API src

Found 121 results.

Related terms

Umweltbundesamt: Sicherheitsrisiken bei Pkw-Klimaanlagen nicht auszuschließen?

Neue Untersuchungen mit dem Kältemittel HFKW-1234yf bestätigen Gefahren beim Einsatz Das Umweltbundesamt (UBA) hat sich für die Verwendung des natürlichen Kältemittels R744 und gegen die Verwendung des teilfluorierten Kohlenwasserstoffs HFKW-1234yf (Tetrafluorpropen) als Kältemittel in Pkw-Klimaanlagen ausgesprochen. Vor allem deutsche Hersteller favorisierten bisher das natürliche Kältemittel R744 (CO2). Eine klare Entscheidung der Automobilindustrie ist aber bisher nicht zu erkennen. UBA-Präsident Jochen Flasbarth plädierte vor dem Hintergrund neuer Studien für eine rasche Festlegung der deutschen Automobilindustrie für die umweltfreundliche Ausstattung der Pkw-Klimaanlagen mit CO2 als Kältemittel. „Es hat sich noch nie ausgezahlt, bei Umweltinnovationen im Automobilbereich zu warten und EU-Regelungen nicht ernst zu nehmen. Pkw-Klimaanlagen mit CO2 als natürlichem Kältemittel sind serienreif entwickelt. Dagegen belegen Studien, dass mit dem Einsatz des synthetischen Kältemittels HFKW-1234yf in Automobilklimaanlagen bisher nicht ausreichend bewertete Risiken verbunden sein können.” Wenn sich das HFKW-1234yf entzündet, beispielsweise bei einem Motorbrand, entsteht der sehr giftige und stark ätzende Fluorwasserstoff (Flusssäure), von dem ein erhebliches zusätzliches Risiko  ausgeht. Bereits im Jahr 2006 hat die EU beschlossen, dass die europäische Automobilindustrie ab 2011 in Klimaanlagen neuer Typen von Pkw und kleinen Nutzfahrzeugen keine Kältemittel mit einem Treibhauspotential (GWP) größer 150 (150 mal mehr als CO 2 ) mehr einfüllen darf. Das ⁠ UBA ⁠ empfiehlt hier schon seit langem, auf CO 2 zu setzen. CO 2 ist ungiftig, nicht brennbar und überall kostengünstig verfügbar. Seit einem Jahr bewährt sich im UBA ein Dienstfahrzeug mit CO 2 -Klimaanlagentechnik im alltäglichen Einsatz. Anlässlich der Internationalen Automobil-Ausstellung (IAA) im September 2007 verkündete der Verband der Deutschen Automobilindustrie (VDA), dass die deutschen Fahrzeughersteller zukünftig in Pkw-Klimaanlagen „als weltweit erste Unternehmen der Automobilindustrie das besonders umweltfreundliche natürliche Kältemittel R744 (CO 2 )” einsetzen werden. Noch im Oktober 2008 teilte der VDA mit, HKFW-1234yf sei im Ergebnis von eigenen Bewertungen für die „Mehrzahl der Unternehmen … keine Option”. In Serie werden Klimaanlagen mit CO 2 als Kältemittel aber bis heute nicht produziert und es mehren sich die Hinweise, dass dies auch in absehbarer nicht geschehen wird. Jochen Flasbarth dazu: „Die deutsche Automobilindustrie hat seit vielen Jahren intensiv in die Entwicklung der CO 2 -Technik investiert. Es wäre fatal, zugunsten einer unsicheren Übergangslösung mit dem synthetischen Kältemittel HFKW-1234yf die Chance zu verspielen, mit der innovativen CO 2 -Klimatechnik den Weltmarkt anzuführen. Der Impuls für den weltweiten Umstieg auf natürliche Kältemittel im Pkw-Sektor sollte aus Deutschland kommen.” HFKW-1234yf ist brennbar und enthält Fluor. Im Brandfall und bei Kontakt mit heißen Oberflächen bildet sich stark ätzende, giftige Flusssäure. Flusssäuredämpfe bilden ein zusätzliches Risiko für Insassen und Brandhelfer bei Unfällen und beim Umgang mit HFKW-1234yf. Die Brennbarkeit und der hohe Fluorgehalt von HFKW-1234yf veranlassten das Umweltbundesamt, Messungen an HFKW-1234yf zu beauftragen. Untersucht wurde zunächst die Bildung zündfähiger, das heißt explosionsfähiger Gemische bei Raumtemperatur. Interessant für den technischen Einsatz als Kältemittel ist aber auch das Explosionsverhalten, wenn zusätzlich gasförmige Kohlenwasserstoffe in der Luft sind. Quelle von gasförmigen Kohlenwasserstoffen können zum Beispiel das Kälteöl selbst, Benzin, Motoröle oder Reinigungsmittel sein - also Stoffe, die regelmäßig im Pkw vorhanden sind. Ab einer Konzentration von 6,2 Prozent bildet HFKW-1234yf bereits mit Luft explosionsfähige Gemische. Sind gleichzeitig geringe Mengen Kohlen­wasserstoffe - für die Messungen verwendete die BAM Ethan - in der Luft, ist das ⁠ Gemisch ⁠ von HFKW-1234yf schon bei weit kleineren Konzentrationen explosionsfähig. Um mit geringen Mengen von HFKW-1234yf (ab zwei Prozent) explosionsfähige Gemische in der Luft zu bilden, reichen bereits Konzentrationen von nur 0,5 bis 1,3 Prozent Kohlenwasserstoffe aus. In weiteren Versuchen untersucht die BAM die Zersetzung und Brennbarkeit von HFKW-1234yf. Bereits die vorliegenden Erkenntnisse zeigen, dass die sicherheitstechnischen Fragen des Einsatzes von HFKW-1234yf als Kältemittel in Pkw-Klimaanlagen nicht gelöst sind. Dessau-Roßlau, 12.02.2010 (4.865 Zeichen)

