bereits gestellt. „ICL-IP Bitterfeld ist in der Umweltallianz ein Mitglied der ersten Stunde und zeigt beispielhaft auf, wie ressourceneffiziente Produktion erfolgreich umgesetzt werden kann. Das Unternehmen ist damit zugleich ein toller Botschafter der nunmehr seit 25 Jahren bestehenden Umweltallianz des Landes“, erklärte Wünsch. „Unternehmen wie ICL-IP Bitterfeld tragen nicht nur zur Innovationskraft und zum Wohlstand unseres Landes bei, sondern zeigen auch, dass wirtschaftlicher Erfolg und nachhaltiges Handeln Hand in Hand gehen können.“ Am Standort Bitterfeld stellt ICL-IP Flammschutzmittel auf Phosphorbasis her, die in Schäumen sowie Kunststoffen, vor allem in der Bauindustrie im Bereich Gebäudeisolierung, im Möbel- und Fahrzeugbau etwa für Polster und der Elektronikindustrie zum Einsatz kommen. Bereits seit Mitte der 1990er Jahre hat das Unternehmen immer wieder in Projekte zur Ressourceneffizienz investiert. Unter anderem betreibt das Unternehmen ein DIN-zertifiziertes Umweltmanagementsystem. Über die Jahre konnte der Wasserverbrauch um 80 Prozent, das Abfallaufkommen um 45 Prozent gesenkt werden. Aktuell investiert das Unternehmen in eine Photovoltaik-Anlage, die mit einer Leistung von 750 Kilowattstunden in Zukunft einen Großteil des Strombedarfs in der Produktion decken soll. Die Anlage soll noch im Dezember in Betrieb gehen. Mit seinen Mitarbeitenden engagiert sich das Unternehmen aber auch im Naturschutz, darunter beim Bau von Krötenzäunen, Pflanzen von Linden für Bieber, sowie dem Beräumen von Heidekraut in der Dübener Heide. „Wir als Unternehmen der chemischen Industrie haben die Verpflichtung, auf unsere Umwelt und unsere Mitmenschen besonders zu achten. Umweltschutz und Ressourcenschonung ist nicht nur eine Kennzahl, es wird bei uns tagtäglich gelebt und ist in unserer DNA verankert“, betonte Denis Przybylski, Geschäftsführer der ICL-IP Bitterfeld GmbH. Die Umweltallianz Sachsen-Anhalt wurde am 14. Juni 1999 gegründet und hat inzwischen mehr als 200 Partner. Sie alle verbindet der besondere Einsatz für den Umweltschutz, der über gesetzliche Verpflichtungen hinausgeht. Die Bandbreite der Unternehmen reicht dabei von der Metallbranche über die Abfall-, Energie- und Ernährungswirtschaft über die Pharmaindustrie bis zum Handwerk. Impressum: Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Pressestelle Leipziger Str. 58 39112 Magdeburg Tel: +49 391 567-1950, E-Mail: PR@mwu.sachsen-anhalt.de , Facebook , Instagram , LinkedIn , Mastodon und X

