Ein Kompendium der Biodiversität (2016) Herausgegeben vom Landesamt für Umweltschutz Sachsen-Anhalt durch Dieter Frank und Peer Schnitter; ISBN 978-3-942062-17-6 Bezug beim Verlag Natur und Text GmbH unter http://www.naturundtext.de/shop/ Nutzungsrechte der Dateien und Fotos: Landesamt für Umweltschutz Sachsen-Anhalt Die nachfolgenden PDF-Dateien sind nicht barrierefrei. Inhalt (53 KB) Gesamtdatei des Buches (47,4 MB) Eine komprimierte Datei des Buches steht nachfolgend als Blätterkatalog zur Verfügung. (12,9 MB) Algen (Cyanobacteria et Phycophyta) (766 KB) Armleuchteralgen (Characeae) (395 KB) Flechten (Lichenes) und flechtenbewohnende (lichenicole) Pilze (854 KB) Moose (Anthocerotophyta, Marchantiophyta, Bryophyta) (738 KB) Gefäßpflanzen (Tracheophyta: Lycopodiophytina, Pteridophytina, Spermatophytina) (2,3 MB) Schleimpilze (Myxomycetes) (533 KB) Großpilze (Ascomycota p..p., Basidiomycota p..p.) (1,8 MB) Phytoparasitische Kleinpilze (Ascomycota p..p., Basidiomycota p..p., Blastocladiomycota p..p., Chytri-diomycota p..p., Oomycota p..p., Cercozoa p..p.) (1,2 MB) Süßwassermedusen (Hydrozoa: Craspedacusta) (384 KB) Rundmäuler (Cyclostomata) und Fische (Pisces) (477 KB) Lurche (Amphibia) (413 KB) Kriechtiere (Reptilia) (424 KB) Vögel (Aves) (614 KB) Säugetiere (Mammalia) (542 KB) Egel (Hirudinea) (379 KB) Regenwürmer (Lumbricidae) (443 KB) Weichtiere (Mollusca) (503 KB) Kiemenfüßer (Anostraca) und ausgewählter Gruppen der Blattfüßer (Phyllopoda) (403 KB) Asseln (Isopoda) (384 KB) Flohkrebse (Malacostraca: Amphipoda) (443 KB) Zehnfüßige Krebse (Decapoda: Atyidae, Astacidae, Grapsidae) (388 KB) Tausendfüßer (Myriapoda: Diplopoda, Chilopoda) (483 KB) Weberknechte (Arachnida: Opiliones) (457 KB) Webspinnen (Arachnida: Araneae) (548 KB) Springschwänze (Collembola) (422 KB) Eintagsfliegen (Ephemeroptera) (496 KB) Libellen (Odonata) (545 KB) Steinfliegen (Plecoptera) (437 KB) Ohrwürmer (Dermaptera) (355 KB) Fangschrecken (Mantodea) und Schaben (Blattoptera) (361 KB) Heuschrecken (Orthoptera) (462 KB) Zikaden (Auchenorrhyncha) (474 KB) Wanzen (Heteroptera) (692 KB) Netzflügler i. w. S. (Neuropterida) (372 KB) Wasserbewohnende Käfer (Coleoptera aquatica) (533 KB) Sandlaufkäfer und Laufkäfer (Coleoptera: Cicindelidae et Carabidae) (655 KB) Nestkäfer (Coleoptera: Cholevidae) (373 KB) Pelzflohkäfer (Coleoptera: Leptinidae) (352 KB) Aaskäfer (Coleoptera: Silphidae) (395 KB) Kurzflügler (Coleoptera: Staphylinidae) (660 KB) Schröter (Coleoptera: Lucanidae) (413 KB) Erdkäfer, Mistkäfer und Blatthornkäfer (Coleoptera: Scarabaeoidea: Trogidae, Geotrupidae, Scarabaeidae) (462 KB) Prachtkäfer (Coleoptera: Buprestidae) (453 KB) Weichkäfer (Coleoptera: Cantharoidea: Drilidae, Lampyridae, Lycidae, Omalisidae) (404 KB) Buntkäfer (Coleoptera: Cleridae) (392 KB) Zipfelkäfer (Coleoptera: Malachiidae), Wollhaarkäfer (Coleoptera: Melyridae) und Doppelzahnwollhaarkäfer (Coleoptera: Phloiophilidae) (391 KB) Rindenglanzkäfer (Coleoptera: Monotomidae) (380 KB) Glattkäfer (Coleoptera: Phalacridae) (377 KB) Marienkäfer (Coleoptera: Coccinellidae) (420 KB) Ölkäfer (Coleoptera: Meloidae) (502 KB) Bockkäfer (Coleoptera: Cerambycidae) (529 KB) Blattkäfer (Coleoptera: Megalopodidae, Orsodacnidae et Chrysomelidae excl. Bruchinae) (464 KB) Breitmaulrüssler (Coleoptera: Anthribidae) (362 KB) Rüsselkäfer (Coleoptera: Curculionoidae) (557 KB) Wespen (Hymenoptera: Aculeata) (552 KB) Bienen (Hymenoptera: Aculeata: Apiformes) (576 KB) Köcherfliegen (Trichoptera) (455 