API src

Found 515 results.

Related terms

Triefenstein, Gemarkung Lengfurt - Änderungsgenehmigungsverfahren (§ 16 BImSchG) - wesentliche Änderung einer Anlage zur Herstellung von Zement, Heidelberg Materials AG

Die Heidelberg Materials AG betreibt auf ihrem Betriebsgelände Fl.-Nr. 7312, Gemarkung Lengfurt ein Zementwerk. Die Anlage zur Herstellung von Zementklinker oder Zementen mit einer Produktionskapazität von 500 Tonnen oder mehr je Tag ist nach Nr. 2.3.1 des Anhanges 1 der 4. BImSchV immissionsschutzrechtlich genehmigt. Die Cap2U GmbH (ein Gemeinschaftsunternehmen der Linde GmbH und der Heidelberg Materials AG) plant im Bereich des Bauhof-Gebäudes im Nordwesten des Werksgeländes des Zementwerks in Lengfurt die Errichtung und den Betrieb einer eigenständig betriebenen CO2-Produktionsanlage. Zweck dieser Neuanlage ist die Abscheidung von CO2 aus einem Teil-Abgasstrom (ca. 10 % des Ofenabgas-Volumenstroms bei Volllast) des Zementwerks sowie dessen Veredlung (Reinigung), Verflüssigung und anschließende kommerzielle Nutzung in der Industrie, insb. der Getränke- und Lebensmittelindustrie. Das CO2 aus den Lagertanks wird über Tankwagen an die Kunden verteilt. Ein weiteres Ziel des Vorhabens ist die großtechnische Demonstration der Abscheidung, Aufbereitung, Verbringung und Nutzung von CO2 mittels Aminwäsche aus dem Abgasstrom eines Zementklinkerofens zur Vorbereitung der zukünftigen Verbreitung dieser Technologie zu ökonomischen Konditionen in der Zementindustrie als Grundlage für den Aufbau einer klimafreundlichen Kohlenstoff-Kreislaufwirtschaft. Für die CO2-Produktionsanlage selbst hat die Cap2U GmbH als Errichter- und Betreiberin eine eigenständige Genehmigung nach Baurecht beantragt. Das mit Schreiben der Heidelberg Materials AG vom 13.12.2023 beantragte immissionsschutzrechtliche Genehmigungsvorhaben beschränkt sich auf die Änderungen am bestehenden, immissionsschutzrechtlich genehmigten Zementwerk zur Anpassung an den geplanten Betrieb der als Neuanlage zu errichtenden CO2-Produktionsanlage („Schnittstellen“). Im Wesentlichen umfasst der Antragsgegenstand das Ausschleusen von Ofenabgasen zur Anlage der Cap2U GmbH und die Rückführung des nach erfolgter CO2-Abscheidung verbleibenden Rest-Abgases in das Ofenabgassystem. Zur Dampferzeugung soll in der CO2-Produktionsanlage Wärme aus dem bestehenden Thermalölkreislauf, der bis zur CO2-Produktionsanlage erweitert werden soll, genutzt werden. Weiterhin ist es geplant, dass bestimmte in der CO2-Produktionsanlage anfallenden Prozesskondensate und Flüssigkeiten aus der Amin-Aufbereitungsanlage (flüssige Abfälle) übernommen und ggf. zwischengepuffert werden, bevor sie an Stelle von bisher eingesetztem Brauchwasser (Grundwasser bzw. Mainwasser) im Bereich des Bypasses in das Ofensystem eingedüst und verdampft werden. Der Abfallkatalog bei der Klinkerherstellung soll für den Einsatz der neuen flüssigen Abfälle entsprechend erweitert werden. Zudem soll der in der CO2-Produktionsanlage in einem Filter abgeschiedene Staub aus dem Ofenabgas vom Zementwerk übernommen und im Produktionsprozess eingesetzt werden. Weiterhin soll durch das Zementwerk die Brauchwasserversorgung der CO2-Produktionsanlage erfolgen. Im Durchschnitt werden hierfür durch das Zementwerk ca. 3 m³/h Wasser aus dem Main entnommen und in dem bestehenden Sandfilter vorgereinigt. Das Brauchwasser wird