Chemikalien in der Umwelt

Chemikalien in der Umwelt Wir kommen täglich mit Chemikalien wie z.B. Lösungsmitteln, Farben und Lacken, Haushaltchemikalien, Weichmachern und Flammschutzmitteln aus Kunststoffen in Berührung. Die von Chemikalien ausgehenden Gefahren betreffen uns alle. Um die menschliche Gesundheit und die Umwelt vor chemischen Substanzen zu schützen, trat 2007 die europäische Chemikalienverordnung REACH in Kraft. Die Europäische Union (EU) erfasst mit der Verordnung (EG) 1907/2006 über die Registrierung, Bewertung, Zulassung und Beschränkung von chemischen Stoffen - kurz REACH-Verordnung genannt - alle Chemikalien, die nicht in speziellen Gesetzen, wie z.B. der Biozid- oder Arzneimittelverordnung, geregelt werden. Unter REACH werden im Rahmen der Registrierung Daten zum Verbleib und zur Wirkung von Chemikalien auf Mensch und Umwelt gefordert. Besonders problematische Chemikalien können für bestimmte Verwendungen verboten oder zulassungspflichtig werden. Hersteller von Chemikalien sind für die sichere Handhabung ihrer Produkte verantwortlich und müssen garantieren, dass diese weder Gesundheit noch Umwelt übermäßig belasten. Chemikalien können bei der Gewinnung, Herstellung, Verarbeitung, in der Nutzungsphase von Produkten, beim Recycling und in der Entsorgungsphase in die Umwelt gelangen. Je nach Verwendungsbedingungen und chemisch-physikalischen Eigenschaften gelangen sie in Umweltmedien wie Luft, Grundwasser, Oberflächengewässer, Klärschlamm, Boden und somit auch in Organismen und ihre Nahrungsketten. Unter REACH werden besonders besorgniserregende Stoffe identifiziert. Diese werden im Englischen „substances of very high concern“ (SVHC) genannt. Dazu gehören zum Beispiel Stoffe, die giftig und langlebig in der Umwelt sind und sich in Organismen anreichern (persistent, bioaccumulative and toxic – ⁠ PBT ⁠), oder Stoffe, die giftig, persistent und mobil in der Umwelt sind (PMT Stoffe). Ebenfalls gehören Stoffe dazu, die auf das Hormonsystem wirken, die sogenannten Endokrinen Disruptoren. Dadurch kann die Entwicklung und die Fortpflanzung von Lebewesen geschädigt werden. Das Geschlechterverhältnis ganzer Populationen kann sich verändern. So können Vermännlichungen und Verweiblichungen sowie der Verlust der Fortpflanzungsfähigkeit auftreten. Im Folgenden sind beispielhaft Umweltkonzentrationen von einzelnen Stoffen bzw. Stoffgruppen aufgeführt, die das Umweltbundesamt unter REACH als besonders besorgniserregende Stoffe identifiziert hat: Perfluoroktansäure (⁠ PFOA ⁠) ist ein PBT-⁠ Stoff ⁠ und mittlerweile ist die Verwendung bis auf wenige Ausnahmen im Rahmen der ⁠ POP ⁠-Konvention international verboten. Die Säure kann als Verunreinigung, Rückstand oder Abbauprodukt in einer Vielzahl von Erzeugnissen vorkommen, die mit Fluorpolymeren, –elastomeren oder mit seitenkettenfluorierten Polymeren ausgerüstet sind, zum Beispiel in Funktions- und Haushaltstextilien, beschichtetem Kochgeschirr und fettabweisendem Papier. Aber auch Feuerlöschschäume können ⁠ PFOA ⁠ oder ihre Vorläuferverbindungen enthalten. In der Umwelt ist PFOA so stabil, dass sie früher oder später auch in der Tiefsee und in arktischen Tieren ankommt und dort nachgewiesen wird. Besorgniserregend ist außerdem der Ferntransport der Substanz in entlegene Gebiete über den Luftpfad. Besonders kritisch ist der langfristige Verbleib der krebserregenden, fortpflanzungsgefährdenden und lebertoxischen Substanz im menschlichen Blut (drei bis vier Jahre) und in der Muttermilch, in die sie über die Nahrung, das Trinkwasser oder die Atemluft gelangt. Bestimmte Nonylphenole und Oktylphenole wirken wie das Hormon Östrogen und gehören damit zu den hormonell wirksamen Stoffen in der Umwelt. Beide Stoffgruppen sind in europäischen Oberflächengewässern nachzuweisen. Die in Produkten ebenfalls eingesetzten Ethoxylate der Nonyl- und Oktylphenole werden zudem in Kläranlagen und Gewässern zu den entsprechenden Nonyl- bzw. Oktylphenolen abgebaut und erhöhen dadurch den Umwelteintrag. Die Verwendung von Nonyl- und Oktylphenolethoxylaten ist in der EU zulassungspflichtig, d.h. sie dürfen nur noch verwendet werden, wenn keine Freisetzung in die Umwelt stattfindet oder der gesellschaftliche Nutzen der Verwendung die Risiken übersteigt und es keine Alternativen für diese Verwendungen gibt. Ein Eintragspfad in die Umwelt scheint das Waschen von