KB) Schmetterlinge (Lepidoptera) (1,3 MB) Schnabelfliegen (Mecoptera) (347 KB) Flöhe (Siphonaptera) (426 KB) Stechmücken (Diptera: Culicidae) (439 KB) Kriebelmücken (Diptera: Simuliidae) (380 KB) Kammschnaken (Diptera: Tipulidae, Ctenophorinae) (355 KB) Raubfliegen (Diptera: Asilidae) (367 KB) Wollschweber (Diptera: Bombyliidae) (386 KB) Langbeinfliegen (Diptera: Dolichopodidae) (496 KB) Waffenfliegen (Diptera: Stratiomyidae) (381 KB) Ibisfliegen (Diptera: Athericidae) (341 KB) Bremsen (Diptera: Tabanidae) (411 KB) Stinkfliegen (Diptera: Coenomyidae) (345 KB) Schwebfliegen (Diptera: Syrphidae) (490 KB) Dickkopffliegen (Diptera: Conopidae) (374 KB) Stelzfliegen (Diptera: Micropezidae) (356 KB) Uferfliegen (Diptera: Ephydridae) (372 KB) Halmfliegen (Diptera: Chloropidae) (406 KB) Raupenfliegen (Diptera: Tachinidae) (477 KB) Fledermausfliegen (Diptera: Nycteribiidae) (405 KB) Lausfliegen (Diptera: Hippoboscidae) (474 KB) Letzte Aktualisierung: 24.11.2022
Zinkoxid-Nanoformen in der REACH-Stoffbewertung: Umweltaspekte Zusammen mit der Bundesstelle für Chemikalien und dem Bundesinstitut für Risikobewertung führt das Umweltbundesamt (UBA) seit 2017 eine REACH-Stoffbewertung zu den registrierten Nanoformen von Zinkoxid durch. Die Auswertung der Daten zu Umweltverhalten und -wirkung der registrierten Zinkoxid-Nanoformen ist abgeschlossen. Auf Grundlage der von den Registranten vorgelegten Studien kommt das UBA zu dem Schluss, dass die getesteten Nanoformen eine vergleichbare aquatische Toxizität wie andere Zinkverbindungen haben und die harmonisierte Einstufung im Anhang VI der CLP -Verordnung als akut und chronisch gewässergefährdend der Kategorie 1 auch für die getesteten Nanoformen zutreffend ist. Es kann allerdings nicht ausgeschlossen werden, dass ein nanopartikelspezifischer Effekt zur Gesamttoxizität der getesteten Zinkoxid-Nanoformen beiträgt. Auch zeigen sich leichte Unterschiede in der Toxizität sowohl zwischen den verschiedenen Nanoformen als auch zwischen den Nanoformen und dem als Kontrolle mitgetesteten leichtlöslichen Zinkchlorid. Aus den von den Registranten vorgelegten Studien wird deutlich, dass sich die registrierten Nanoformen neben ihrer Größe und Geometrie vor allem in ihren Oberflächeneigenschaften, aber auch in ihrer Löslichkeit und Dispersionsstabilität über die Zeit unterscheiden. Im Rahmen der Stoffbewertung wurde für alle registrierten Nanoformen von Zinkoxid die Löslichkeit entsprechend des Screeningtests nach dem „Transformation/Dissolution Protokoll“ der OECD sowie die Dispersionsstabilität nach der OECD Prüfrichtlinie 318 bestimmt. Basierend auf diesen Ergebnissen wurden von den Registranten drei Nanoformen ausgewählt, für die die toxische Langzeitwirkung auf Algen und Flohkrebse anhand der OECD-Prüfrichtlinien 201 und 211 untersucht wurde. Gemäß REACH-Verordnung liegt es in der Verantwortung der Registranten, sicherzustellen, dass die vorliegenden Informationen hinreichend sind, um die Risiken aller von der Registrierung abgedeckten Formen zu bewerten. Die Prüfung der Erfüllung dieser Verpflichtung ist nicht Gegenstand der Stoffbewertung, sondern wird ggf. durch die ECHA im Rahmen einer Dossierbewertung stichprobenhaft geprüft. Zinkoxid ist ein chemischer Grundstoff, der für die Herstellung unterschiedlichster Produkte eingesetzt wird. Weltweit werden große Mengen pigmentäres und mikroskaliges Zinkoxid als Weißpigment in Wandfarben, als Additiv zur Vulkanisierung von Gummi oder als Zusatz