über eine neue, begleitbeheizte und isolierte Rohrleitung der CO2-Produktionsanlage zugeführt. Die Brauchwasserbelieferung selbst soll im Rahmen der für das Zementwerk der Heidelberg Materials AG erteilten wasserrechtlichen Entnahmeerlaubnis für Grund- und Mainwasser (Bescheid des LRA Main-Spessart vom 03.05.2016, Az. 41-641-K) erfolgen. Eine Erhöhung der genehmigten Entnahmemenge aufgrund der Belieferung der CO2-Produktionsanlage ist nicht erforderlich. Zusammenfassend erstreckt sich der immissionsschutzrechtliche Genehmigungsantrag auf: • Ausschleusen von bis zu 100 % der Ofenabgase (max. 296.000 m³/h i.N. fe im Jahresmittel) nach dem SCR-Reaktor (SCR - selektive katalytische Reduktion) zur geplanten CO2-Produktionsanlage der Cap2U GmbH (zum Zwecke der dort erfolgenden CO2-Abscheidung mittels Aminwäsche) und Rückführung des nach erfolgter CO2-Abscheidung verbleibenden Rest-Abgases (bis zu 290.000 m³/h i.N. fe im Jahresmittel) in das Ofenabgassystem unmittelbar hinter dem Ausschleusepunkt Anmerkung: Innerhalb der baurechtlich zu genehmigenden CO2-Produktionsanlage der Cap2U GmbH erfolgen dann zum einen die Entnahme von Abwärme zur Dampferzeugung aus dem Gesamt-Abgasstrom sowie anschließend die Ausschleusung eines Teilabgasstroms von bis zu 34.000 m³/h i.N. fe im Jahresmittel, die CO2-Abscheidung mittels Aminwäsche aus diesem Teilabgasstrom und die Rückführung des danach verbleibenden Rest-Teilabgasstroms mit bis zu 28.000 m³/h i.N. fe im Jahresmittel in den Gesamt-Abgasstrom. • Erweiterung des bestehenden Thermalölkreislaufes der SCR-Anlage (Thermoöl-Wärmeverschiebesystem) zur Dampferzeugung in der CO2-Produktionsanlage • Übernahme und Zwischenlagerung (max. 25 m³) sowie Dosierung (max. 2,7 m³/h) von Prozesskondensaten der CO2-Produktionsanlage (AVV-Nr. 16 10 02) über die vorhandenen 8 Düsen in den Bypass-Verdampfungskühler oder im Falle einer Betriebsstörung über die SNCR-Anlage in den Steigschacht des Wärmetauscherturms • Übernahme und Zwischenlagerung (max. 1,5 m³) sowie Dosierung (max. 0,7 m³/h) von Flüssigkeit aus der Amin-Aufbereitungsanlage der CO2-Produktionsanlage (AVV-Nr. 16 10 02) in die vorhandene Eindüsung in die Bypass-Mischkammer vor dem By-pass-Verdampfungskühler (Bypass-VDK) oder im Falle einer Betriebsstörung in die vorhandene Eindüsung im Steigschacht des Wärmetauscherturms • Übernahme und Dosierung von in der CO2-Produktionsanlage abgeschiedenem Filterstaub (überwiegend unreagiertes Kalkhydrat, max. 0,05 t/h, AVV-Nr. 10 13 04) aus dem Ofenabgas über das Kalkhydratsilo in die Ofenanlage Ergänzende materielle Anträge für das Vorhaben: • Antrag auf Festlegung eines Überwachungswerts von 40 mg/m³ im ersten Betriebsjahr nach Inbetriebnahme (Einfahrbetrieb) und eines Überwachungswerts von 20 mg/m³ nach Abschluss des Einfahrbetriebes für die Schadstoffe nach Nr. 5.2.5 Klasse I i.V.m. Anhang 3 TA Luft 2021 für den aus der CO2-Produktionsanlage kommenden Teil-Abgasstrom vor dessen Einleitung in den Haupt-Abgasstrom des Zementwerks. • Antrag auf Festlegung eines Emissionsgrenzwert für Formaldehyd in Höhe von 5 mg/m³ gemäß Nr. 5.2.7.1.1 Abs. 10 TA Luft 2021 für das Ofenabgas am Schornstein der Ofenanlage. • Antrag auf Festlegung eines Emissionsgrenzwerts für Acetaldehyd in Höhe von 10 mg/m³ im Ofenabgas am Schornstein der Ofenanlage gemäß LAI-Vollzugsempfehlung vom 21.06.2023 für Acetaldehyd.