außerhalb der EU eingeführten Textilien zu sein, die mit Nonylphenolethoxylaten behandelt wurden. Beim Waschen gelangen diese Substanzen über das Abwasser in die Kläranlagen und dann in die Umwelt (siehe Tab. „Konzentrationen von Nonylphenolen und Oktylphenol in Oberflächengewässern in Deutschland“). Eine Beschränkung , die den Eintrag dieser Stoffe in die Umwelt über importierte Produkte reduzieren soll, wurde von der Europäischen Kommission beschlossen und trat nach einer Übergangsfrist im Februar 2021 in Kraft. Aktuell wird auf europäischer Ebene eine Strategie erarbeitet, wie sich die ganze große Gruppe der Alkylphenole, zu der auch das Nonylphenol und das Oktylphenol gehören, regulieren lässt. Prüfen der Umweltwirkung von Chemikalien Das Umweltbundesamt (⁠ UBA ⁠) bewertet bei der gesetzlichen Stoffprüfung von Chemikalien, wie diese Stoffe auf die Umwelt wirken. Das UBA führt dabei in der Regel keine eigenen Untersuchungen durch. Es prüft die von Antragstellern eingereichten Daten, sowie die wissenschaftliche Literatur zu Umweltwirkungen und bewertet dann die Risiken für die Umwelt. Bestimmte Chemikalienwirkungen wie zum Beispiel Einflüsse auf die Ozonschicht und auf das ⁠ Klima ⁠ werden in gesonderten gesetzlichen Regelungen behandelt. Die jeweiligen gesetzlichen Stoffregelungen geben vor, welche Informationen und Testergebnisse Unternehmen, die eine Chemikalie oder ein Präparat auf den Markt bringen wollen, für eine Umweltprüfung vorlegen müssen (siehe Tab. „Überblick zu den Testanforderungen in den Stoffregelungen – ⁠ REACH ⁠-Chemikalien“). Im Rahmen des noch laufenden „REACH-Review“ Prozesses ist geplant, in Zukunft neue Tests und Endpunkte in den Standartdatensätzen, die bei der Markteinführung vorgelegt werden müssen, zu ergänzen. Damit sind dann z.B. Daten zu der endokrinen Wirkweise von Chemikalien von Anfang an verpflichtend und erlauben den Behörden eine effizientere Bewertung von Substanzen hinsichtlich dieses Gefahrenpotenzials. Öffentlich zugängliche Daten zu Chemikalienwirkungen Daten zu Wirkungen von Chemikalien sind über verschiedene Datenbanken zugänglich. Der gemeinsame Stoffdatenpool des Bundes und der Länder (GSBL) enthält neben Daten zur Wirkung von Chemikalien auch weitere Informationen darüber, wie ihre Verwendung gesetzlich geregelt ist. Die Europäische Chemikalienagentur ECHA hält auf ihrer Website Informationen zu jenen Chemikalien bereit, die Unternehmen nach den Vorgaben der europäischen Verordnung zur Registrierung, Bewertung, Zulassung und Beschränkung von chemischen Stoffen (⁠ REACH ⁠) registriert haben (Stoffeigenschaften, Wirkungen). Das Informationssystem Ökotoxikologie und Umweltqualitätsziele (ETOX-Datenbank) des Umweltbundesamtes informiert Bürgerinnen und Bürger über ökotoxikologische Eigenschaften von Chemikalien sowie über Umweltqualitätsziele für Gewässer. Das Informationssystem Rigoletto des Umweltbundesamtes informiert Bürgerinnen und Bürger über die Einstufung einer Chemikalie in eine Wassergefährdungsklasse. Über das eChem-Portal der Organisation für wirtschaftliche Entwicklung und Zusammenarbeit (⁠ OECD ⁠) hat die Öffentlichkeit Zugriff auf internationale Datenbanken zu Chemikalienwirkungen. Auf der Internetseite der Europäischen Kommission kann jedermann die Bewertungsberichte für biozide Wirkstoffe einsehen, welche in die Unionsliste der genehmigten Wirkstoffe aufgenommen wurden. Chemikalien in der Europäischen Union Wie viele verschiedene Chemikalien verwendet werden, ist nicht bekannt. Im Einstufungs- und Kennzeichnungsverzeichnis (Classification Labeling & Packaging-Verordnung) der Europäischen Chemikalienagentur (ECHA) sind (Stand 07.08.2024) 259.538 Stoffe verzeichnet. Dazu kommen noch Stoffe für die keine Meldepflicht ins Verzeichnis besteht (insbesondere nicht nach ⁠ REACH ⁠ registrierungspflichtige Stoffe soweit diese nicht als gefährlich im Sinne der ⁠ CLP ⁠-VO einzustufen sind). Bis zum Jahr 2018 mussten Chemikalienhersteller und -importeure schrittweise fast all jene Chemikalien registrieren, von denen sie innerhalb der Europäischen Union (EU) mehr als eine Tonne jährlich herstellen oder in die EU einführen. Bis zum 31.07.2024 wurden 22.773 verschiedene Stoffe bei der ECHA in Helsinki registriert bzw. gelten als registriert. Deutsche Unternehmen haben davon 11.786 Stoffe (mit-)registriert (ECHA Registrierungsstatistik).