zu Zement eingesetzt. Nanopartikuläres Zinkoxid weist auf Grundlage seiner geringen Größe und großen spezifischen Oberfläche spezielle physikalisch-chemische Eigenschaften auf. Hierzu zählen katalytische, optische und elektronische Eigenschaften. Diese Eigenschaften eröffnen zusätzliche Einsatzmöglichkeiten für Zinkoxid, wie z.B. als UV-Filter in Sonnenschutzmitteln, in Textilien, in Klarlacken oder für transparenten Kunststoffe. Die Stoffbewertung ist ein Instrument der REACH-Verordnung, anhand dessen die zuständigen Behörden der EU-Mitgliedstaaten klären, ob sich aus der Herstellung oder Verwendung eines in der EU registrierten Stoffes ein Risiko für die menschliche Gesundheit und/oder die Umwelt ergibt. Zur Bewertung des Stoffrisikos werden sowohl die Daten, die bei der Registrierung des Stoffes zur Verfügung gestellt wurden, als auch alle weiteren verfügbaren Informationsquellen zu Rate gezogen. Sollte die vorhandene Datenlage keine eindeutige Beurteilung des Risikos ermöglichen, können die nationalen Behörden weitere Informationen von den Registranten des bewerteten Stoffes anfordern. Kann die Besorgnis nicht ausgeräumt werden oder erhärtet sich der Risikoverdacht, kann es als Konsequenz einer Stoffbewertung zu EU-weiten Risikomanagementmaßnahmen, wie z.B. Beschränkungen des Stoffes, Identifizierung als besonders besorgniserregend oder andere Maßnahmen, wie eine harmonisierte Einstufung nach CLP-Verordnung, kommen. Der Fokus der Stoffbewertung von Zinkoxid durch die deutschen Bundesoberbehörden liegt auf den im Registrierungsdossier enthaltenen Nanoformen. Unter Nanoformen eines Stoffes versteht man die Formen eines chemischen Stoffes, die der Definitionsempfehlung der EU zu Nanomaterialien entsprechen. Das UBA ist alleine für die Umweltaspekte der Stoffbewertung von Zinkoxid zuständig. Die Aspekte hinsichtlich der menschlichen Gesundheit liegen in der Verantwortung des Bundesinstitut für Risikobewertung.
Dikerogammarus villosus, one of the most successful invaders in European river systems, is commonly regarded as a threat to native biodiversity and a main factor structuring the benthic community of invaded systems. The impact of D. villosus has been intensively studied in small-scale experiments and field observations, but its impact on natural communities on a larger scale remains unclear. Here, we investigated the benthic community structure at ten sites covering a broad range of habitats along the River Rhine (Central Europe) and its tributaries, to determine whether D. villosus is one of the main factors structuring the benthic community. Community composition was analysed using non-metric multidimensional scaling, distance-based redundancy analysis, and correlation analyses. D. villosus was one of nine relevant taxa present that altogether reflected a large part of the variation in the benthic samples, but further analyses indicated that the species might be less important for the community structure than other relevant taxa. Moreover, all nine relevant taxa together can explain only a similar amount of variation in our samples than the five relevant non-faunal environmental factors (water temperature, pH, conductivity, percentage of medium-sized gravel and macrophytes). Overall, our results suggested that rather a combination of non-faunal environmental factors than D. villosus mainly structure the benthic community composition on this larger spatial scale. © 2018 Elsevier GmbH. All rights reserved.
