Die steten Schwankungen der Flusswasserspiegel sind natürliche Folgeerscheinungen der klimatischen Variabilität, wenngleich Extremereignisse wie Hochwasserkatastrophen oder extremes Niedrigwasser einschneidende hydrologische Phänomene darstellen. Traditionell erinnern vor Ort zahlreiche Hinweise und feste Markierungen an diese historischen Geschehnisse. Solche stummen Zeitzeugen existieren auch für Niedrigwasserereignisse als sogenannte „Hungersteine“ oder „Untiefen“. Diese Karte enthält bekannte Hungersteine und Untiefen der Elbe, welche in Zusammenarbeit mit Herrn Prof. Dr. Jan-Michael Lange sowie Herrn Martin Kaden von Senckenberg Naturhistorische Sammlungen Dresden erstellt.
Gemeinsame Pressemitteilung vom Umweltbundesamt und dem Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit Umweltbundesamt legt erste detaillierte Schätzung vor. In Deutschland wurden 2018 insgesamt 865,6 Mio. Tonnen Treibhausgase freigesetzt - rund 41 Millionen Tonnen oder 4,5 Prozent weniger als im Vorjahr. Das zeigt eine Prognoseberechnung des Umweltbundesamtes (UBA). Damit wurde nach vier Jahren Stagnation erstmals wieder eine nennenswerte Reduzierung im Vergleich zum Vorjahr erreicht. Deutliche Emissionsrückgänge gab es bei Energiewirtschaft und Haushalten. Auch im Verkehrssektor gingen die Emissionen leicht zurück. Gründe für diese Entwicklung sind der zurückgehende Verbrauch von fossilen Energien und die außergewöhnliche Witterung im Jahr 2018. Im Vergleich zu 1990 hat Deutschland seine Emissionen damit um 30,8 Prozent gesenkt. Bis 2030 müssen die Emissionen nach Beschlusslage der Bundesregierung um mindestens 55 Prozent gesenkt werden. Bundesumweltministerin Svenja Schulze: „Deutschland hat 2018 deutlich mehr Energie aus Wind und Sonne gewonnen und zugleich weniger Kohle, Öl und Gas verbrannt. Nach Jahren der Stagnation gehen die CO 2 -Emissionen endlich wieder zurück. Das liegt zum Teil an Witterungs- und anderen Sondereffekten. Aber es zeigt auch: Klimaschutzmaßnahmen wie Ökostromausbau, Kohleausstieg und Emissionshandel wirken. Wir brauchen allerdings mehr davon, nicht nur bei der Stromerzeugung, sondern auch beim Verkehr, beim Heizen oder bei der Landwirtschaft. Damit wir unsere Klimaziele bis 2030 sicher erreichen, habe ich den Entwurf eines Klimaschutzgesetzes vorgelegt mit einem verbindlichen Fahrplan und klaren Verantwortlichkeiten. Dieses Gesetz muss in diesem Jahr beschlossen werden, ebenso wie Maßnahmenpakete in allen Bereichen, damit Deutschland wieder auf Zielkurs kommt.“ Maria Krautzberger, Präsidentin des Umweltbundesamts: „Die Zahlen zeigen, wie wichtig die erneuerbaren Energien für den Klimaschutz sind. Im Jahr 2018 haben die erneuerbaren Energien rund 184 Millionen Tonnen CO 2 -Äquivalente vermieden. Den größten Beitrag mit knapp 75 Millionen Tonnen brachte die Windenergie. Umso wichtiger ist es, den Ausbau der Windkraft weiter voranzutreiben. Deshalb halten wir nichts von pauschalen Mindestabständen von Windenergieanlagen zu Wohngebieten. Das brächte den Ausbau der Windenergie ins Stocken. Umwelt- und Gesundheitsfragen sollten jeweils vor Ort individuell geprüft werden.“ Von den insgesamt 41 Mio. Tonnen Minderung entfielen rund 14 Mio. Tonnen CO 2 auf die Energiewirtschaft (4,5 Prozent Senkung). Die Stromerzeugung aus erneuerbaren Energien nahm 2018 zu, die aus sämtlichen fossilen Energieträgern ging zurück – unter anderem aufgrund der Stilllegung von Kraftwerken. Den deutlichsten Emissionsrückgang verzeichnete die Steinkohle. Ein Faktor ist hier der infolge der Reform des EU-Emissionshandels gestiegene CO 2 -Preis. Im Laufe des Jahres wurden Steinkohle-Kraftwerke mit rund 1,5 Gigawatt Leistung stillgelegt bzw. gingen in die Netzreserve. Ein weiterer Effekt war der Dürresommer 2018: Niedrige Wasserstände an den Flüssen führten zu geringeren