Fire-safety requirements for textiles, furniture and mattresses in public facilities. What requirements exist and how can these be fulfilled?

When public contracts are awarded, a significant contribution can be made to the protection of natural resources. However, sometimes there is uncertainty about fire protection requirements for products such as textiles, furniture, or mattresses in the public sector and, if applicable, how the required fire protection can be implemented in the most environmentally friendly way possible. This report aims to review the legal fire protection requirements for the product groups PPE, work clothing and shoes, house and home textiles, furniture, mattresses, and floorings in nine public sector areas. Further, the report has the objective of presenting environmentally friendly ways of meeting fire protection requirements and of deriving recommendations here.

Brandschutzanforderungen für Textilien, Möbel und Matratzen in öffentlichen Einrichtungen: Welche Regelungen bestehen und wie können diese erfüllt werden?

Bei der Vergabe öffentlicher Aufträge kann ein wesentlicher Beitrag zum Schutz der natürlichen Lebensgrundlagen geleistet werden. Mitunter besteht jedoch ⁠Unsicherheit⁠ über die Brandschutzanforderungen an Produkte wie Textilien, Möbel oder Matratzen im öffentlichen Bereich und, sofern notwendig, wie ein geforderter Brandschutz möglichst umweltschonend realisiert werden kann. Dieser Bericht hat zum Ziel, für die Produktgruppen PSA, Arbeitskleidung und Schuhe, Haus- und Heimtextilien, Möbel, Matratzen und Bodenbeläge in neun öffentlichen Bereichen die gesetzlichen Anforderungen an den Brandschutz aufzuarbeiten. Außerdem besteht das Ziel, umweltschonende Möglichkeiten der Erfüllung der Brandschutzanforderungen darzustellen und Empfehlungen abzuleiten.

Anlage zur Herstellung von Flammschutzmitteln und Alkoxysilandispersionen, Errichtung einer zusätzlichen Syntheselinie zur Herstellung von Alkoxysilandispersionen inkl. Erhöhung der Produktionskapazität der Anlage (Inprotec GmbH)

Die inprotec AG betreibt am Chemiestandort Genthin neben mehreren Anlagen zur Lohntrocknung und Lohnfertigung von Granulaten und Pulvern auch eine Syntheseanlage (CRP-Anlage). Im Zuge der Produkterweiterung soll in dieser bestehenden CRP-Anlage eine neue Syntheselinie integriert werden, um weitere Produkte zu produzieren. Hierfür werden im Gebäude 61 neue Aggregate aufgestellt.