Umweltbundesamt für Kohlendioxid in Klimaanlagen

Tetrafluorpropen ist klima- und umweltschädlicher Das Umweltbundesamt (UBA) empfiehlt auch nach neueren technischen Untersuchungen, künftig in Fahrzeugklimaanlagen Kohlendioxid einzusetzen. Das von der Automobilindustrie favorisierte Kältemittel Tetrafluorpropen - chemisch abgekürzt als HFKW-1234yf - hält zwar die neuen EU-Vorgaben ein, ist aber gleichwohl klimaschädlicher als das Kältemittel CO2. Ab dem 1. Januar 2011 muss die Autoindustrie die ⁠ Emission ⁠ aus Klimaanlagen in Kraftfahrzeugen senken. Um die Vorgaben der EU-Richtlinie 2006/40/EG zu erfüllen, plant die internationale Automobilindustrie zukünftig das chemische Kältemittel Tetrafluorpropen einzusetzen. Die Substanz ersetzt das bisherige Kältemittel HFKW‑134a. Ende Mai 2010 gaben die deutschen Hersteller bekannt, dass sie sich dieser Entscheidung anschließen. Dem wesentlich klima- und umweltfreundlicheren Kältemittel Kohlendioxid (CO 2 ) erteilte die deutsche Autoindustrie damit eine Absage. Als Kältemittel hat Kohlendioxid neben dem geringeren Treibhauspotential im Vergleich zu Tetrafluorpropen weitere Vorzüge: Es ist nicht brennbar, weltweit günstig verfügbar und hat eine gute Kälteleistung. Zudem entstehen bei CO 2 keine Abbauprodukte wie bei fluorierten Kältemitteln. Neue Untersuchungen, die die Bundesanstalt für Materialforschung und -prüfung (BAM) im Auftrag des ⁠ UBA ⁠ durchgeführt hat, bestätigen Risiken beim Einsatz von Tetrafluorpropen. So kann sich im Falle eines Fahrzeugbrandes Fluorwasserstoff (Flusssäure) bilden. Dieser ist giftig und wirkt stark ätzend. Tetrafluorpropen selbst ist leicht entzündlich. Hinzu kommt eine weitere kritische Eigenschaft: Bereits bevor sich die Chemikalie entzündet, können hohe Konzentrationen an Flusssäure auftreten. Hierzu sind heiße Metalloberflächen mit einer Temperatur von 350°C ausreichend, wie sie beispielsweise am Abgaskrümmer und am Katalysator beim Betrieb des Fahrzeugs vorkommen können. UBA-Präsident Jochen Flasbarth: „Es kann sein, dass die Klimatisierung mit Tetrafluorpropen eine einfache und schnelle Lösung und mit Blick auf den internationalen Markt naheliegende Lösung ist. Die für den ⁠ Klimaschutz ⁠ Beste ist sie eindeutig nicht. Die Vorteile aus Sicht von Umwelt und Technik sprechen für Kohlendioxid.“ Ein Dienstfahrzeug des UBA fährt seit über einem Jahr mit einer CO 2 -Klimaanlage. 26.08.2010

Keramische Industrie

Für die keramische Industrie sind Emissionsfaktoren (EF) für die Emissionsparameter Methan, (CH4 ), Kohlenmonoxid (CO), Fluorwasserstoff (HF), ⁠ Dioxine ⁠ und Furane (PCDD / PCDF), Distickstoffoxid (N2 O), Cadmium in Verbindung (Cd), Blei in Verbindung (Pb), elementares Quecksilber (Hg) und Polyzyklische Aromatische Kohlenwasserstoffe (PAH) zu bestimmen. Veröffentlicht in Texte | 18/2010.