Mit Band 2 wird die Erhaltungssituation vieler Artengruppen der deutschen Meeresgebiete analysiert: 1. In der Roten Liste der Meeresfische wurde durch die erstmalige Anwendung der neu gefassten Etablierungskriterien das Artenspektrum auf knapp 100 Arten verringert. 2. Die ca. 1.250 Arten der bodenlebenden wirbellosen Tiere verteilen sich auf die Gruppen: - Schwämme (Porifera) - Nesseltiere (Cnidaria) - Weichtiere (Mollusca) - Vielborster (Polychaeta) - Wenigborster (Oligochaeta) - Igelwürmer (Echiurida) - Asseln (Isopoda) - Zehnfüssige Krebse (Decapoda) - Stachelhäuter (Echinodermata) - Seescheiden (Ascidiacea). Erstmalig aufgenommen wurden: - Seepocken (Balanomorpha) - Kumazeen (Cumacea) - Flohkrebse (Amphipoda) - Asselspinnen (Pantopoda) - Moostierchen (Bryozoa) - Schädellose (Acrania). In der Roten Liste der marinen Makroalgen finden sich rund 350 Vertreter der - Grünalgen (Chlorophyta) - Braunalgen (Phaeophyceae) - Rotalgen (Rhodophyta).
Lebensraum der benthischen Wirbellosen (Makrozoobenthos (MZB) = Makrofauna) ist der Meeresboden und die Pflanzenbestände, die den Meeresboden bewachsen. Das Makrozoobenthos lebt meist im Boden selbst (Infauna). Dabei gibt es nahezu ausschließlich Wirbellose, die im Sediment also den Weichböden siedeln, aber kaum Arten, die befähigt sind in Gestein zu bohren also im Hartsubstrat vorkommen. Viele Wirbellose leben aber nicht im sondern auf dem Meeresboden (Epifauna) und zwar sowohl auf Weich- als auch Hartböden. Viele epibenthisch lebende Wirbellose sind vagil, also frei beweglich, doch auch am Untergrund anhaftende oder verankerte und damit sessile Tiere gibt es unter ihnen. Von der Epifauna können Wirbellose, die mit Pflanzenbeständen vergesellschaftet sind, weiter spezifiziert werden. Viele verschiedene Tiergruppen besiedeln den Meeresgrund. Zu den artenreichsten und zahlenmäßig dominierenden Gruppen zählen die Borstenwürmer (Polychaeta), Flohkrebse (Amphipoda), Muscheln (Bivalvia) und Schnecken (Gastropoda). Der Sedimenttyp bestimmt, welche Tiere sich auf oder im Meeresboden ansiedeln. So sind die Weichbodengebiete (z. B. Sand, Schlick oder Kies) ohne Vegetation dominiert von Borstenwürmern und Muscheln. Gebiete mit Vegetation und Hartbodengebiete (z. B. Steine, Blöcke oder Buhnen) sind typischerweise geprägt von Epifauna, wie Flohkrebsen und anderen Krebstieren sowie Schnecken. Abb. 1: Die Ein- und Ausstromöffnungen der im Weichboden lebenden Sandklaffmuscheln (oben links), eine Wellhornschnecke auf tiefliegendem Schlickgrund (oben rechts), eine Seescheide, Meeresassel auf Seegrasblättern (unten links) und eine Ostseegarnele in mitten von Seescheiden auf einem Brauntang (unten rechts). Die bestimmenden Faktoren für die Verteilung einzelner Arten und die Zusammensetzung der Faunengemeinschaften sind Salzgehalt, Wassertiefe und, wie oben beschrieben, die Form des Untergrundes. Dabei hängen Salzgehalt und Wassertiefe eng zusammen. Eine sogenannte Sprungschicht, die sich in etwa bei 15 m Wassertiefe in den offenen Küstengewässern befindet, trennt eine obere Wasserschicht mit niedrigerem Salzgehalt und höherer Temperatur von einer tieferen Wasserschicht mit höherem Salzgehalt und niedrigerer Temperatur. Die Artenvielfalt ist höher in den salzreicheren, tiefer liegenden