Chemischer Zustand der Fließgewässer

Chemischer Zustand der Fließgewässer Der chemische Zustand von Gewässern in der EU wird anhand von 50 ausgewählten Chemikalien bewertet. Die Grenzwerte für diese Stoffe sind in der EU Wasserrahmenrichtlinie definiert. Ein guter chemischer Zustand ist erreicht, wenn keiner dieser Stoffe die Umweltqualitätsnorm überschreitet. In Deutschland werden diese v. a. für die Konzentrationen von Quecksilber und Flammschutzmitteln überschritten. Der chemische Zustand der Gewässer Die Europäische ⁠ Wasserrahmenrichtlinie ⁠ fordert von den Mitgliedstaaten einen guten chemischen Zustand der Gewässer. Die Bewertung erfolgt auf Basis von Grenzwerten (Umweltqualitätsnormen) Weitere Erläuterungen enthält die Seite „ Flüsse – Chemische Qualitätsanforderungen und Bewertung “. Wird eine der Umweltqualitätsnormen nicht eingehalten, wird der chemische Zustand als „nicht gut“ eingestuft. Werden alle Umweltqualitätsnormen eingehalten, ist der chemische Zustand „gut“. Einen Überblick über die Bewertungsergebnisse enthält die Seite „ Flüsse – Zustand “. Gewässer dürfen keine Senken für Chemikalien sein. Umweltqualitätsnormen für den chemischen Zustand In unseren Gewässern wird eine Vielzahl von Stoffen mit chemisch-analytischen Verfahren gemessen. Dazu gehören Metalle, ⁠ Pestizide ⁠ (⁠ Pflanzenschutzmittel ⁠, Biozide) und weitere Chemikalien, die als solche, in Gemischen und Erzeugnissen eingesetzt werden. Die EU hat mit der ⁠ Umweltqualitätsnorm ⁠-Richtlinie (EG-UQN-RL) Umweltqualitätsnormen für insgesamt 50 Stoffe und Stoffgruppen vereinbart, die den chemischen Zustand des Gewässers definieren und Anforderungen an die Überwachung festgelegt. Damit soll gewährleistet werden, dass Pflanzen und Tiere in Flüssen, Seen und Küstengewässern nicht geschädigt werden und keine Anreicherung oder Vergiftung über die Nahrungsnetze bis hin zu Vögeln und zum Menschen erfolgt. Die Kriterien der Ableitung der Normen sind vereinheitlicht und in einer Leitlinie der gemeinsamen Umsetzungsstrategie der EU zur ⁠ Wasserrahmenrichtlinie ⁠ niedergelegt. Für einige der Stoffe zur Bewertung des chemischen Zustands in Oberflächengewässern treten schon heute keine Überschreitungen der Umweltqualitätsnormen mehr auf. Aber immer wieder bereiten Chemikalien Probleme in den Gewässern. Deshalb wird die Überwachungsliste regelmäßig angepasst. Da es auch teilweise neue Erkenntnisse zum Gewässergefährdungspotenzial gibt, werden auch die Umweltqualitätsnormen regelmäßig überprüft und geändert. Bei Überschreitung der Umweltqualitätsnorm sind durch die Bundesländer Maßnahmen zu ergreifen, um den Eintrag des Stoffes zu reduzieren. Ergebnis der Zustandsbewertung In der Karte „Chemischer Zustand der Oberflächenwasserkörper in Deutschland“ sind alle Gewässer als „nicht gut“ eingestuft. Grund sind die hohen Konzentrationen von Quecksilber und bromierten Flammschutzmitteln (BDE) in Fischen: Die Umweltqualitätsnormen werden überall überschritten und sind ein flächendeckendes Problem. Die ⁠ Umweltqualitätsnorm ⁠ für Quecksilber wurde zum Schutz von Vögeln und Säugetieren, die sich von Fisch ernähren (zum Beispiel Fischadler, Fischotter) abgeleitet. Für die Umweltqualitätsnorm für BDE ist der Schutz der menschlichen Gesundheit maßgeblich. Auch andere Stoffe überschreiten die Umweltqualitätsnormen: Die für Wasserorganismen giftige, stark anreichernde und fortpflanzungsschädigende Perfluoroktansulfonsäure (⁠ PFOS ⁠). ⁠ PFOS ⁠ wurde u.a. in Feuerlöschmitteln genutzt und darf in der EU seit 2012 nicht mehr angewandt werden, polyzyklische aromatische Kohlenwasserstoffe (⁠ PAK ⁠), das als sehr giftig für Wasserorganismen eingestufte Fluoranthen, die langlebigen und giftigen ⁠ Pestizide ⁠ Heptachlor (seit 1992 nicht mehr zugelassen) und Isoproturon (seit 2016 verboten), Cadmium, Nickel und Blei, das nicht mehr zugelassene Antifouling-Mittel Tributylzinn, das in Deutschland für Holzschutz oder Dachplanen verwendet wurde und in anderen Ländern weiterhin genutzt wird, der Weichmacher DEHP, der seit 2006 in der EU nur noch stark eingeschränkt hergestellt und genutzt werden darf. Messstellenbezogene Auswertungen der Stoffe des chemischen Zustands und der Stoffe mit einer nationalen Umweltqualitätsnorm sind den Fachthemenseiten zu entnehmen. Regionale Belastungsgebiete Hohe Konzentrationen einzelner Stoffe mit Überschreiten von Umweltqualitätsnormen (neben Quecksilber und bromierten Flammschutzmitteln) zeigen regionale Belastungsschwerpunkte. So treten erhöhte Konzentrationen von Pflanzenschutzmitteln vor allem in kleineren Gewässern im ländlichen Raum auf. Metalle finden sich besonders in den (Alt-)Bergbaugebieten und andere Chemikalien sind überwiegend in Gewässern in industriellen Ballungsgebieten festzustellen. Minderungsmaßnahmen müssen hierbei an die jeweilige Belastung angepasst und regional differenziert werden.