Sentinel-5P TROPOMI – Cloud-Top Height (CTH), Level 3 – Global

Global Cloud-Top Height (CTH) as derived from the Sentinel-5P/TROPOMI instrument. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud-top height is retrieved from the O2-A band using the ROCINN algorithm. Daily observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Sentinel-5P TROPOMI – Aerosol Index (AI), Level 3 – Global

Aerosol Index (AI) as derived from TROPOMI observations. AI is an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Sentinel-5P TROPOMI Surface Nitrogendioxide (NO2), Level 4 – Regional (Germany and neighboring countries)

The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Nitrogen Dioxide (NO2) near surface concentration for Germany and neighboring countries as derived from the POLYPHEMUS/DLR air quality model. Surface NO2 is mainly generated by anthropogenic sources, e.g. transport and industry. POLYPHEMUS/DLR is a state-of-the-art air quality model taking into consideration - meteorological conditions, - photochemistry, - anthropogenic and natural (biogenic) emissions, - TROPOMI NO2 observations for data assimilation. This Level 4 air quality product (surface NO2 at 15:00 UTC) is based on innovative algorithms, processors, data assimilation schemes and operational processing and dissemination chain developed in the framework of the INPULS project. The DLR project INPULS develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

METOP GOME-2 - Formaldehyde (HCHO) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational HCHO total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

Immissions- und Strahlenschutz (GB 2)

• Überwachung der Radioaktivität in der Umwelt nach dem Strahlenschutzvorsorgegesetz für den Freistaat Sachsen • Überwachung der anlagenbezogenen Radioaktivität nach dem Atomgesetz am Forschungsstandort Rossendorf • Überwachung von Lebensmitteln (u. a. Amtshilfe für die Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen) • Betrieb der Radonberatungsstelle • Überwachung der anlagenbezogenen Radioaktivität nach der Verordnung zur Gewährleistung von Atomsicherheit und Strahlenschutz an den Standorten der Wismut GmbH • Überwachung der anlagenbezogenen Radioaktivität an den Altstandorten des Uranerzbergbaus • Aufsichtliche Messungen nach der Strahlenschutzverordnung inkl. Sicherheitstechnisch bedeutsame Ereignisse und Nukleare Nachsorge • Der Geschäftsbereich ist akkreditiert nach ISO 17025 für alle relevanten Prüfverfahren im Bereich Immission und Emission. Fachbereich 20 - Zentrale Aufgaben • Probenentnahmen und Feldmessungen (ohne Messungen und Probenentnahmen im Rahmen der Radonberatung) u. a. Probenentnahmen aus Fließgewässern, Messung der nuklidspezifischen Gammaortsdosisleistung • Organisation und Logistik für die von externen Probenehmern gewonnenen und dem Geschäftsbereich 2 zu übergebenden Proben. Betrieb der Landesdatenzentrale und der Datenbank zur Umweltradioaktivität im Freistaat Sachsen • Unterstützung der beiden Landesmessstellen bei der Einführung und Pflege radiochemischer Verfahren Fachbereiche 21, 22 - Erste und Zweite Landesmessstelle für Umweltradioaktivität Laboranalysen • nach dem Strahlenschutzvorsorgegesetz • zur Überwachung der Wismut-Standorte • zur Überwachung des Forschungsstandort Rossendorf • zur Überwachung der Altstandorte des Uranbergbaus • zur Lebensmittelüberwachung • zu den aufsichtlichen Kontrolltätigkeiten des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie und des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft u. a. in den Medien Wasser, Boden, Luft, Nahrungs- und Futtermittel. Analysierte Parameter: u. a. gamma- und alphastrahlende Radionuklide (z. B. Cäsium-137, Cobalt-60, Kalium-40, Uran-238); Strontium-90; Radium-226 und Radium-228). Fachbereich 23 - Immissionsmessungen Kontinuierliche Überwachung der Luftqualität durch Betrieb des stationären Luftmessnetzes des Freistaates (Online-Betrieb von 30 stationären Messstationen mit Übergabe der Messdaten ins Internet): • Laufende Messung der Luftgüteparameter SO2, NOx, Ozon, Benzol, Toluol, Xylole, Schwebstaub, Ruß • Gewinnung meteorologischer Daten zur Einschätzung der Luftgüteparameter • Sammlung von Schwebstaub (PM 10- und PM 2,5-Fraktionen) und Sedimentationsstaub zur analytischen Bestimmung von Schwermetallen, polyzyklischen Kohlenwasserstoffen (PAK) und Ruß • Absicherung der Messdatenverarbeitung und Kommunikation • Betreiben einer Messnetzzentrale, Plausibilitätskontrolle der Daten und deren Übergabe an das Landesamt für Umwelt, Landwirtschaft und Geologie und an die Öffentlichkeit • Absicherung und Überwachung der vorgegebenen Qualitätsstandards bei den Messungen durch den Betrieb eines Referenz- und Kalibrierlabors • Sicherung der Verfügbarkeit aller Messdaten zu > 95% • Weiterentwicklung des Luftmessnetzes entsprechend den gesetzlichen Anforderungen • Betreuung eines Depositionsmessnetzes (Niederschlag) mit zehn Messstellen • Betrieb von drei verkehrsnahen Sondermessstellen an hoch belasteten Straßen • Durchführung von Sondermessungen mit Immissionsmesswagen und mobilen Containern • Betrieb von Partikelmesssystemen im Submikronbereich (Zählung ultrafeiner Partikel) in Dresden • Betrieb von Verkehrszähleinrichtungen und Übernahmen dieser Verkehrszähldaten sowie von Pegelmessstellen der Städte in den Datenbestand des Luftmessnetzes Fachbereich 24 - Emissionsmessungen, Referenz- und Kalibrierlabor Der Fachbereich befasst sich mit der Durchführung von Emissionsmessungen an ausgewählten Anlagen aus besonderem Anlass im Auftrag des LfULG. Beispiele: • Emissionsmessungen an Blockheizkraftwerken in der Landwirtschaft (Geruch, Stickoxide, Gesamtkohlenstoff und Formaldehyd). • Ermittlung der Stickstoff-Deposition aus Tierhaltungsanlagen für Geflügel und Rinder (Emissionsmessungen von Ammoniak, Lachgas, Methan, Wasser, Kohlendioxid, Feuchte, Temperatur und Luftströmung , Ammoniak-Immissionsmessung mit DOAS-Trassenmesssystem). • Untersuchung von Emissionen aus holzgefeuerten Kleinfeuerungsanlagen zur Abschätzung von Auswirkungen der novellierten 1. BImSchV. • Unterstützung des LfULG bei der Überwachung bekannt gegebener Messstellen nach § 26 BImSchG.