Meeresböden. Der überwiegende Teil der Küstengewässer liegt oberhalb der saisonalen Sprungschicht. Neben dem vertikalen gibt es auch einen horizontalen Salzgehaltsgradienten mit ca. 18 - 20 psu im westlichen und ca. 6 - 8 psu im östlichen Teil der Außenküste. Auch am Übergang zwischen den inneren und äußeren Küstengewässern ergibt sich ein Salzgehaltsgradient. In den innersten Bereichen mancher Ästuare und Bodden herrschen nahezu Süßwasserverhältnisse, wodurch Faunenelemente wie Insekten(larven), Oligochaeten (Wenigborster) oder Schnecken zum Artenspektrum hinzutreten. Innerhalb dieser Salzgehaltsgradienten ergibt sich ein Artenminimum, das bei einem Salzgehalt zwischen 5 und 8 psu liegt. Die Wirbellosen nehmen die Vermittlerrolle zwischen den Primärproduzenten, den Pflanzen, und den oberen Stufen des Nahrungsnetzes ein. Sie ist also ein wichtiger Sekundärproduzent und Nahrungsgrundlage der meisten Fische und einiger Vogelarten. Gleichzeitig ernähren sich die meisten Arten der Wirbellosen von Plankton und Detritus, einzelne auch von Großalgen oder Angiospermen. Sie bilden also einen essentiellen Teil der marinen Nahrungsnetze. Als Besonderheit der marinen Wirbellosenfauna kann angesehen werden, dass einige Arten ähnlich wie die Pflanzen einen eigenständigen Lebensraum auf der Oberfläche des Meeresbodens bilden können. Dies trifft vor allem auf die Muschelbänke, aber auch auf die Kolonien von Schwämmen oder Moostierchen. Diese epibenthischen Arten „übernehmen“ die Schutzfunktion, die Vegetationsbestände für Wirbellose haben. Entsprechend ähnlich sind sich auch die Lebensgemeinschaften, die sich innerhalb dieser Lebensräume ausbilden. Abb. 2: Strandkrabbe auf Beutefang in einer Miesmuschelbank (links) und eine Kolonie von Blättermoostierchen (rechts), die ähnliche Wuchsformen wie Rotalgen dieser Tiefenbereiche annehmen. Aktuell stehen verschiedene Verfahren zur Bewertung der benthischen Wirbellosenfauna in Nord- und Ostsee zur Verfügung: Ostsee MarBIT ( Mar ine B iotic I ndex T ool) ( MARILIM 2015 , Berg et al. 2017). Nordsee M-Ambi (M ultimetric A ZTI M arine B iotic I ndex ) ( Borja et al. 2000, Muxika et al. 2007) modifiziertes MarBIT -Verfahren für Helgoland (Boos et al. 2009)
Die Lebensgemeinschaft am Seeboden gibt in ihrer Artenzusammensetzung Auskunft über den Zustand sowohl des Gewässers als auch des Sediments. Ihre Untersuchung ist daher ein wichtiger Teil der Seenüberwachung. Gegenüber der frei beweglichen Lebensform der Freiwasserlebensgemeinschaften leben alle Bewohner des Seebodens mehr oder weniger ortsgebunden. Ihre Zusammensetzung ist daher vorwiegend ein Spiegel lokaler Umweltbedingungen. Am Seeboden ändern sich die Lebensbedingungen oft sehr kleinräumig. Daher sind für die Bewertung des Seezustandes aufwändigere und flächendeckendere Beprobungen als beim Freiwasser erforderlich. Vor allem aus diesem Grund waren bislang umfassendere Bestandsaufnahmen der Lebensgemeinschaften des Seebodens auf den Bodensee beschränkt. Dabei wurden sowohl Makrophyten und Aufwuchsalgen aus auch heterotrophe Benthosorganismen (Makro-, Meio-, Mikrobenthos) berücksichtigt. Makrophyten und Aufwuchsalgen tragen als pflanzliche Organsimen zur Primärproduktion und damit zur Nahrungsversorgung der heterotrophen tierischen und mikrobiellen