Gewässergüte (Chemie) 1991

Im Zuge der industriellen Entwicklung hat die Einleitung von Schadstoffen in die Gewässer immens zugenommen. Neben ihrem Vorkommen im Wasser findet eine fortwährende Anreicherung der Gewässerböden mit Schadstoffen, wie z.B. Schwermetallen und Chlorierten Kohlenwasserstoffen, statt. Ablagerung im Sediment Im Stoffkreislauf eines Gewässers bilden die Sedimente ein natürliches Puffer- und Filtersystem, das durch Strömung, Stoffeintrag/-transport und Sedimentation starken Veränderungen unterliegt. Die im Ballungsraum Berlin vielfältigen Einleitungen, häusliche und industrielle Abwässer, Regenwasser u.a. fließen über die innerstädtischen Wasserwege letztlich vorwiegend in die Unterhavel. Die seenartig erweiterte Unterhavel mit ihrer niedrigen Fließgeschwindigkeit bietet ideale Voraussetzungen dafür, daß sich die im Wasser befindlichen Schwebstoffe hier auf dem Gewässergrund absetzen (sedimentieren). Für die Beurteilung der Qualität des gesamten Ökosystems eines Gewässers kommt daher zu den bereits seit Jahren analysierten Wasserproben immer stärker auch der Analyse der Sedimente besondere Bedeutung zu. Sedimentuntersuchungen spiegeln gegenüber Wasseruntersuchungen unabhängig von aktuellen Einträgen die langfristige Gütesituation wider und stellen damit eine wesentlich bessere Vergleichsgrundlage mit anderen Fließgewässern dar. Während bei Wasseruntersuchungen eine klare Abgrenzung zwischen dem echten Schwebstoffgehalt und einem zeitweiligen Auftreten von Schwebstoffen durch aufgewirbelte Sedimentanteile nicht möglich ist, bieten sich Sedimente als nicht oder nur gering durch unerwünschte Einflüsse beeinträchtigtes Untersuchungsmedium an. Die im Gewässer befindlichen Schweb- und Sinkstoffe mineralischer und organischer Art sind in der Lage, Schadstoffpartikel anzulagern (Adsorption). Die auf dem Grund eines Gewässers abgelagerten Schweb- und Sinkstoffe, die Sedimente, bilden somit das Reservoir für viele schwerlösliche und schwerabbaubare Schad- und Spurenstoffe. (Schad-)Stoffe werden im Sediment entsprechend ihrer chemischen Persistenz und den physikalisch-chemischen und biochemischen Eigenschaften der Substrate über lange Zeit konserviert. Die Analysen der Sedimentproben aus unterschiedlichen Schichttiefen liefern eine chronologische Aufzeichnung des Eintrages in Gewässer, die u. a. auch Rückschlüsse auf Kontaminationsquellen erlauben. Nach der Sedimentation kann ein Teil der fixierten Stoffe u. a. durch Desorption, Freisetzung nach Mineralisierung von organischem Material, Aufwirbelung, Verwitterung und schließlich durch physikalische und physiologische Aktivitäten benthischer (bodenorientierter) Organismen wieder remobilisiert und in den Stoffkreislauf eines Gewässers zurückgeführt werden. Schwermetalle Schwermetalle können auf natürlichem Weg, z. B. durch Erosion und Auswaschungsprozesse, in die Gewässer gelangen; durch die oben erwähnten Einleitungen wurde ihr Gehalt in den Gewässern ständig erhöht. Sie kommen in Gewässern nur in geringem Maße in gelöster Form vor, da Schwermetallverbindungen schwer löslich sind und daher ausfallen. Mineralische Schweb- und Sinkstoffe sind in der Lage, Schwermetallionen an der Grenzflächenschicht anzulagern. Sie können ferner in Wasserorganismen gebunden sein. Über die Nahrungskette werden die Schwermetalle dann von höheren Organismen aufgenommen oder sinken entsprechend der Fließgeschwindigkeit eines Gewässers als Ablagerung (Sediment) auf den Gewässergrund ab. Einige Schwermetalle sind in geringen Mengen (Spurenelemente wie z.B. Kupfer, Zink, Mangan) lebensnotwendig, können jedoch in höheren Konzentrationen ebenso wie die ausgesprochen toxischen Schwermetalle (z. B. Blei und Cadmium) Schadwirkungen bei Mensch, Tier und Pflanze hervorrufen. Die in den Berliner Gewässersedimenten am häufigsten erhöhte Meßwerte aufweisenden Schwermetalle werden nachstehend kurz beschrieben. Kupfer ist ein Halbedelmetall und wird u.a. häufig in der Elektroindustrie verwendet. Die toxische Wirkung der Kupferverbindungen wird in der Anwendung von Algiziden und Fungiziden genutzt. Kupfer ist für alle Wasserorganismen (Bakterien, Algen, Fischnährtiere, Fische) schon in geringen Konzentrationen toxisch und kann sich daher negativ auf die Besiedlung und Selbstreinigung eines Gewässers auswirken. Als wichtigstes Spurenelement ist Kupfer für den menschlichen Stoffwechsel von Bedeutung; es führt jedoch bei erhöhten Konzentrationen zu Schädigungen der Gesundheit, die in der Regel nur vorübergehend und nicht chronisch sind. Wie Kupfer ist Zink in geringen Mengen ein lebenswichtiges Element für den Menschen. Zink wird u.a. häufig zur Oberflächenbehandlung von Rohren und Blechen sowie zu deren Produktion verwendet. Ähnlich wie Kupfer haben erhöhte Zinkkonzentrationen toxische Wirkung auf Wasserorganismen; vor allem in Weichtieren (Schnecken, Muscheln) reichert sich Zink an. Blei gehört neben Cadmium und Quecksilber zu den stark toxischen Schwermetallen, die für den menschlichen Stoffwechsel nicht essentiell sind. Bleiverbindungen werden z. B. bei der Produktion von Farben und Rostschutzmitteln sowie Akkumulatoren eingesetzt. Teilweise befinden sich in Altbauten auch noch Wasserleitungen aus Blei. Der größte Bleiemittent ist – trotz