Versuche zur Ermittlung und zum Verhalten von Bioindikatoren in mit Schadstoffen kontaminierter Luft

Die Raumluft ist haeufig mit toxischen Stoffen (besonders chlorierte Kohlenwasserstoffe wie PCP, Lindan sowie mit Formaldehyd) angereichert. Die ueblichen Analysen sind kompliziert, kostspielig und nicht lebensbezogen. Mit Pflanzen, Samen und pflanzlichem Plasma koennte der Nachweis verbessert werden, so dass ihn auch der Laie anwenden kann (was wegen der ubiquitaeren Verbreitung der Schadstoffe noetig waere).

Erstellung von 'Environmental Health Criteria' Dokumenten (IPCS/WHO)

Im Rahmen des Internationalen Programms fuer Chemische Sicherheit (IPCS) wird an der Erstellung mehrerer Baende der Schriftenreihe 'Environmental Health Criteria Documents' als 'leading institution' gearbeitet. Unter gemeinsamer Verantwortung wird die Reihe vom 'United Nations Environmental Programme' (UNEP), der 'International Labour Organisation' (ILO) und der 'World Health Organization' (WHO) herausgegeben. Ziel der Kriteriendokumente ist es, vorhandene Informationen ueber eine definierte Chemikalie oder Stoffgruppe zu sammeln, sie zu ueberpruefen und sie zu bewerten. Damit soll eine wissenschaftlich fundierte Grundlage geschaffen werden, die besonders in den Entwicklungslaendern politische Entscheidungen ermoeglicht, um Mensch und Umwelt vor nachteiligen Folgen einer entsprechenden Exposition zu schuetzen.

Emissionsreduzierung, Erhöhung der Ressourceneffizienz und des Nutzwertes durch Klebstoffeinsparung mittels belastungsdifferenzierter Auslegung von Formschicht- und Formsperrholzbauteilen, Teilvorhaben 1: Verfahrens- und Materialentwicklung im Labormaßstab