Transportkapazitäten und damit zu höheren Steinkohlepreisen. Die Emissionen aus der Braunkohlenutzung sanken um etwa 3,6 Mio. Tonnen. Am 1. Oktober 2018 haben drei Kraftwerksblöcke (zwei in Niederaußem, einer in Jänschwalde) die Stromproduktion eingestellt und wurden in die Sicherheitsbereitschaft überführt. Die Emissionen aus der Erdgasverbrennung gingen ebenfalls leicht zurück. Ein mit rund 15 Mio. t CO 2 (bzw. 10,9 Prozent) deutlicher Emissionsrückgang im Vergleich zum Vorjahr ist im Bereich der Haushalte und Kleinverbraucher (=übrigen Feuerungsanlagen) zu verzeichnen. Besonders beim Heizöl ist der Absatz 2018 deutlich gesunken. Eine Erklärung dafür ist die milde Witterung und der damit verbundene geringere Brennstoffbedarf. Eine andere Ursache sind wiederum die infolge des Dürresommers niedrigen Wasserstände vieler Flüsse: In vielen Fällen konnten die Frachter die Flüsse nicht befahren, was zu Heizöl-Knappheit und höheren Preisen führte. Zahlreiche Kunden dürften daher den Heizölkauf auf das Jahr 2019 verschoben haben. Im Verkehrsbereich sanken die Emissionen um rund 5 Mio. Tonnen bzw. 2,9 Prozent. Dieser Rückgang betrifft nicht nur Ottokraftstoffe, sondern erstmals seit vielen Jahren auch Dieselkraftstoff. Eine Erklärung könnten die höheren Preise für Benzin (+ 7 Prozent ggü. Vorjahr) und Diesel (+12 Prozent ggü. Vorjahr) sein. In der Industrie sanken die Emissionen 2018 um rund 4 Mio. Tonnen (2,8 Prozent). Für den Maschinenbau und die pharmazeutische Industrie geht die Prognose von gestiegenen Emissionen aus, für die Stahlproduktion, die Chemieproduktion und die Automobilindustrie von sinkenden Emissionen. In der Landwirtschaft sanken die Treibhausgas -Emissionen um 4,1 Prozent. Die treibenden Größen sind abnehmende Tierzahlen (Rinder -2,9 %, Schweine -4,1 %). Der Mineraldüngereinsatz (-9,8 %) ging in Folge der Anwendung der neuen gesetzlichen Regelungen und klimatisch bedingt zurück. Auch die witterungsbedingten Ernteausfälle wirkten emissionsmindernd. Auch im Abfallsektor sanken die Emissionen um 5,3 Prozent gegenüber dem Vorjahr. Dieser anhaltende Rückgang geht maßgeblich auf die Entwicklung im Bereich der Abfalldeponierung zurück. Seit 2005 dürfen in Deutschland keine biologisch abbaubaren Abfälle mehr deponiert werden, was sich neben Abfalltrennung und Recycling bei den Emissionen positiv bemerkbar macht. Die Ergebnisse sind erste Detailschätzungen, also eine mit entsprechenden Unsicherheiten verbundene Prognose. Sie leiten sich aus einem System von Modellrechnungen und Trendfortschreibungen der im Januar 2019 veröffentlichten detaillierten Treibhausgasemissionsberechnungen des Jahres 2017 ab. Zugrunde gelegt wurden von der Arbeitsgemeinschaft Energiebilanzen veröffentlichte erste Berechnungen zum Primärenergieverbrauch (PEV) für das Jahr 2018, amtliche Monatsstatistiken zum Energieverbrauch, vorläufigen Absatzzahlen der Mineralölstatistik des BAFA, Produktionsdaten von Industrieverbänden sowie zusätzliche Informationen (z.B. Gradtagzahlen). Durch diesen Berechnungsansatz ist die Genauigkeit dieser Schätzung zwangsläufig geringer als die der Detailberechnungen für die Vorjahre. Es sei darauf hingewiesen, dass mit den veröffentlichten Schätzungen zum PEV für 2018 auch Veränderungen der PEV-Angaben für 2017 bekannt wurden. Diese können allerdings erst im Rahmen der nächsten detaillierten Berechnungen im Verlauf des Jahres berücksichtigt werden. Die vollständigen offiziellen Inventardaten zu den Treibhausgasemissionen in Deutschland für das Jahr 2018 veröffentlicht das Umweltbundesamt zum 15. Januar 2020 mit der Übermittlung an die Europäische Kommission. Hinweis: Diese Pressemitteilung wurde am 04.04.2019 aktualisiert. In der ersten Version waren die Emissionen der Landwirtschaft falsch berechnet. Diese Zahlen sind nun korrigiert.