starkem Rückgang des Verbrauchs von verbleitem Benzin – immer noch der Kraftfahrzeugverkehr. Die ständige Aufnahme von Blei kann zu schweren gesundheitlichen Schädigungen des Nervensystems und zur Inaktivierung verschiedener Enzyme führen. Cadmium wird bei der Produktion von Batterien, als Stabilisator bei der PVC-Herstellung, als Pigment für Kunststoffe und Lacke sowie in der Galvanotechnik verwendet. Die toxische Wirkung von Cadmium bei bereits geringen Konzentrationen ist bekannt, wobei das Metall vor allem von Leber, Niere, Milz und Schilddrüse aufgenommen wird und zu schweren Schädigungen dieser Organe führen kann. Pestzide, PCB und deren Aufnahme durch Aale Chlorierte Kohlenwasserstoffe (CKW) haben an ihrem Kohlenstoffgerüst Chlor gebunden. Innerhalb der Gruppe der halogenierten Kohlenwasserstoffe finden sie die bei weitem meiste Herstellung, Anwendung und Verbreitung. Chlorierte Kohlenwasserstoffe sind wegen ihrer vielfältigen Verbindungen sehr zahlreich. Viele organische Chlorverbindungen, wie z.B. DDT und insbesondere die polychlorierten Biphenyle (PCB), weisen eine hohe Persistenz auf. Viele Verbindungen der Chlorierten Kohlenwasserstoffe sind im Wasser löslich, andere, wie z. B. DDT und PCB, sind dagegen fettlöslich und reichern sich im Fettgewebe von Organismen an. Verschiedene Pestizide und PCB haben – vor allem mit abnehmender Wasserlöslichkeit – die Eigenschaft, sich adsorbtiv an Schwebstoffen oder auch an Pflanzenorganismen anzulagern. In strömungsarmen Bereichen des Gewässers sinken die Schwebstoffe ab und gelangen mit den Schadstoffen auch in das Sediment. Die hier lebenden Organismen sind eine wichtige Nahrungsgrundlage für Fische. Vorwiegend die benthisch lebenden Fische vermögen daher hohe Schadstoffkonzentrationen im Fettgewebe aufzunehmen. Vor allem die fettreich werdenden Aale fressen Bodenorganismen und graben sich im Sediment ein. Diese Lebensweise führt dazu, Pestizide und PCB nicht nur über die Nahrung, sondern auch über die Haut aufzunehmen und im Körperfett zu speichern. DDT, Dichlor-Diphenyl-Trichlorethan, ist ein schwer abbaubarer Chlorierter Kohlenwasserstoff, der zu den bekanntesten Schädlingsbekämpfungsmitteln gehört und früher weltweit eingesetzt wurde. Aufgrund der fettlöslichen Eigenschaften und der äußerst hohen Persistenz wird DDT vornehmlich in den Körperfetten nahezu aller Organismen gespeichert. Die globale Anwendung von DDT hat so zu einer Belastung der gesamten Umwelt geführt. Inzwischen ist die DDT-Anwendung von fast allen Ländern gesetzlich verboten. DDT ist mutagen (erbschädigend) und steht in Verdacht, krebserregend zu sein. Lindan wird vor allem als Kontakt- und Fraßgift zur Schädlingsbekämpfung von Bodeninsekten und als Mittel zur Saatgutbehandlung verwendet. Lindan ist bei Temperaturen bis 30° C nicht flüchtig und weist eine geringe chronische Toxizität auf – ist dafür aber akut toxisch. Vergiftungserscheinungen können z. B. beim Menschen zu Übelkeit, Kopfschmerzen, Erbrechen Krampfanfällen, Atemlähmung bis hin zu Leber- und Nierenschäden führen. Zudem besitzt Lindan eine hohe Giftigkeit für Fische; es wird aber relativ schnell wieder ausgeschieden und abgebaut. PCB, polychlorierte Biphenyle, sind schwer abbaubare Chlorierte Kohlenwasserstoffe, die mit zu den stabilsten chemischen Verbindungen gehören. Wegen ihrer guten Isoliereigenschaften und der schlechten Brennbarkeit werden sie in Kondensatoren oder Hochspannungstransformatoren verwendet. Weitere Verwendung finden PCB bei Schmier-, Imprägnier- und Flammschutzmitteln. Verursacher des PCB-Eintrages in die Berliner Gewässer sind im wesentlichen der KFZ-Verkehr, die durch KFZ belastete Regenentwässerung sowie die KFZ- und Schrott-Entsorgung. In hohen Konzentrationen verursachen PCB Leber-, Milz- und Nierenschäden. Bei schweren Vergiftungen kommt es zu Organschäden und zu Krebs. Einige PCB-Vertreter unterliegen im Rahmen der gesetzlichen Regelungen seit 1989 Einschränkungen bei der Herstellung bzw. Verwendung (PCB-, PCT-, VC-Verbotsverordnung vom 18.7.89). Neben dem Nachweis erhöhter Werte im Wasser und in Sedimenten Berliner Gewässer wurden in den 80er Jahren bei Fischuntersuchungen lebensmittelrechtlich äußerst bedenkliche Konzentrationen von CKW, wie z. B. PCB und die Pestizide DDT und Lindan nachgewiesen. Dies führte im Westteil von Berlin nach Inkrafttreten der Schadstoff-Höchstmengenverordnung (SHmV vom 23. 3. 1988) zum Vermarktungsverbot für aus Berliner Gewässern gefangene Fische. Die seit dieser Zeit gefangenen Fische wurden der Sondermüllentsorgung zugeführt. Die Berufsfischerei führte im Auftrag des Fischereiamtes Berlin aufgrund eines Senatsbeschlusses Befischungsmaßnahmen durch, die durch gezielte Beeinflussung der Alterszusammensetzung eine Reduzierung der Schadstoffbelastung der Berliner Fischbestände bewirken sollten. Die intensive Befischung der Überständler hatte einen jüngeren, fett- und damit schadstoffärmeren Bestand zum Ziel; jüngere, fettärmere Fische enthalten weniger Anteile der lipophilen (fettliebenden) CKW, wie PCB, DDT, Lindan u.a. Infolge verschärfter Genehmigungsverfahren für potentielle Schadstoffeinleiter sowie insbesondere aufgrund des derzeitig verjüngten Fischbestandes konnte das Vermarktungsverbot im Mai 1992 aufgehoben werden.