Die Werkstoffe Formsperrholz und Formschichtholz wurde im 19. Jahrhundert als kostengünstiges Substitut von Massivholzprodukten entwickelt. Dies änderte sich zu Beginn des 20. Jahrhunderts, als das Potential des Leichtbaumaterials zur Herstellung von Formteilen bis hin zu Flugzeugrümpfen in Monocoque Bauweise erkannt und zum Hightech Material weiterentwickelt wurde. Nach dem Zweiten Weltkrieg nutzten Designer wie Alvar Aalto oder Charles und Ray Eames die Entwicklungen zur Umsetzung von Möbelentwürfen mit einer revolutionären eigenständigen Formensprache und Materialeffizienz. Seither ist Formsperrholz und Formschichtholz vor allem im Bereich von Sitzmöbeln, ob als Hidden Champion verdeckt unter Polstern, als Objektmöbel u.a. in Schulen, Universitäten, Museen, Institutionen oder als Grundlage vieler Designikonen bekannt. In der Industrie werden zur Verbindung der einzelnen Furnierlagen hauptsächlich formaldehydhaltige Klebstoffe verwendet, die Gesundheitsrisiken mit sich bringen, sowie aus nicht regenerativen Quellen stammen. Das Gesamtziel des Vorhabens ist daher die Einsparung von Klebstoff in Formschicht- und Formsperrholzbauteilen und die Erhöhung des Nutzwertes durch die dabei entwickelte belastungsdifferenzierte Auslegung und mögliche Funktionalisierung der Bau- und Möbelbauteile. Es wird ein Klebeauftrags- und Registrierungsverfahren entwickelt, dass eine selektive Verklebung und statische Auslegung der Bauteile ermöglicht. Formsperrholz und Formschichtholz wird so zu einem Gradientenwerkstoff entwickelt, der in seinen Eigenschaften von biegesteif bis hin zu flexibel innerhalb eines Bauteils mit fließenden Übergängen gradiert werden kann. Mögliche Anwendungen reichen von der Optimierung von Sitzschalen, über den Ersatz von konventionellen Dämpfungs-, Feder- und Polsterelementen, bis hin zu integrierten Funktionselementen wie Möbelscharnieren und Hightech Anwendungen, wie z.B. Schockabsorber im Automotive Sektor.

Emissionsreduzierung, Erhöhung der Ressourceneffizienz und des Nutzwertes durch Klebstoffeinsparung mittels belastungsdifferenzierter Auslegung von Formschicht- und Formsperrholzbauteilen

Die Werkstoffe Formsperrholz und Formschichtholz wurde im 19. Jahrhundert als kostengünstiges Substitut von Massivholzprodukten entwickelt. Dies änderte sich zu Beginn des 20. Jahrhunderts, als das Potential des Leichtbaumaterials zur Herstellung von Formteilen bis hin zu Flugzeugrümpfen in Monocoque Bauweise erkannt und zum Hightech Material weiterentwickelt wurde. Nach dem Zweiten Weltkrieg nutzten Designer wie Alvar Aalto oder Charles und Ray Eames die Entwicklungen zur Umsetzung von Möbelentwürfen mit einer revolutionären eigenständigen Formensprache und Materialeffizienz. Seither ist Formsperrholz und Formschichtholz vor allem im Bereich von Sitzmöbeln, ob als Hidden Champion verdeckt unter Polstern, als Objektmöbel u.a. in Schulen, Universitäten, Museen, Institutionen oder als Grundlage vieler Designikonen bekannt. In der Industrie werden zur Verbindung der einzelnen Furnierlagen hauptsächlich formaldehydhaltige Klebstoffe verwendet, die Gesundheitsrisiken mit sich bringen, sowie aus nicht regenerativen Quellen stammen. Das Gesamtziel des Vorhabens ist daher die Einsparung von Klebstoff in Formschicht- und Formsperrholzbauteilen und die Erhöhung des Nutzwertes durch die dabei entwickelte belastungsdifferenzierte Auslegung und mögliche Funktionalisierung der Bau- und Möbelbauteile. Es wird ein Klebeauftrags- und Registrierungsverfahren entwickelt, dass eine selektive Verklebung und statische Auslegung der Bauteile ermöglicht. Formsperrholz und Formschichtholz wird so zu einem Gradientenwerkstoff entwickelt, der in seinen Eigenschaften von biegesteif bis hin zu flexibel innerhalb eines Bauteils mit fließenden Übergängen gradiert werden kann. Mögliche Anwendungen reichen von der Optimierung von Sitzschalen, über den Ersatz von konventionellen Dämpfungs-, Feder- und Polsterelementen, bis hin zu integrierten Funktionselementen wie Möbelscharnieren und Hightech Anwendungen, wie z.B. Schockabsorber im Automotive Sektor.

1 2 3 4 550 51 52