Chem-Org\H-FCKW R22-DE-2000

H-FCKW R22-Herstellung durch Umsetzung von Chloroform (CHCl3) mit Fluorwasserstoff nach folgender Gleichung: CHCl3 + 2 HF à CHClF2 (R22) + 2 HCl Die Daten gelten für Deutschland Anfang 90er Jahre. Allokation: Die Allokation der benötigten Chemikalien, der Energie und Emissionen der einzelnen Koppelprodukte erfolgt nach #1 über die obige Gleichung und den erzielbaren Marktpreis, d.h die Belastung der Umwelt wird im Verhältnis ihrer Marktpreise aufgeschlüsselt. Analog zu #1 werden in GEMIS nur die anteiligen Belastungen für R22 aufgenommen (d.h. es werden keine Gutschriften für Chlorwasserstoff erteilt). Genese der Daten: Die Kennziffern für den Einsatz von Chloroform (CHCl3), Fluorwasserstoff (HF), Heizöl EL (100 kW Heizung) und elektrischer Energie (Mittelspannung) stammen alle von #1 und basieren auf Herstellerangaben. Zu prozeßspezifischen Emissionen wurden von den betreffenden Firmen keine Angaben gemacht. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 71,9% Produkt: Grundstoffe-Chemie

Chem-Org\R134a-DE-2000

Die Herstellung von R134a kann auf diversen Wegen erfolgen und hängt im wesentlichen vom Preis und der Verfügbarkeit der Rohstoffe (chlorierte C2-Kohlenwasserstoffe) ab. In #1 ist eine vereinfachte aggregierte Bilanz (der komplexen Reaktionen) ausgehend von Methan, Kochsalz und Fluorwasserstoff aufgestellt. Die Daten beziehen sich auf Deutschland Anfang der Neunziger Jahre. Allokation: Die Allokation der benötigten Chemikalien, der Energie und Belastung der einzelnen Koppelprodukte erfolgt nach #1 im Verhältnis der Marktpreise der Koppelprodukte, d.h die Belastung der Umwelt wird im Verhältnis ihrer Marktpreise aufgeschlüsselt. Analog zu #1 werden in GEMIS nur die anteiligen Belastungen für R134a aufgenommen (d.h. es werden keine Gutschriften für Koppelprodukte erteilt). Genese der Daten: Die Kennziffern für den Einsatz von Kochsalz (NaCl), Wasser, Heizöl EL (100 kW Heizung) und elektrischer Energie (Mittelspannung) stammen alle aus #1 und basieren auf Herstellerangaben. Die Einsatzmengen von Methan (Erdgas) und Flußsäure (HF) werden stöchiometrisch (aus den C- bzw. F-Anteilen in R134a) ermittelt. Zu prozeßspezifischen Emissionen wurden von dem betreffenden Unternehmen Angaben zu R134a-Emissionen und dem Anfall von Aluminiumoxid gemacht. Auslastung: 5000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 319% Produkt: Grundstoffe-Chemie

Chem-Org\FCKW R12-DE-2000

FCKW R12-Herstellung durch Umsetzung von Tetrachlorkohlenstoff mit Fluorwasserstoff nach folgender Gleichung: CCl4 + 2 HF à CCl2F2 (R12) + 2 HCl Die Daten gelten für Deutschland, Anfang 90er Jahre. Allokation: Die Allokation der benötigten Chemikalien, der Energie und Emissionen der einzelnen Koppelprodukte erfolgt nach #1 über die obige Gleichung und den erzielbaren Marktpreis, d.h die Belastung der Umwelt wird im Verhältnis ihrer Marktpreise aufgeschlüsselt. Analog zu #1 werden in GEMIS nur die anteiligen Belastungen für R12 aufgenommen (d.h. es werden keine Gutschriften für Chlorwasserstoff erteilt). Genese der Kennziffern Die Kennziffern für den Einsatz von Tetrachlorkohlenstoff (CCl4), Fluorwasserstoff (HF), Heizöl EL (100 kW Heizung) und elektrischer Energie (Mittelspannung) stammen alle aus #1 und basieren auf Herstellerangaben. Zu prozeßspezifischen Emissionen wurden von den betreffenden Firmen keine Angaben gemacht. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 87,3% Produkt: Grundstoffe-Chemie