Exposure to flame retardants in European children - results from the HBM4EU aligned studies

Many legacy and emerging flame retardants (FRs) have adverse human and environmental health effects. This study reports legacy and emerging FRs in children from nine European countries from the HBM4EU aligned studies. Studies from Belgium, Czech Republic, Germany, Denmark, France, Greece, Slovenia, Slovakia, and Norway conducted between 2014 and 2021 provided data on FRs in blood and urine from 2136 children. All samples were collected and analyzed in alignment with the HBM4EU protocols. Ten halogenated FRs were quantified in blood, and four organophosphate flame retardants (OPFR) metabolites quantified in urine. Hexabromocyclododecane (HBCDD) and decabromodiphenyl ethane (DBDPE) were infrequently detected (<16% of samples). BDE-47 was quantified in blood from Greece, France, and Norway, with France (0.36 ng/g lipid) having the highest concentrations. BDE-153 and -209 were detected in <40% of samples. Dechlorane Plus (DP) was quantified in blood from four countries, with notably high median concentrations of 16 ng/g lipid in Slovenian children. OPFR metabolites had a higher detection frequency than other halogenated FRs. Diphenyl phosphate (DPHP) was quantified in 99% of samples across 8 countries at levels ~5 times higher than other OPFR metabolites (highest median in Slovenia of 2.43 ng/g lipid). FR concentrations were associated with lifestyle factors such as cleaning frequency, employment status of the father of the household, and renovation status of the house, among others. The concentrations of BDE-47 in children from this study were similar to or lower than FRs found in adult matrices in previous studies, suggesting lower recent exposure and effectiveness of PBDE restrictions. © 2022 The Authors

1 2 3 4 586 87 88