Gute Zusammenarbeit in der deutsch-polnischen Arbeitsgruppe Bundesumweltministerin Steffi Lemke hat das Umweltbundesamt (UBA) beauftragt, alle verfügbaren Messdaten, Hinweise und Hypothesen zum Fischsterben in der Oder zu sammeln, um diese gemeinsam mit Fachleuten aus anderen Bundes- und den Landesbehörden aus Brandenburg und Mecklenburg-Vorpommern systematisch zu bewerten. So sollen die genauen Ursachen der Umweltkatastrophe ermittelt werden. Ein Bewertungsbericht wird nach Abschluss den Umweltministerien übergeben. Die Ergebnisse werden auch eng mit polnischen Fachkolleginnen und Fachkollegen diskutiert. UBA-Vizepräsidentin Lilian Busse, die die eingesetzte polnisch-deutsche Arbeitsgruppe leitet, sagt: „In der Gruppe herrscht eine kollegiale Atmosphäre. Wir tauschen uns gut über die vorliegenden Untersuchungsergebnisse beider Länder aus. Das Ganze ist ein komplexes Puzzle, das wir hoffentlich in den nächsten Wochen gemeinsam vervollständigen können.“ Auch drei Wochen nach dem Beginn des massenhaften Fischsterbens sind die Ursachen dafür noch unklar. Mit dem Fischsterben in der Oder hat das Brandenburgische Landesamt für Umwelt (LfU) eine Reihe von Gewässeruntersuchungen eingeleitet. An den vom LfU betriebenen automatischen Messstationen Frankfurt (Oder) und Hohenwutzen traten abrupt erhöhte Werte der elektrischen Leitfähigkeit, des pH und der Sauerstoffkonzentration auf. Das Messprogramm für bestimmte gefährliche Stoffe, wie sie die Europäische Wasserrahmenrichtlinie für die Zustandsbewertung der Flüsse vorschreibt, zeigte an den deutschen Messstellen keine ungewöhnlichen Konzentrationen. Derzeit analysiert die Bundesanstalt für Gewässerkunde (BfG) die Wasserproben mit speziellen Analysenmethoden. Damit können mehr als 1.000 Substanzen, einschließlich vieler bislang unbekannter Chemikalien erkannt werden. Zum Untersuchungsprogramm gehören auch giftige Stoffwechselprodukte von Algen (Algentoxine). Mit der Expertise der Fachleute werden anhand der Messdaten und der Untersuchungsergebnisse verschiedene Hypothesen zu den Ursachen bewertet. Der Hinweis auf eine mögliche Quecksilbervergiftung als Ursache des Fischsterbens konnte dadurch bereits entkräftet werden. Auch erhöhte Konzentrationen bestimmter Pflanzenschutzmittel als Ursache für das Fischsterben hält das UBA für wenig wahrscheinlich. Auf Initiative des LfU gehen Wissenschaftlerinnen und Wissenschaftler dem Vorkommen einer Fischgift produzierenden Alge im Zusammenhang mit den nachgewiesenen erhöhten Salzkonzentrationen nach. Weitere Untersuchungen sollen nun Klarheit bringen. Eine akute Gefährdung der menschlichen Gesundheit etwa beim Baden hält das UBA nach den bislang vorliegenden Messdaten für sehr unwahrscheinlich. Vom Verzehr der Fische aus der Oder raten Experten aus Bund und Ländern weiter ab. Es müssen aber vor Ort angeordnete Maßnahmen, zum Beispiel Badeverbote, weiter beachtet werden. Der gewerbliche Fischfang in der Oder sollte solange ausgesetzt bleiben, bis Sicherheit über die gesundheitliche