Lebensgemeinschaften des Seebodens bei. Da ihr Wachstum wie bei allen Pflanzen lichtabhängig ist, ist ihre Verbreitung auf die durchlichteten flachen Bereiche des Seebodens beschränkt. Neben ihrer Bedeutung als Nahrungsquelle bilden sie aber auch wichtige strukturelle Elemente der Flachwasserzone, die einerseits lokale Strömungs- und Sedimentationsmuster beeinflussen und andererseits für viele Organismen Bedeutung für Schutz und Nachwuchssicherung haben. Bei Makrophyten handelt es sich um makroskopische, also mit bloßem Auge sichtbare Wasserpflanzen, die unter und an der Wasseroberfläche leben und bis mehrere Meter lang werden können. Dazu gehören Armleuchteralgen (Charophyta), Moose, Farne sowie Samenpflanzen (z.B. Laichkräuter, Seerosen und Teichrosen). Die meist mikroskopisch kleinen Aufwuchsalgen besiedeln Steine, Sedimente und setzen sich insbesondere aus Kiesel- und Goldalgen zusammen, in stärker belasteten Gewässern nimmt der Anteil von Blau- und Grünalgen zu, die dann oft fädig-zottige Beläge bilden. Makrophyten und Aufwuchsalgen können - vergleichbar mit Planktonalgen - als Zeigerorganismen (so genannte Indikatoren) für die Nährstoffbelastung herangezogen werden. Aufgrund ihres Wachstums in Ufernähe sind sie vor allem als Anzeiger punktueller Belastung geeignet (z.B. Abwassereinleitungen, hohe Bestände an Wasservögeln). Fotos: See mit Wasserpflanzen (links) sowie Armleuchteralgen unter Wasser (rechts). Fotograf: Humberg. Der Seeboden ist auch Lebensraum für heterotrophe tierische und mikrobielle Lebensgemeinschaften. Deren Nahrungsversorgung erfolgt in den durchlichteten Flachwasserbereichen vor allem über die vor Ort entstandene pflanzliche Produktion von Makrophyten und Aufwuchsalgen, in den lichtlosen Tiefenwasserbereichen dagegen ausschließlich über absedimentierende, im See selbst produzierte organische Substanz oder über organische Sinkstoffe aus Zuflüssen. Entsprechend der Größe der Organismen unterscheidet man das Makrobenthos (mit bloßem Auge sichtbar > 200 µm), Meiobenthos (200 – 40 µm) und Mikrobenthos (< 40 µm). Das Makrobenthos zeigt große Unterschiede mit der Wassertiefe: Im Flachwasserbereich dominieren Wasserinsekten, Egel, Schnecken, Muscheln und Kleinkrebse, im Tiefenwasserbereich Schlammröhrenwürmer, Zuckmückenlarven und Strudelwürmer. Manche dieser Organismen können durch ihre Wühltätigkeit im Schlamm den Sediment-Wasser-Austausch intensivieren (Bioturbation) . Das bislang nicht so intensiv untersuchte Meiobenthos wird von Fadenwürmern (Nematoden) dominiert. Zusätzlich werden Rädertiere, Bärtierchen und Kleinkrebse regelmässig gefunden. Aufgrund der festgestellen Biomassen und hohen Wachstumsgeschwindigkeiten kann davon ausgegangen werden, dass diese Organismen wesentlich an den biologischen Stoffumsetzungen im Seeboden beteiligt sind. Das Mikrobenthos setzt sich aus Bakterien und einzelligen Urtierchen (Protozoen) zusammen. Deren Funktion ist wie im überstehenden Wasser insbesondere der Abbau organischer Substanz. Damit verursachen sie auch die in der Regel steilen Gradienten für Sauerstoff und Redoxpotential in der Sediment-Wasser-Grenzschicht und beeinflussen auf diese Weise auch die Stoffflüsse zwischen Sediment und Wasser. Fotos: Flohkrebs (oben); Zuckmückenlarve (unten).