Chem-Anorg\Flußsäure-DE-2000

Flußsäureherstellung; Flußsäure wird fast ausschließlich durch Aufschluß von Flußspat (CaF2) mit Schwefelsäure nach folgender Gleichung gewonnen: CaF2 + H2SO4 => CaSO4 + 2 HF Die endotherme Reaktion wird in einem von außen beheizten Drehrohrofen durchgeführt. Die Daten gelten für EU-Länder Anfang der 90er Jahre. Allokation: keine Genese der Kennziffern Die Kennziffern pro Tonne Flußsäure für den Einsatz von Flußspat (1950 kg) und Schwefelsäure (2500 kg), sowie für die Emissionen an Schwefeldioxid (0,3 kg) und Fluorwasserstoff (0,25 kg) basieren alle auf #2 . Die Werte für Flußspat (CaF2) und Schwefelsäure sind aufgrund eines systematischen Fehlers (Fehler in der stöchiometrischen Bilanz) in der Orginalquelle gegenüber #2 halbiert. Die Angabe für den Produktionsabfall (Calciumsulfat) stammt von #1. In #2 finden sich keine Angaben zum Energieeinsatz für die eigentliche Flußsäureherstellung im Drehrohrofen. Die Autoren betonen jedoch, daß dieser relevant ist. In #1 ist der Wärmebedarf der endothermen Reaktion mit 100 kJ pro 2 mol HF (40g) angegeben. Für GEMIS wird daher ein Energieeinsatz (Heizöl S) von 2500 MJ/t Flußsäure für den Drehrohrofen angesetzt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 51,3% Produkt: Grundstoffe-Chemie

Metall\Aluminium-DE-2050

Schmelzflusselektrolyse (Primär- bzw. Hüttenaluminium) aus Tonerde Hall-Heroult-Prozeß). Werte für CF4- und C2F6-Emissionen aktualisiert. Allgemeines Verfahren ist die Elekrolyse der Tonerde (Al2O3) in Kryolithschmelzen (Na3AlF6). Kryolith wird im Prozeß zur Schmelzpunkterniedrigung (auf ca. 950 °C) benötigt. Kryolithverluste werden durch Zugabe von Aluminiumfluorid (AlF3) ausgeglichen. Das elektrolytisch gebildete Aluminium setzt sich am kathodischen Boden der Elektrolysezelle ab. Der Sauerstoffanteil der eingesetzten Tonerde verbindet sich mit dem Kohlenstoff der Anoden zu Kohlendioxid und Kohlenmonoxid. Durch den Schwefelgehalt des eingesetzten Anodenmaterials werden weiterhin Schwefeldioxidemissionen freigesetzt. Weitere wichtige Emissionen bei der Schmelzflußelektrolyse sind Staub sowie Fluorwasserstoff. Das Ausmaß der Emissionen ist von der konkreten Technik der Anlage und der Effizienz der Abgasreinigung abhängig. Schließlich werden bei der Schmelzflußelektrolyse Tetrafluormethan (CF4) und Hexafluorethan (C2F6) emittiert (#2), die als langlebige und extrem potente Treibhausgase bekannt sind. Die einzelnen Anlagen unterscheiden sich vor allem durch die eingesetzte Technologie der Elektrolysezellen. Es wird unterschieden in pre-bake- und Söderberg-Zellen, von welchen wiederum diverse Untervarianten existieren (Huglen 1990). Genese der Daten: Die Daten (pro t Alu) für die Einsatzstoffe Tonerde (1900 kg), Anoden (430 kg) und Aluminiumfluorid (18 kg) sowie der Hilfsenergie Heizöl EL (3825 MJ) sind #1 entnommen. Der Wert für den Stromverbrauch der bundesdeutschen Schmelzelektrolysen (13400 kWh = 48240 MJ/t) geht auf #3 zurück und trägt den vergleichsweise modernen Elektrolyseöfen in der Bundesrepublik Rechnung (vgl. z.B. GUS -Schmelzflußelektrolyse). Die Emissionsfaktoren für Schwefeldioxid (10 kg), Kohlenmonoxid (110 kg) und Fluorwasserstoff (0,04 kg) gehen auf Messungen nach #2 an einer deutschen Primäraluminiumhütte mit moderner prebake-Technologie zurück, die einen bedeutenden Anteil der inländischen Produktionskapazität abdeckt. Die Meßwerte werden als repräsentativ für die bundesdeutsche Produktion erachtet und daher für GEMIS übernommen. Weiterhin werden basierend auf #2 die Daten für Kohlendioxid auf 1400 kg/t gesetzt. Die Emissionen für Tetrafluormethan (0,25 kg) und Hexafluorethan (0,025 kg) beruhen auf (WiMe 1999) und spiegeln die Fortschritte der Emissionsminderung dieser Treibhausgase in der Aluminiumindustrie wieder. Der Emissionswert für Staub (1,36 kg) aus #1 wird auf die deutsche Produktion übertragen. Die Kennziffer für die Gesamtabfallmenge (35,7 kg) stammt aus #3. Nicht abgebrannte Anodenreste sind dabei nicht berücksichtigt, da sie bei der Anodenherstellung wieder eingesetzt werden. Tetrafluormethan (0,75 kg) und Hexafluorethan (0,11 kg) Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 52,6% Produkt: Metalle - NE