Unbedenklichkeit der Fische als Lebensmittel besteht. Die schnell eskalierte Katastrophe an der Oder zeigt, dass hier schnellere Frühwarnsysteme und eine umfassendere Gewässerüberwachung nötig sind. Während z.B. am Rhein nach dem Sandoz-Unfall 1986 die Internationale Kommission zum Schutz des Rheins ein Netz mit modernsten Verfahren zur Messung von Chemikalien installiert hat und die Ergebnisse regelmäßig im Internet bereitstellt, gibt es an der Oder noch Verbesserungsbedarf, um akute Wasserbelastungen schneller entdecken zu können. Europas Flüsse stehen seit Jahren unter Stress: Hohe Temperaturen, Trockenheit, geringe Wasserstände sind Lebensbedingungen, die Tiere und Pflanzen belasten. Kommen weitere Stressoren wie hohe Chemikalienkonzentrationen oder extreme Algenblüten dazu, ist die Stabilität des gesamten Ökosystems gefährdet. „Auch diese Katastrophe lehrt uns, dass die Widerstandskraft der Flussgebiete mit ihren Lebensgemeinschaften gegenüber dem Klimawandel und vielfältigen Belastungen gestärkt werden muss“, sagte UBA-Vizepräsidentin Lilian Busse. Ergänzung 09.09.2022: Folgende Institutionen aus Deutschland senden Vertreter*innen in die Expertengruppe:
Mit rund 3 Litern pro Quadratmeter (l/m²) verfehlte die bundesweit gemittelte Regenmenge im November 2011 den Sollwert von 66 l/m² in bisher nicht gekanntem Ausmaß. Seit Messbeginn im Jahre 1881 gab es keinen derart trockenen November, offenbar auch keinen anderen vergleichbaren Monat. Der bisherige Tiefstwert von 3,65 l/m², gemessen im April des Jahres 1893, wurde nach heutigem Stand unterboten. Einige Stationen sahen im ganzen Monat keinen einzigen Tropfen. Nennenswerte Niederschlagsmengen beschränkten sich auf das Saarland sowie auf den Norden und die Mitte Deutschlands. Die größte Regenmenge fiel mit 18 l/m² in Schleswig. Die anhaltende Trockenheit ließ die Pegel vieler Flüsse auf Rekordtiefststände sinken und in den Bayerischen Alpen blieb Schnee Mangelware bei gleichzeitig erhöhter Waldbrandgefahr.
Der Bund für Umwelt und Naturschutz Deutschland (BUND) und die Gesellschaft deutschsprachiger Odonatologen (GdO) haben die Gemeine Binsenjungfer (Lestes sponsa) zur Libelle des Jahres 2016 gekürt. Sie lebt in den verschiedensten Biotopen, benötigt dabei jedoch Gewässer mit einem stabilen Wasserstand. Stark schwankende Wasserstände sowie ein frühes oder gar komplettes Austrocknen ihrer bevorzugten Gewässer schaden ihr. m Zuge der Klimaerwärmung treten stark schwankende Wasserstände immer häufiger auf, insbesondere an großen Flüssen wie der Elbe oder dem Rhein. Nicht nur, dass auch deren Nebenflüsse und die Flussauen austrocknen, auch die von Libellen bevorzugten Tümpel, Teiche, Seen, Moore, Wassergräben und langsam fließende Bäche fallen häufiger trocken. Das führt dazu, dass sich die Larven der Gemeinen Binsenjungfer nicht mehr rechtzeitig zur ausgewachsenen Libelle entwickeln und sterben. Im Südwesten Deutschlands ist bereits ein Rückgang des Vorkommens der Gemeinen Binsenjungfer nachweisbar.