Das Projekt "Untersuchungen zur trophischen Bedeutung und Metapopulationsstruktur von Arten des gelatinösen Zooplanktons im Südpolarmeer über DNA-Metabarcoding" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Gelatinöses Zooplankton (GZP), darunter pelagische Ctenophoren, Nesseltiere und Salpen, gelten als Gewinner des Klimawandels. In mehreren marinen Ökosystemen weltweit hat ihre Zahl in den letzten Jahrzehnten erheblich zugenommen. Diese so genannte "Gelierung" gilt auch für die sich erwärmende Region des Südpolarmeers mit ihrer bekannten Verschiebung von einem krillbasierten zu einem salpenbasierten Ökosystem. Abgesehen von den Salpen werden andere gelatinöse Zooplankter der Antarktis kaum untersucht, da diese schwer erfassbaren Vertreter des pelagischen Lebensraums aufgrund methodischer Beschränkungen mit den traditionellen Netzbeprobungen nicht bzw. kaum nachweisbar sind. Entsprechend wird die Vielfalt des GZPs bislang nicht erhoben, ihre Biodiversität und Abundanz unterschätzt. Wenn man bedenkt, dass das GZP einen großen Teil der pelagischen Biomasse ausmacht und noch zentraler im Kontext der Ozeanerwärmung wird, könnte ihre ökosystemare Bedeutung als Nahrungsressource für höhere tropische Ebene zunehmen. Bis vor kurzem galt GZP allerdings als "trophische Sackgasse". Diese klassische Sichtweise ist darin begründet, dass durch die schnelle Verdauung des wässrigen, weichen Gewebes von GZP, diese - ebenso wie in den Netzfängen - nicht mehr in den Verdauungsorganen von Beutetieren nachweisbar sind. Erste neuere Studien haben jedoch gezeigt, dass viele Taxa routinemäßig GZP im gesamten Weltozean konsumieren. Mit diesem DFG-Antrag wollen wir diesen Paradigmenwechsel für pelagische und demersale Ökosysteme des Südpolarmeers validieren. Zu diesem Zweck werden wir die räumlich-zeitliche Variation in der Nahrungszusammensetzung und das Auftreten von GZP-Räubern für Amphipoden- und Fischarten mit Hilfe eines DNA-Metabarcoding-Ansatzes untersuchen.Anschliessend wollen wir auf der Grundlage der Millionen von DNA-Messwerten, die mit dieser Methode und bioinformatischer Entrauschung gewonnen wurden, eine metaphylogeographische Studie durchführen. Damit wollen wir die genetische Struktur und die Populationskonnektivität der sonst schwer zu beprobenden gallertartigen Zooplanktonarten untersuchen.
Das Projekt "Bioakkumulationsbewertung von superhydrophoben Stoffen" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH durchgeführt. Biokonzentrationstests mit dem Süßwasserflohkrebs Hyalella azteka (HYBIT) wurden als Alternative zu Fischtests vorgeschlagen, und die entsprechenden experimentellen BCF Werte zeigen vielversprechende Korrelationen. Ob der HYBIT-Test auch für stark hydrophobe Chemikalien wie die UV-Stabilisatoren UV-234 und UV-329 geeignet ist, ist unklar. Um abzuschätzen, in welchem Bereich die Aufnahmeratenkonstante k1 für diese Substanzen zu erwarten wäre, wurde in dieser Arbeit ein Vorhersagemodell für k1 in H. azteka entwickelt. Experimentelle Literaturwerte erscheinen im Rahmen der gegebenen Unsicherheiten gegenüber den vorhergesagten Werten plausibel, für eine abschließende Validierung sind jedoch weitere experimentelle Daten erforderlich. Die wichtigsten Unsicherheitsfaktoren für die Vorhersage sind die Unsicherheit der Bestimmung des Octanol/Wasser-Verteilungskoeffizienten und die Bindung der Chemikalie an organisches Material in Wasser (TOC). Im Vergleich zu Fisch-Tests erscheint HYBIT für superhydrophobe Substanzen vielversprechend, nicht nur wegen der experimentellen Vorteile wie kleineren Versuchseinheiten. Dem Modell zufolge profitiert die Messung in H. azteka (ohne Metabolismus) von einer tendenziell höheren Depurationsratenkonstante k2 als im Fisch, was die Zeit bis zum Steady State verkürzen sollte. Dennoch sind für H. azteka laut Modellierung im superhydrophoben Bereich Zeiten bis zum Steady State zu erwarten, die weit über den Standardtestzeiten (bis zu Monaten) liegen. Die Verwendung des BCF als Bewertungskriterium für die Bioakkumulation von superhydrophoben Stoffen ist jedoch grundsätzlich fragwürdig. Bei superhydrophoben Substanzen führt die Einführung von Kot als zusätzlichen Ausscheidungsweg, ohne die in der Realität damit gekoppelte Aufnahme kontaminierter Nahrung, dazu, dass auch ohne Metabolismus oder Wachstum die BCF-Werte mit steigendem Kow sinken, was so nicht zu erwarten wäre unter realen Umständen.