Metall\Aluminium-DE-2015

BRD -Schmelzflusselektrolyse (Primär- bzw. Hüttenaluminium) aus Tonerde mittels Schmelzflußelektrolyse (Hall-Heroult-Prozeß). Werte für CF4- und C2F6-Emissionen aktualisiert nach Ref. Öko-Recherche 1996. Allgemeines Verfahren ist die Elekrolyse der Tonerde (Al2O3) in Kryolithschmelzen (Na3AlF6). Kryolith wird im Prozeß zur Schmelzpunkterniedrigung (auf ca. 950 oC) benötigt. Kryolithverluste werden durch Zugabe von Aluminiumfluorid (AlF3) ausgeglichen (WIKUE 1995b). Das elektrolytisch gebildete Aluminium setzt sich am kathodischen Boden der Elektrolysezelle ab. Der Sauerstoffanteil der eingesetzten Tonerde verbindet sich mit dem Kohlenstoff der Anoden zu Kohlendioxid und Kohlenmonoxid. Durch den Schwefelgehalt des eingesetzten Anodenmaterials werden weiterhin Schwefeldioxidemissionen freigesetzt. Weitere wichtige Emissionen bei der Schmelzflußelektrolyse sind Staub sowie Fluorwasserstoff. Das Ausmaß der Emissionen ist von der konkreten Technik der Anlage und der Effizienz der Abgasreinigung abhängig. Schließlich werden bei der Schmelzflußelektrolyse Tetrafluormethan (CF4) und Hexafluorethan (C2F6) emittiert (#2), die als langlebige und extrem potente Treibhausgase bekannt sind. Die einzelnen Anlagen unterscheiden sich vor allem durch die eingesetzte Technologie der Elektrolysezellen. Es wird unterschieden in pre-bake- und Söderberg-Zellen, von welchen wiederum diverse Untervarianten existieren (Huglen 1990). Genese der Daten: Die Daten (pro t Alu) für die Einsatzstoffe Tonerde (1900 kg), Anoden (430 kg) und Aluminiumfluorid (18 kg) sowie der Hilfsenergie Heizöl EL (3825 MJ) sind #1 entnommen. Der Wert für den Stromverbrauch der bundesdeutschen Schmelzelektrolysen (13400 kWh = 48240 MJ/t) geht auf #3 zurück und trägt den vergleichsweise modernen Elektrolyseöfen in der Bundesrepublik Rechnung (vgl. z.B. GUS -Schmelzflußelektrolyse). Die Emissionsfaktoren für Schwefeldioxid (10 kg), Kohlenmonoxid (110 kg) und Fluorwasserstoff (0,04 kg) gehen auf Messungen nach #2 an einer deutschen Primäraluminiumhütte mit moderner prebake-Technologie zurück, die einen bedeutenden Anteil der inländischen Produktionskapazität abdeckt. Die Meßwerte werden als repräsentativ für die bundesdeutsche Produktion erachtet und daher für GEMIS übernommen. Weiterhin werden basierend auf #2 die Daten für Kohlendioxid auf 1400 kg/t gesetzt. Die Emissionen für Tetrafluormethan (0,25 kg) und Hexafluorethan (0,025 kg) beruhen auf (WiMe 1999) und spiegeln die Fortschritte der Emissionsminderung dieser Treibhausgase in der Aluminiumindustrie wieder. Der Emissionswert für Staub (1,36 kg) aus #1 wird auf die deutsche Produktion übertragen. Die Kennziffer für die Gesamtabfallmenge (35,7 kg) stammt aus #3. Nicht abgebrannte Anodenreste sind dabei nicht berücksichtigt, da sie bei der Anodenherstellung wieder eingesetzt werden. Tetrafluormethan (0,75 kg) und Hexafluorethan (0,11 kg) Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 52,6% Produkt: Metalle - NE