Im Juni 2016 kam es in Westeuropa zu schweren Unwettern mit Starkregen und Überschwemmungen. Der Starkregen ließ in weiten Gebieten Frankreichs die Flusspegel ansteigen. In Paris stieg der Wasserpegel auf einen Höchstand von 6,10 Meter über normal, so hoch wie seit 34 Jahren nicht mehr. Das Hochwasser unterbrach die Stromversorgung für tausende von Menschen, Schulen mussten geschlossen werden, der Straßen- und Bahnverkehr wurde durch die Fluten still gelegt. Das Louvre-Museum und das Impressionisten-Museum Musée d'Orsay am Seine-Ufer blieben zeitweise geschlossen. Aus Angst vor Überschwemmungen wurden in den Untergeschossen gelagerte Werke in höhere Etagen gebracht.
Die steten Schwankungen der Flusswasserspiegel sind natürliche Folgeerscheinungen der klimatischen Variabilität, wenngleich Extremereignisse wie Hochwasserkatastrophen oder extremes Niedrigwasser einschneidende hydrologische Phänomene darstellen. Traditionell erinnern vor Ort zahlreiche Hinweise und feste Markierungen an diese historischen Geschehnisse. Solche stummen Zeitzeugen existieren auch für Niedrigwasserereignisse als sogenannte „Hungersteine“ oder „Untiefen“. Diese Karte enthält bekannte Hungersteine und Untiefen der Elbe, welche in Zusammenarbeit mit Herrn Prof. Dr. Jan-Michael Lange sowie Herrn Martin Kaden von Senckenberg Naturhistorische Sammlungen Dresden erstellt.
Die steten Schwankungen der Flusswasserspiegel sind natürliche Folgeerscheinungen der klimatischen Variabilität, wenngleich Extremereignisse wie Hochwasserkatastrophen oder extremes Niedrigwasser einschneidende hydrologische Phänomene darstellen. Traditionell erinnern vor Ort zahlreiche Hinweise und feste Markierungen an diese historischen Geschehnisse. Solche stummen Zeitzeugen existieren auch für Niedrigwasserereignisse als sogenannte „Hungersteine“ oder „Untiefen“. Diese Karte enthält bekannte Hungersteine und Untiefen der Elbe, welche in Zusammenarbeit mit Herrn Prof. Dr. Jan-Michael Lange sowie Herrn Martin Kaden von Senckenberg Naturhistorische Sammlungen Dresden erstellt.
Die steten Schwankungen der Flusswasserspiegel sind natürliche Folgeerscheinungen der klimatischen Variabilität, wenngleich Extremereignisse wie Hochwasserkatastrophen oder extremes Niedrigwasser einschneidende hydrologische Phänomene darstellen. Traditionell erinnern vor Ort zahlreiche Hinweise und feste Markierungen an diese historischen Geschehnisse. Solche stummen Zeitzeugen existieren auch für Niedrigwasserereignisse als sogenannte „Hungersteine“ oder „Untiefen“. Diese Karte enthält bekannte Hungersteine und Untiefen der Elbe, welche in Zusammenarbeit mit Herrn Prof. Dr. Jan-Michael Lange sowie Herrn Martin Kaden von Senckenberg Naturhistorische Sammlungen Dresden erstellt.