Das Projekt "Entwicklung eines Bioakkumulationstests mit Hyalella azteca" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie durchgeführt. Ein Indikator für die Anreicherung von Chemikalien in Biota ist der Biokonzentrationsfaktor, der üblicherweise mittels Versuchen an Fischen ermittelt wird. Für jede Substanz werden über 100 Fische benötigt. Biokonzentrationsversuche mit dem Mexikanischen Flohkrebs (Hyalella azteca) liefern sehr ähnliche Ergebnisse und können daher zu einem gewissen Grad die Fischversuche ersetzen. Für den regulären Einsatz in der Stoffbewertung, z.B. unter REACH, müssen die Möglichkeiten und Grenzen der Vergleichbarkeit besser untersucht und der Test zu einer OECD Testrichtlinie weiterentwickelt werden. Dies soll mit dem hier beschriebenen Vorhaben unterstützt werden. Zu klären ist z.B., ob der Test auch zur Bewertung des Bioakkumulationspotentials von ionisierbaren Stoffen geeignet ist. Zusätzlich wird untersucht, ob der Test auch für die Untersuchung des Bioakkumulationspotentials von Nanomaterialien geeignet ist. Ziel ist die Weiterentwicklung des Testsystems, Mitarbeit bei der Erarbeitung eines Entwurfs für eine Testrichtlinie, die Unterstützung und Auswertung eines internationalen Ringtests und die Untersuchung der Anwendbarkeit und der Grenzen des Testsystems, indem weitere, z.B. ionisierbare Substanzen getestet werden. Anschließend kann der Testrichtlinienentwurf der OECD vorgeschlagen werden. Es wird eine Grundlage für die Vergleichbarkeit von Biokonzentrationsdaten für Fisch und Mexikanischen Flohkrebs geschaffen. Auf dieser Grundlage wird entschieden, in welchem Umfang auf Tests an Vertebraten verzichtet werden kann ohne an Genauigkeit der Aussage zu verlieren.
Das Projekt "Mechanisms and consequences of aquatic invasion in European Rivers" wird vom Umweltbundesamt gefördert und von Universität Koblenz, Institut für Integrierte Naturwissenschaften, Abteilung Biologie durchgeführt. The phenomenon of alien species invasion is attracting a growing attention worldwide. Invasion of alien benthic invertebrates is a global and important feature of large rivers and is assumed to pose a threat to biodiversity and ecosystem functioning. While changes of invertebrate communities have been described in detail, it is still unknown whether these structural changes translate into functional changes. The aim of this project is to understand the underlying key mechanisms of invasion and its consequences for ecosystem functioning and water-quality relevant processes. As a model the invasive amphipod Dikerogammarus villosus and its impacts are studied on multiple levels of complexity (individual, population, and community level) with ecological and physiological methods. Field mesocosm experiments will be conducted in three European rivers which differ in their invasion history (dominated by natives, invader-dominated, and invaders home range). Thereby the effects of different D. villosus densities on biotic interactions and important ecosystem functions are compared among those rivers. This offers the unique opportunity to study invader traits and community features and their importance for the success of a biological invasion over different spatial and temporal scales. In addition it allows to estimate the large scale effect of D. villosus invasion.
Origin | Count |
---|---|
Bund | 16 |
Land | 3 |
Type | Count |
---|---|
Förderprogramm | 12 |
Text | 3 |
unbekannt | 3 |
License | Count |
---|---|
geschlossen | 6 |
offen | 12 |
Language | Count |
---|---|
Deutsch | 15 |
Englisch | 5 |
Resource type | Count |
---|---|
Bild | 1 |
Dokument | 2 |
Keine | 10 |
Unbekannt | 1 |
Webseite | 6 |
Topic | Count |
---|---|
Boden | 11 |
Lebewesen & Lebensräume | 18 |
Luft | 6 |
Mensch & Umwelt | 18 |
Wasser | 12 |
Weitere | 17 |