Metall\Aluminium-DE-2000

BRD -Schmelzflusselektrolyse (Primär- bzw. Hüttenaluminium) aus Tonerde mittels Schmelzflußelektrolyse (Hall-Heroult-Prozeß). Werte für CF4- und C2F6-Emissionen aktualisiert nach Ref. Öko-Recherche 1996. Allgemeines Verfahren ist die Elekrolyse der Tonerde (Al2O3) in Kryolithschmelzen (Na3AlF6). Kryolith wird im Prozeß zur Schmelzpunkterniedrigung (auf ca. 950 oC) benötigt. Kryolithverluste werden durch Zugabe von Aluminiumfluorid (AlF3) ausgeglichen (WIKUE 1995b). Das elektrolytisch gebildete Aluminium setzt sich am kathodischen Boden der Elektrolysezelle ab. Der Sauerstoffanteil der eingesetzten Tonerde verbindet sich mit dem Kohlenstoff der Anoden zu Kohlendioxid und Kohlenmonoxid. Durch den Schwefelgehalt des eingesetzten Anodenmaterials werden weiterhin Schwefeldioxidemissionen freigesetzt. Weitere wichtige Emissionen bei der Schmelzflußelektrolyse sind Staub sowie Fluorwasserstoff. Das Ausmaß der Emissionen ist von der konkreten Technik der Anlage und der Effizienz der Abgasreinigung abhängig. Schließlich werden bei der Schmelzflußelektrolyse Tetrafluormethan (CF4) und Hexafluorethan (C2F6) emittiert (#2), die als langlebige und extrem potente Treibhausgase bekannt sind. Die einzelnen Anlagen unterscheiden sich vor allem durch die eingesetzte Technologie der Elektrolysezellen. Es wird unterschieden in pre-bake- und Söderberg-Zellen, von welchen wiederum diverse Untervarianten existieren (Huglen 1990). Genese der Daten: Die Daten (pro t Alu) für die Einsatzstoffe Tonerde (1900 kg), Anoden (430 kg) und Aluminiumfluorid (18 kg) sowie der Hilfsenergie Heizöl EL (3825 MJ) sind #1 entnommen. Der Wert für den Stromverbrauch der bundesdeutschen Schmelzelektrolysen (13400 kWh = 48240 MJ/t) geht auf #3 zurück und trägt den vergleichsweise modernen Elektrolyseöfen in der Bundesrepublik Rechnung (vgl. z.B. GUS -Schmelzflußelektrolyse). Die Emissionsfaktoren für Schwefeldioxid (10 kg), Kohlenmonoxid (110 kg) und Fluorwasserstoff (0,04 kg) gehen auf Messungen nach #2 an einer deutschen Primäraluminiumhütte mit moderner prebake-Technologie zurück, die einen bedeutenden Anteil der inländischen Produktionskapazität abdeckt. Die Meßwerte werden als repräsentativ für die bundesdeutsche Produktion erachtet und daher für GEMIS übernommen. Weiterhin werden basierend auf #2 die Daten für Kohlendioxid auf 1400 kg/t gesetzt. Die Emissionen für Tetrafluormethan (0,25 kg) und Hexafluorethan (0,025 kg) beruhen auf (WiMe 1999) und spiegeln die Fortschritte der Emissionsminderung dieser Treibhausgase in der Aluminiumindustrie wieder. Der Emissionswert für Staub (1,36 kg) aus #1 wird auf die deutsche Produktion übertragen. Die Kennziffer für die Gesamtabfallmenge (35,7 kg) stammt aus #3. Nicht abgebrannte Anodenreste sind dabei nicht berücksichtigt, da sie bei der Anodenherstellung wieder eingesetzt werden. Tetrafluormethan (0,75 kg) und Hexafluorethan (0,11 kg) Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 52,6% Produkt: Metalle - NE

1 2 3 4 511 12 13