Die im Freiwasser von Fließgewässern transportierten kleinzelligen Algen werden als Phytoplankton (genauer Potamoplankton) bezeichnet. Es ist eine Mischung aus verdrifteten Aufwuchsalgen (Phytobenthos), aus eingetragenem Phytoplankton von Stillwasserräumen und Seen, und aus Algen, die sich im Fließgewässer vermehrt haben. Die Menge und Artenzusammensetzung ist von der Lichtverfügbarkeit, der Wasserverweilzeit und dem Gehalt an Nährstoffen wie Phosphor, Stickstoff oder Silizium abhängig. Abb. 1: Mikrofotografien von Lugol-fixierten Phytoplanktonarten (von links nach rechts: Pediastrum duplex (Chlorophyceae), Dolichospermum circinalis (syn. Anabaena, Cyanobacteria), Tabellaria flocculosa (Pennales). Fotos links und Mitte: Oliver Skibbe, Foto rechts: Ute Mischke. Durch den Menschen verursachte Nährstoffbelastungen, wie sie von Kläranlagen oder landwirtschaftlicher Düngung ausgehen können, werden vom Phytoplankton angezeigt (Eutrophierungszeiger). Die Reaktionszeit beträgt dabei oft nur Tage bis wenige Wochen. Die Phytoplanktonentwicklung in den potenziell planktondominierten Fließgewässern ist abhängig von der Jahreszeit und der Abflussmenge. Im Sommer ermöglichen hohe Wassertemperaturen und viel Licht optimale Wachstumsraten. Anderseits wird bei Hochwässern das Phytoplankton stark verdünnt, durch Trübung beschattet und schnell abtransportiert. Biologische Regulationen bewirken in beiden Fällen die Rückkehr zum Ausgangszustand: Tierische Kleinstlebewesen filtrieren und vermindern das sommerliche Hoch an Phytoplankton, während im Nachgang eines Hochwassers das Übermaß an Nährstoffen ein verstärktes Wachstum des Phytoplanktons ermöglicht. Die häufigsten Planktonarten in Flüssen unterscheiden sich von jenen in Seen, da die Turbulenz und die wechselnden Wasserstände eine Anpassung und Selektion an sich ständig ändernde Lichtbedingungen erfordern. Das Ausmaß der pflanzlichen Primärproduktion wird als Trophie bezeichnet, und in dem PhytoFluss-Verfahren u. a. als Gesamtpigment (Chlorophyll-a und Phaeophytin-a) ermittelt. Je höher der Nährstoffgehalt desto höher ist die Trophie. Die Nährstoffanreicherung in Gewässern durch die Aktivitäten des Menschen wird als Eutrophierung bezeichnet. Stark eutrophierte Fließgewässer, wie die Elbe, können derart hohe Algenmassen ausbilden, dass sie nicht nur die Nutzung für den Menschen einschränken, sondern es nach dem Absterben der Algen auch zu dramatischen Sauerstoffdefiziten im Unterlauf und an der Meeresmündung kommen kann, was im Sekundäreffekt u. a. die Fische beeinträchtigt. Zur Bewertung von planktondominierten Fließgewässern steht hier das PhytoFluss-Bewertungsverfahren als Online-Tool in der Version 5.1 zur Verfügung. Ab der Version 5.0 ist eine erhöhte Bestimmungstiefe bei der taxonomischen Arbeit gefordert. Bei der Auswertung führt diese zu besser abgesicherten Bewertungsergebnissen. Das Mindestbestimmbarkeitsniveau ist in der revidierten Harmonisierten Taxaliste Phytoplankton (HTL 2020 nach Mischke et al. 2020) enthalten. Ab der Version 5.1 ist die revidierte Harmonisierte Taxaliste Phytoplankton (HTL 2020 nach Mischke et al. 2020) implementiert. Die Taxonkodierung kann nun auch nach der HTL 2020 mit den darin erweiterten HTL-IDs erfolgen. Altbefunde mit HTL 2009-Codierung können nach wie vor bewertet werden. Eine Codierung mit der DV-Nummer der Bundestaxaliste (BTL) z. B. in der Version von Schilling (2020) ist ebenfalls möglich, da die überarbeitete Übersetzungsliste DV-Nr. zu HTL-ID (Mischke 2020) eingesetzt wurde. Bei der Übersetzung entstehen für die Bewertung in wenigen Fällen geringe Informationsverluste.
Origin | Count |
---|---|
Bund | 46 |
Land | 81 |
Type | Count |
---|---|
Ereignis | 3 |
Förderprogramm | 16 |
Messwerte | 1 |
Text | 76 |
unbekannt | 28 |
License | Count |
---|---|
closed | 90 |
open | 26 |
unknown | 8 |
Language | Count |
---|---|
Deutsch | 120 |
Englisch | 3 |
unbekannt | 4 |
Resource type | Count |
---|---|
Archiv | 1 |
Bild | 8 |
Datei | 5 |
Dokument | 16 |
Keine | 57 |
Unbekannt | 1 |
Webdienst | 1 |
Webseite | 57 |
Topic | Count |
---|---|
Boden | 90 |
Lebewesen & Lebensräume | 107 |
Luft | 101 |
Mensch & Umwelt | 117 |
Wasser | 124 |
Weitere | 118 |